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Rain regime segmentation of Sentinel-1 observation
learning from NEXRAD collocations with

Convolution Neural Networks
Aurélien Colin1,2, Pierre Tandeo1, Charles Peureux2, Romain Husson2, Nicolas Longépé3, Ronan Fablet1,

Abstract—Remote sensing of rainfall events is critical for both
operational and scientific needs, including for example weather
forecasting, extreme flood mitigation, water cycle monitoring, etc.
Ground-based weather radars, such as NOAA’s Next-Generation
Radar (NEXRAD), provide reflectivity and precipitation esti-
mates of rainfall events. However, their observation range is
limited to a few hundred kilometers, prompting the exploration of
other remote sensing methods, particularly over the open ocean,
that represents large areas not covered by land-based radars.
Here we propose a deep learning approach to deliver a three-class
segmentation of SAR observations in terms of rainfall regimes.
SAR satellites deliver very high resolution observations with a
global coverage. This seems particularly appealing to inform
fine-scale rain-related patterns, such as those associated with
convective cells with characteristic scales of a few kilometers.
We demonstrate that a convolutional neural network trained on a
collocated Sentinel-1/NEXRAD dataset clearly outperforms state-
of-the-art filtering schemes such as the Koch’s filters. Our results
indicate high performance in segmenting precipitation regimes,
delineated by thresholds at 24.7, 31.5, and 38.8 dBZ. Compared
to current methods that rely on Koch’s filters to draw binary
rainfall maps, these multi-threshold learning-based models can
provide rainfall estimation. They may be of interest in improving
high-resolution SAR-derived wind fields, which are degraded by
rainfall, and provide an additional tool for the study of rain cells.

Index Terms—Synthetic Aperture Radar, Deep Learning,
Oceanography, Rainfall.

I. INTRODUCTION

PRECIPITATION monitoring and forecasting are major
operational and scientific challenges. The monitoring of

rainfall and convective systems can greatly benefit from high-
resolution maps derived through remote sensing techniques
[1]. This is particularly relevant within the context of climate
change, as numerous coastal regions are projected to encounter
increased precipitation and a higher frequency of extreme
rainfall events [2]. Real-time satellite data shows promise
for flash flood nowcasting [3], [4]. However, the analysis of
rain cells necessitates a wide area of observation with a high
degree of detail, particularly in the case of convective cells
which usually measure a few dozen kilometers in diameter [5],
though they can be smaller in the early stages of development
[6].

Ground-based weather radars provide high-resolution rain-
fall estimates that are limited in coastal areas due to their

1 IMT Atlantique, Lab-STICC, UMR CNRS 6285, F-29238, France.
2 Collecte Localisation Satellites, Brest, France.
3 Φ-lab Explore Office, ESRIN, European Space Agency (ESA), Frascati,

Italy

range that spans only a few hundred kilometers. Among other
parameters, such radars measure the reflectivity of the air
column at different inclinations. When the beam encounters
precipitation, part of the emitted signal is reflected back to
the sensor with an intensity that depends on the size of the
water droplets, their density, and the distance from the radar.
Previous studies have derived empirical relationships between
weather radar reflectivities, the categories of the hydrometeors
and the rainfall rates [7], [8]. The Next Generation Weather
Radar (NEXRAD) systems, used in this study, have a resolu-
tion of 1 km in range and 1° in azimuth.

Farther from the coast, satellite-derived rain products are
available, though at a lower spatial resolution than ground-
based radars. Sensors deployed on low-Earth orbit satellites
provide coverage of the entire globe at an extended temporal
resolution. For example, brightness temperatures measured by
microwave radiometers [9], such as SSMI/S, can provide rain
rate estimates. SSMI/S’ along-track and cross-track resolution
is respectively 14 and 13 km/px. Satellite-based radars such as
GPM-DPR [10] are also available, with an higher resolution
of 5 km/px. Satellite observations can be merged into multi-
satellite products such as GPM IMERG [11] or CMORPH
[12]. GPM IMERG uses low-orbit infrared (IR) observations
with a spatial resolution of 0.1° and a temporal resolution
of 30 minutes. CMORPH also uses IR observations but from
geostationary satellites and provides a rainfall product at a
spatial resolution of 8 km and a temporal resolution of 30
minutes.

Space-based synthetic aperture radar (SAR) observations
measure the backscattered radar signal at high resolution,
typically 10 to 25 m for Sentinel-1. They provide sea surface
images which reveal a wide variety of meteorological and
atmospheric phenomena [13]. Among these, rain signatures
appear as light and/or dark spots (Fig.1). Studied for a long
time now, these signatures can be a combination of different
contributions from the roughness of the sea surface (increased
or decreased surface scattering) or from the atmosphere (vol-
ume scattering or attenuation by hydrometeors). Their impact
on radar backscatter varies as a function of many parameters
such as incidence angle, wind conditions, signal polarization
and frequency, or precipitation rate [14]–[17]. These rain
signatures often hinder other SAR-based information such as
the wind field [18], [19]. The C-band SAR instrument on
Sentinel-1 satellites can operate in different acquisition modes.
One such mode is the Interferometric Wide Swath (IW) mode.
It covers several hundred kilometers in range and azimuth
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directions and extends over incidence angles between 29° and
46°. These products are generally used to study coastal areas.
The revisit period of a single Sentinel-1 satellite is between 2
and 6 days depending on the latitude [20].

Methods have been developed to detect rainfall from SAR
instruments in the Ku-band [21] or X-band [22]. Although
different studies have addressed the estimation of rainfall in
the C-band [23] or the segmentation of rain cells [24], [25],
the calibration of SAR-derived rainfall products remains a
challenge [26]. The lack of SAR dataset with groundtruthed
reference rainfall data has certainly been a critical limitation.
However, Earth observation systems, such as the Sentinel-1
satellites, now deliver large-scale datasets of SAR observa-
tions combined with rainfall data provided by weather radars,
specifically NOAA’s NEXRAD sensors [27]. Therefore, the
preparation and analysis of well collocated NEXRAD and
Sentinel-1 measurements, both at high resolution, provides
a unique opportunity to better characterize and detect rain
signatures in SAR acquisitions. This methodology is not re-
stricted to Sentinel-1 and can be utilized for other C-band SAR
missions like Gao Fen 3 [28], the RADARSAT Constellation
Mission [29], or RISAT [30].

In this study, we explore how deep learning approaches
can leverage such a large-scale SAR-NEXRAD dataset to
deliver SAR-derived rainfall estimation. We focus specifically
on vertical-vertical (VV) polarization, available for all non-
polar Sentinel-1 products. Our underlying assumption is that
the relationship between the sea surface roughness and the
reflectivity within the air column is strong enough to infer
reflectivity bins from the former. We show that a U-Net archi-
tecture far outperforms the filtering-based schemes previously
suggested in [27].

II. DATASET

The Sentinel-1 mission consists of two satellites, Sentinel-
1A and Sentinel-1B, whose synthetic aperture radars (SAR)
regularly acquire data at 5.4 GHz (C-band). In this study, we
used the IW acquisition mode. IW Ground Range Detected
High Resolution (GRDH) products are obtained with a pixel
spacing of 10 x 10 meters and a spatial resolution of approx-
imately 20 x 22 meters. These products extend over a few
hundred kilometers in range (250 km) and in azimuth.

A. Rainfall information

In preliminary studies, collocation with the satellite-based
radar GPM/DPR, conducted over a global Sentinel-1 dataset
found only 2,304 partial collocations out of 182,153 IW.
’Partial collocations’ is meant to indicate that at least 20x20
km of a swath is observed by GPM 20 minutes before or
after the SAR observation, disregarding the occurrence of
rain events. The study also considered collocation with two
global products: GPM-IMERG [11] and CMORPH [12], both
integrated from multiple satellites. Nevertheless, due to the
brief lifespan and rapid evolution of convective cells, it is im-
perative to minimize the time gap between SAR observations
and rainfall data acquisition. Additionally, given that rain cells

can span only a few kilometers, a high spatial resolution for
rainfall data is indispensable.

The difficulty to obtain collocations, the lower resolution
(respectively 5 km, 0.1° and 8 km per pixel for GPM/DPR
GPM IMERG and CMORPH) and greater misalignment issues
led us to rather focus on weather radar data as the source of
rainfall information. We collected weather radar reflectivity
data from NEXRAD, a network of 160 Doppler weather
radars operating between 2.7 and 3 GHz. We used the basic
reflectivity with a resolution of 1 km in range and 1° in
azimuth. Basic reflectivity is provided with a time resolution of
6 minutes, meaning that the maximum time difference between
Sentinel-1 and NEXRAD observations is 3 minutes.

B. Sea surface wind fields

In the absence of rainfall, wind speed is the primary pa-
rameter governing variations in sea surface roughness. Heavy
precipitation however strongly impacts the latter [31]. To
ensure that the training, validation and test subset follow
similar distributions, we choose to balance them with respect
to both the rainfall and the wind speed. This requires to
complement our dataset with the most reliable wind speed
information.

Two sources of wind speed were considered: European
Centre for Medium-Range Weather Forecast (ECMWF) model
estimates and wind inversions from SAR observations.

• The atmospheric model estimates were obtained from sea
surface wind at a height of 10 m through the analysis of
the ECMWF’s global model: the Integrated Forecasting
System (IFS). Forecasts are provided either 3-hourly or
hourly and at resolutions of 0.125° or 0.1°, respectively
before or after August 2019.

• The SAR-derived sea surface wind field relies on
CMOD5.N (a C-band geophysical model function) and
auxiliary ECMWF wind data. These data are used as
priors in a Bayesian inversion scheme [32].

Significant differences between the SAR-derived and model-
derived wind fields can occur if the model is not well phased
with respect to the actual situation, if the difference between
the analysis and observation times is too large or because
of the inherent difference between the resolution of the two
wind fields. Other significant differences can occur when the
sea surface roughness is impacted by non-wind processes. As
highlighted in [26], four main physical processes contribute
to the radar signature of rainfall events: 1) scattering of the
radar signal from the sea surface, the roughness of which
is altered by both ring wave generation and wave damping
due to turbulence caused by raindrops hitting the sea surface,
2) increased sea surface roughness due to downdraft winds
often associated with rain cells, 3) scattering from splash
products, i.e. craters, stalks, crowns and rain drops bounc-
ing upwards, and 4) scattering and attenuation of the radar
pulse by raindrops (hydrometeors) in the atmosphere (volume
scattering and attenuation) which can become non-negligible
at very high rain rates. The direct interpretation of the sea
surface roughness as being a result of sea surface winds would
lead to significant errors. An incorrect a priori wind direction
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model can also lead to incorrect estimates of SAR-derived
wind speed and direction. This is generally the case for fast
moving phenomena or local structures not seen by modeled
winds.

Figure 1 illustrates some discrepancies between the SAR
inversion and the ECMWF wind speed. We displayed the
observations displayed in this paper in satellite geometry,
meaning that the satellite is observing from the left, with
an incidence angle increasing along the x-axis independently
from the ascending or descending passes. The first line,
observed on May 17th at 23:05:21, shows an area of low
sea surface roughness in the lower half. The SAR inversion
contradicts the ECMWF results by more than 5 m/s over most
of the IW. This discrepancy is related to a time difference of 55
minutes. The second line, in which there is a time difference of
79 minutes (observations acquired on August 27th at 22:19:26),
indicates a misalignment between the ECMWF wind speed
and the SAR inversion, as illustrated by the position of the
eye of the cyclone. On the other hand, the wind speed derived
from the SAR observations appears to be contaminated by
rain signatures. In the first observation, the rainfall causes an
overestimation of the wind speed South of 33.5°N due to the
ring-waves generated by the impact of hydrometeors. In the
second observation, overestimation of wind speed is visible in
several areas, often closely associated with underestimation.
This effect is particularly noticeable around 62°W, although
it is challenging to determine whether it is caused by wave
damping or atmospheric attenuation. It should be noted that
the wind direction used prior to GMF computation is provided
by ECMWF. Therefore, the misalignment of the cyclone eye
likely introduces a bias in the estimation of wind speed.

In the following sections, all the analyses rely on the
ECMWF wind speed to ensure the independence with the
presence or absence of rain, despite occasional errors.

C. SAR preprocessing
The TOPSAR process [33] used for the IW mode divides

each observation into three subswaths along the azimuth,
themselves divided into several bursts along the range. The
calibration of each subswath and burst is performed by
Sentinel-1’s Instrument Processing Facility (IPF) by calcu-
lating the theoretical gain of the SAR antenna. The result-
ing Normalized Cross-Section Reflectivity (NRCS) is further
corrected for thermal noise, using the noise equivalent sigma
nought (NESZ) annotation included in the SAR products [34].
The residual NESZ is still noticeable on cross-polarization
channels (i.e. VH and HV polarizations), due to a lower
signal power, but not on co-polarization channels (i.e. VV
and HH polarizations) [35]. In this study, we only use the
VV polarization. To reduce the dependence on the incidence
angle, the NRCS is divided by the NRCS corresponding to
a wind speed of 10 m/s and a direction of 45° relative to
the satellite heading (also called neutral wind), following the
methodology used in [24]. We perform this normalization
using the Geophysical Model Function CMOD5.N [36] which
links the NRCS, the incidence angle, and the wind vector. The
result of this normalization is called Sea Surface Roughness
(SSR).

The GMF is computed as per Equation 1 with U the neutral
wind speed at 10m, θ the incidence angle and ϕ the wind
direction relatively to azimuth (i.e. the satellite heading). a, b,
c1 and c2 are parameters of the GMF.

σ0 = a(U, θ)[1 + c1(U, θ) cosϕ+ c2(U, θ) cos 2ϕ]
b (1)

The SSR is fed to the model on a linear scale, clipped
between 0 and 6. However, the SSR is displayed in the present
using a logarithmic scale, where a null value corresponds to
neutral wind conditions.

D. Enhanced collocalized Sentinel-1/NEXRAD dataset

Our collocalized dataset extends the approach introduced in
[27] to enhance the quality of the dataset used to train deep
learning schemes. Especially, we do not require the filtering
crietrion considered below to apply in inference mode.

Weather radars are affected by multiple factors that re-
duce the agreement with the collocation of the SSR from
Sentinel-1. Due to the Earth curvature and the inclination
(0.5°), the altitude of the observed volume increases with
the distance from the ground station. As such, since the
SAR imagery observes the ocean surface, both information
gradually decorrelate with the distance to the coast. This
concordance is difficult to qualify automatically since the
altitude observed by the ground station depends not only on
the distance but also on the refractive index of the air, which is
related to the atmospheric temperature and humidity gradients.
As explained by [26], the bright rain signatures in SAR may
also be due to strong reflectivity from the melting layer (4th
physical process aforementioned) where snowflakes melt into
droplets. Other phenomena can also hinder the radar’s ability
to provide accurate information. Topography, for example,
can mask rain signatures located behind an obstacle. The
accumulation of these sources of discrepancies is difficult to
quantify automatically and require manual verification.

In addition, to ensure a consistent SAR processing for
all observations, we focus on SAR observations from March
2018 onward. This corresponds to Sentinel-1 IPF version 2.90,
which has improved noise correction and the associated signal-
to-noise ratio (SNR). In total, these constraints reduced the
number of available wide swath SAR products from 1064 to
53.

Each of these IWs is divided into patches of approximately
25 x 25 kilometers and 256 x 256 pixels. Patches were
extracted from the swaths with a step size of half their width.
This extraction ensures that a meteorological and oceanic
situation occurring at the edge of one patch is found in the
center of the next patch. It also implies that each pixel is
present in four patches.

We withdraw patches which did not fulfil the following
requirement: patches include less than 50% of lan pixels;
the maximum NEXRAD reflectivity was less than less than
25 dBZ for all patches; no patch is rain-free. After this
filtering step, to maximize the overlap of SAR and weather
radar signatures, the patches are aligned manually. This is
carried out independently for each patch using a constant
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Figure 1. Example of the discrepancies between ECMWF wind speed estimates and SAR observation. Lands are greyed out. From top to bottom: The Sea
Surface Roughness from the SAR observation, the wind speed estimated from a geophysical model function and the wind speed from ECMWF’s forecast
atmospheric model. Red arrows indicate an increase in reflectivity caused by the rain, while green arrows indicate probable decreases.

translation of the NEXRAD measurement to overlap the SAR
signatures. An example of this operation is shown in Figure 2.
This geographic repositioning corrects remaining collocation
problems that may be related to the displacement or evolution
of rain cells between NEXRAD and SAR observation times
or to the different altitudes at which the phenomena were
observed.

During the manual realignment process, we removed the
patches which involved a registration displacement between
Nexrad and SAR observations larger than a few kilometers.
We also discarded the patches which involve the shapes of the
rain signatures too dissimilar to achieve a sensible registration.

Overall, this curation process reduced the number of patches
from 9574 from IWs to 1570. We report patch locations,
alongside the NEXRAD stations in Figure 3.

The misalignment distance between Sentinel-1 and
NEXRAD rain signatures is found to correlate with the
distance to the NEXRAD ground station (R2 = 40.4%).
This indicates that the collocations are less reliable as the
distance (and the altitude of the observed volume) increases.
We assume that this misalignment is caused by the horizontal
drift identified by [37] between weather radar observations
and in situ rain gauges.
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SAR
observation

Original
collocation

Corrected
collocation

Figure 2. Realignment example. On the left, a patch (20 x 20 km) observed
on May 5th 2018 at 23:05:20. In the center, the corresponding NEXRAD
measurement. The cyan-colored area does not overlap perfectly with the SAR
signature (center), therefore, we perform a manual realignment (right).

Given the collocated patch dataset, we create training,
validation, and test sets. It is important to ensure independence
between each subset to evaluate the generalization perfor-
mance of deep learning schemes beyond the training dataset.
Since the dataset is built with overlapping patches, adjacent
patches share some pixels. Additionally, two patches extracted
from the same IW observation may be affected by the same
biases. To ensure independence between subsets, we perform
the split at the swath level, meaning that two patches extracted
from the same IW observation will be in the same subset.

To ensure a similar distribution of rainfall in each data
subset, the subsets were balanced on both the NEXRAD
reflectivity and the wind speed, which presumably has an
impact on rainfall prediction capabilities. This assumption
is driven by the known increase in sea surface roughness
under the impact of rain and wind, as illustrated in Figure
4. The NEXRAD reflectivity and Sentinel-1 backscatter also
decorrelate for reflectivities below 30 dBZ.

The resulting distributions for each subset of the data are
detailed in Table I. As noted, the dataset suffers a lack of data
at higher reflectivity and wind speeds. Indeed, as an example,
only two wide-swaths contain wind speeds above 12 m/s, and
only one has wind speeds above 16 m/s. It can also be noted
that the standard deviation of the SAR surface roughness is
higher when wind speed is higher than 12 m/s.

Dataset Train
(39 IW)

Validation
(7 IW)

Test
(7 IW)
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]]

[0, 4[ 79.3 % 9.7 % 11.0 % 11.7 %
[4, 8[ 79.1 % 9.7 % 11.1 % 69.7 %
[8, 12[ 79.1 % 9.5 % 11.3 % 17.1 %
[12, 16[ 100 % 0.0 % 0.0 % 1.5 %
≥ 16 100 % 0.0 % 0.0 % 0.1 %

Table I
PER-PIXEL DISTRIBUTION OF NEXRAD REFLECTIVITY AND ECMWF

WIND SPEED FOR THE PATCHES CONTAINED IN EACH SET.

The reflectivity is divided into four intervals: [0, 24.7],
[24.7, 31.5], [31.5, 38.8] and [38.8, +∞] dBZ. Incidentally,
according to the general NEXRAD radar formula [38], these
intervals can be approximated in terms of rainfall by thresholds
at 1 mm/h, 3 mm/h and 10 mm/h. The precipitation estima-
tion is tackled not from a continuous regression, which is

difficult because of the aforementioned discrepancies between
Sentinel-1 and NEXRAD sensors, but as the segmentation of
the following rainfall classes: ≥ 24.7 dBZ, ≥ 31.5 dBZ, and
≥ 38.8 dBZ. Reflectivities below 24.7 dBZ are considered to
be rain-free. The direct prediction of reflectivity values proved
difficult due to the scarcity of the strongest rain events and the
low correlation between the reflectivity value and the SAR sig-
nature. The non-uniform distribution of NEXRAD reflectivity
is also an issue because low reflectivities are over-represented,
as shown in Figure 4.b. The proposed segmentation-based
formulation addresses these challenges. Overall, the resulting
datatset of 1570 patches, divided in training (1243 patches),
validation (153 patches) and test sets (174 patches) is available
on kaggle at: www.kaggle.com/rignak/sentinel1-nexrad.

III. PROPOSED DEEP LEARNING FRAMEWORK

This section introduces the proposed deep learning schemes.
Within a supervised training framework, we explore two neural
network architectures: the first one derived from the Koch’s
filters [39], the second one based on a U-Net architecture [40].

A. Koch’s filter-based architecture

Koch’s filters, introduced by [39], are four different high-
pass filters that each detect different patterns thus allowing the
detection of heterogeneous areas of ocean surface roughness.
Their original use was to identify areas where backscatter is
caused by non-wind phenomena (ships, rain, interference, tidal
currents...), as this would exclude these areas from a wind
speed/direction estimate. Koch’s filters can be optimized to
produce binary rainfall maps, as precipitation is a major source
of heterogeneity [27].

Specifically, Koch’s filters are defined as four different high-
pass filters scaled by a linear function and clipped to maintain
the result between 0 and 1. The output of the filters is the
root mean square of these clippings. [27] estimated thresholds
in order to derive binary rain maps from this final value,
depending on the resolution and polarization of the input.
We extended this framework to multi-threshold segmentation
by rewriting the Koch’s filters as a Convolutional Neural
Network (CNN) defining the scaling function parameters.
The four high-pass filters were used on the input and left
side as in the original version. To guarantee a non-zero
gradient, the clipping is replaced by the sigmoid function
σ(x) = [1 + exp(−a(x + b))]−1. We set a = 4 and b = 0.5
so that the inflection point is at x=0.5, σ(0.5) = 0.5 and
dσ
dx (0.5) = 1. The change in activation affects the filter result,
but the relative difference from the original Koch’s filters is
only 0.8% when initialized with the same parameters. Figure
5 illustrates this Koch’s filters incorporated into the CNN.
This formulation allows for segmentations for different rain
thresholds, unlike the original rain detection [27].

The model is trained to minimize the mean square error
with the ADAptive Moment estimation (ADAM) optimizer, a
learning rate of 10−3 over 200 epochs with a batch size of
32. ADAM is an optimizer commonly used in deep learning
schemes as it combines gradient momentum and adaptive
learning rate to accelerate the convergence of the model

www.kaggle.com/rignak/sentinel1-nexrad
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Figure 3. Geographic distribution of patches in the dataset centered around Florida (a), Guam (b), Hawaii (c), and California (d). NEXRAD stations are
represented by a red dot. Circles correspond to a 350 km range. Values are the number of observations over the corresponding latitude/longitude.

Sea surface roughness
depending on

NEXRAD’s reflectivity

Number of pixels in
the dataset depending

on NEXRAD’s reflectivity

Sea surface roughness
depending on

ECMWF’s wind speed

Number of pixels in
the dataset depending

on ECMWF’s wind speed

Figure 4. Evolution of sea surface roughness (and associated number of
pixels) as a function of NEXRAD reflectivity or ECMWF wind speed and their
associated number of pixels. The red, yellow and cyan vertical lines are the
threshold values used to separate the four precipitation classes. The blue area
represents the standard deviation around the mean at each point. The decrease
in sea surface roughness at 11 m/s is due to a single IW (taken on May 17th

2018 at 23:05:21). Comparisons between SAR-derived and ECMWF’s wind
speed confirm ECMWF is over-estimating the wind speed for this particular
case.

[41]. As previously mentioned, the convolution kernels were
initialized following the original Koch’s filters formulation
[39].

B. U-Net architecture

Among the variety of state-of-the-art neural architectures for
image segmentation and image-to-image translation problems,
we consider here a U-Net architecture [40]. U-Net is an auto-
encoder model, which is a neural network composed of an
encoder that projects the input into a latent space, usually
of smaller dimension, , and a decoder that, on the contrary,
projects latent maps back into the original image space. U-Net
uses ”skip connections” to propagate intermediate activation
maps between the encoder and the decoder, bypassing the
central part of the network and facilitating the preservation of
details. This architecture is well established and has already
been used in SAR imagery for sea ice concentration estimation
[42] and semantic segmentation [25].

The specific model used is shown in Figure 6. Compared
to the original U-Net model, it has one less stage to reduce
the receptive field and ensure that, when applied to full
IW observations divided into overlapping tiles, the output
mosaic has continuity between adjacent tiles. The width of
the theoretical receptive field is 140 pixels, but the effective
receptive field, which is smaller due to the contribution of
neighboring pixels that exponentially decreases with distance
[43], is small enough to ensure continuity. The number of
weights, independent of input size and spatial resolution, was
3,117,731.

The model was trained to minimize the mean square error,
using ADAM with a learning rate of 10−5, for 500 epochs.
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Figure 5. Architecture of the multi-threshold Koch’s filters as a convolutionnal neural network. PV V,r
i is the output of the high-pass filter i at the resolution r,

for the V V polarization. σ is the sigmoid function defined as σ(x) = [1+exp(−4(x+0.5))]−1. Ki,V V,r
j and Bi,V V,r

j are the scaling function parameters
for each resolution r, polarization V V , filter j and precipitation regime i. The results are fused along the filters by a quadratic mean.

Figure 6. Architecture of the U-Net model used to classify rainfall amount (from light to heavy) using Sentinel-1 ocean surface roughness.

In all experiments, 500 epochs were sufficient to achieve loss
convergence. The batch size was 32, except at 100 m/px where
GPU memory constraints led to reducing the batch size to
16. Batch size refers to the number of samples on which
the gradients are evaluated at each step of the optimization
process. Decreasing the batch size reduces memory usage but
may introduce instability in the training process.. The code
used to train the model is accessible at https://github.com/
CIA-Oceanix/SAR-Segmentation/tree/oceanix. The evolution
of the training and validation losses during the training is
presented in 7.

IV. EVALUATION FRAMEWORK

Existing Koch’s filters are designed to produce binary maps
of rain presence or absence. To compare this framework with

our multi-class models (i.e. the fine-tuned Koch’s filters and
U-Net), we computed the F1-score on the binary segmentation
problem for each threshold (24.7, 31.5 and 38.8 dBZ). The F1-
score is defined as the harmonic mean of recall and precision.
Recall is the average diagonal value of the row-normalized
confusion matrix. It is also known as the producer’s accuracy.
Precision is the diagonal mean value of the column-normalized
confusion matrix. It is also known as the user’s accuracy.
Denoting TP the True Positive rate, FP the False Positive
rate and FN the False Positive rate

Precision =
TP

TP + FP
; Recall =

TP

TP + FN

When evaluated on a binary segmentation problem (through
a 2 x 2 confusion matrix), we call it the ”Binary F1-score”.

https://github.com/CIA-Oceanix/SAR-Segmentation/tree/oceanix
https://github.com/CIA-Oceanix/SAR-Segmentation/tree/oceanix
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Figure 7. The evolution of the Mean Square Error during training for the U-Net models and both the validation and training sets. Each faded curve corresponds
to a single training, while the mean over the five trainings is highlighted. One epoch corresponds to 1243 images.

This value indicates the ability to separate rain-free patches
from rainy ones. The F1-score is also used to evaluate the
ability to distinguish between different reflectivity bins. In this
case, it is computed by taking the mean precision and recall.
This F1-score is indicated as the ”Multiclass F1-score”. F1-
score being the harmonic mean of precision and recall, it has
the advantage of being resilient to data imbalance, which is
particularly important for stronger rainfall events less likely to
appear on the samples.

We therefore compare the Binary Koch’s filter, which is
the baseline and state-of-the-art in rain detection, to the Fine-
tuned Koch’s filter (the CNN-embedded multi-label Koch’s
filter), and the U-Net architecture. For the latter, results using
a dataset without the manual realignment are also provided to
justify the need for this particular operation. The U-Net models
were trained and tested at resolutions of 100 m/px to 800 m/px.
Because the receptive field of the Koch’s filters is smaller, they
were only used down to 200 m/px, in accordance with [27].
Since some parts of the methodology were stochastic, such
as the order of the images provided to the network or the
initialization of its weights, the results are given as the mean
and standard deviation over five training runs, in accordance
with [44].

V. RESULTS AND DISCUSSION

Table II compares the binary Koch’s filters, the fine-tuned
multi-label Koch’s filters, and the U-Net architectures for
binary segmentation (for different precipitation thresholds) and
multi-class segmentation. The binary Koch’s filters performs
worse on the binary F1-score at each precipitation threshold
than do both the fine-tuned Koch’s filters and the U-Net
architecture. The best binary segmentation is obtained at 200
m/px for each method, and the U-Net architecture outperforms
both variants of the Koch’s filters. Great variability is observed
in the results and can be explained by the difference in the
number of parameters (24 for the finely tuned Koch’s filters
and over 3M for the U-Net model).

As the multi-class F1-score is not only influenced by its abil-
ity to detect precipitation but also by its ability to distinguish
the severity of precipitation, it indicates higher performance at
400 m/px. Interestingly, this is also the best resolution obtained

by [27], although the results were computed on a different data
set. This leads one to believe that the increase in resolution,
while giving more accurate information, is counterbalanced by
the decrease in contextual information. Since the architecture
of the network does not change, the receptive field is the same
if measured in pixels, but is reduced if we consider the area
covered in km². The Koch’s filters are less affected by the
change of context because their effective field is defined by
the low pass filters they use as input.

The confusion matrices, shown in Figure 8, indicate that
the U-Net architecture (bottom) is more accurate than the fine-
tuned Koch’s filters (left) for each threshold (11.9% vs. 31.0%,
10.6% vs. 26.2%, and 29.6% vs. 70.5% for the 24.7, 31.5, and
38.8 dBZ thresholds, respectively). However, 31% of the [31.5,
38.8[ dBZ class remains unrecognized by the model as being
rain. The U-Net performs particularly well in detecting heavy
rainfall, as 93.7% of rainfall above 38.8 dBZ was predicted to
be above 31.5 dBZ. The refined Koch’s filters only achieved
64.4%.

Figures 9 to 10 shows some examples of rainfall predictions
using SAR data and either the U-Net architecture or the fine-
tuned Koch’s filters. Overall, the SAR rainfall predictions
appear to concord with the NEXRAD acquisitions over the
ocean, with different sensitivities. In Figure 9, the fine-tuned
filter well detects the rainy regions but indicate less or no rain
in the main rain cell higher than 25° N, indicated by the letter
’A’. This is mainly due by the direct use of high-pass filters
while the U-Net architecture is more general. Also, the fine-
tuned filter tends to detects smaller rain patches, not detected
in NEXRAD. Three neighbouring dots located near the letter
’B’ are false positives and correspond to 3 ships. In the top-left
corner, near the letter ’C’, the weather radar observes reflec-
tivities lower than the 24.7 dBZ threshold, which correlates
with low temperature brightness in the 11.2 µm channel from
GOES-16’s radiometer, hinting to the presence of a deep cloud
cover. This indicates that low rain rates are not visible on
the SAR observation, either because they evaporate in the air
column or because their impact on the ocean surface is too
weak.

In Figure 10, the fine-tuned filter wrongly interprets gust
fronts (letters ’D’) as strong rain due to their strong discon-
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Model Input resolution Binary F1-score
(> 24.7 dBZ)

Binary F1-score
(> 31.5 dBZ)

Binary F1-score
(> 38.8 dBZ) Multiclass F1-score

Binary
Koch’s filter

200 m/px 44.3% 34.7% 22.8% N/A
400 m/px 37.3% 26.5% 15.1% N/A
800 m/px 32.9% 22.2% 11.1% N/A

Fine-tuned
Koch’s filter

200 m/px 45.9% (0.04%) 41.6%( 0.06%) 38.7% (2.09%) 34.8% (0.2%)
400 m/px 43.2% (0.15%) 40.9% (0.14%) 37.9% (0.58%) 35.9% (0.3%)
800 m/px 38.3% (0.05%) 37.2% (0.18%) 32.3% (1.65%) 35.2% (0%)

U-Net

100 m/px 53.7% (2.36%) 52.5% (2.03%) 55.6% (2.30%) 47.2% (1.9%)
200 m/px 50.5% (1.69%) 47.5% (1.72%) 48.0% (1.87%) 46.0% (3.0%)
400 m/px 51.2% (1.72%) 46.8% (1.75%) 47.2% (2.14%) 50.5% (2.8%)
800 m/px 45.4%(0.93%) 40.4%(1.26%) 40.2%(1.56%) 47.1% (0.9%)

U-Net
without

realignment

100 m/px 51.6% (0.56%) 50.2% (0.42%) 25.8 % (14.76%) 41.0% (1.2%)
200 m/px 50.1% (0.54%) 48.2% (1.32%) 42.7 % (9.24%) 36.1% (2.4%)
400 m/px 49.1% (0.93%) 47.6% (0.87%) 48.5 % (1.35%) 41.0% (1.2%)
800 m/px 44.2% (2.57%) 42.5% (3.06%) 43.8 % (2.41%) 41.5% (1.0%)

Table II
EVALUATION OF THE BINARY AND FINE-TUNED KOCH’S FILTERS AND U-NET MODEL ON THE TEST SUBSET. RESULTS ARE PROVIDED AS A MEAN WITH

STANDARD DEVIATION OVER FIVE RUNS.

tinuity with respect to the background radar signal. In Figure
11, we illustrate limitations of the NEXRAD system as it is
unable to detect the rain patches located on the right-hand side
(letter ’E’), possibly due to masking by the topography. The
observations are samples of the test set.

As the dataset contains limited data for high wind speed,
the model is unable to estimate the rainfall on strong winds.
In particular, running the model on miscellaneous IW acquisi-
tions shows a tendency to overestimate the reflectivity. Figure
12 indicates two cases of these overestimates. The observation
from September 29th 2018 contains wind speed around 30
m/s, higher than any data contained in the dataset. The SAR
observation therefore appear particularly bright and led the
rainfall estimation to reach the 38.8 dBZ threshold on a large
area. The observation from October 16th 2021 depicts strong
mountain winds around 12 m/s. The topography of the coast
generates are strong gradient parallel to the coast, whereas
gravity waves cause the SAR intensity to vary parallel to the
wind direction. The cumulative signatures are recognized as
strong rainfall by the model. No weather radar groundtruth was
available for these observations, but the distinctive signature
of precipitation do not appear on the SAR observation.

VI. CONCLUSION

The monitoring of rain over the oceans is a key challenge
for weather modeling and forecasting. This is particularly
important for flood mitigation in coastal areas. While land-
based sensors cannot monitor the open ocean, the satellite-
derived retrieval of rain rate remains a challenge, especially at
high resolution, despite the variety of rain-impacted and rain-
measuring spaceborne instruments. In this respect, the effect of
precipitation on satellite SAR observations of the sea surface
has been widely documented.

This study demonstrates that deep learning opens new
avenues for the monitoring of sea surface rain patterns at high
resolution from satellite SAR observations. We exploit a state-
of-the-art image-to-image translation architecture, namely a
U-Net. The training scheme relies on a collocated dataset of
NEXRAD weather radar data and Sentinel-1 SAR observa-
tions. The deep learning model is compared to a neural net-
work implementation of the Koch’s filters. We report an accu-
rate segmentation of rainy areas at sea surface and satisfactory

ability to discriminate rain between 24.7 dBZ and 31.5 dBZ
and 38.8 dBZ and above 38.8 dBZ. The proposed approach
outperforms previous work based on Koch’s filters and points
out the importance of a realignment-based preprocessing of
the training dataset.

Future work could therefore benefit from the generalisation
of the proposed approach to other SAR modes such as
WV modes which may involve other incidence angle ranges.
The addition of other SAR parameters, such as the VH-
polarization, could increase the performances, especially at
high wind speed where VV-polarization is known to saturate.
However, an extension to high wind speed would need new
collocations dedicated to these wind regimes. Finally, the
study also supports the development of a joint wind speed
and rain rate retrieval at sea surface. Both are currently done
independently despite each phenomena impacting the aspect
of the SAR signature of the other.
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Fine-tuned multi-class Koch’s filter

U-Net model with realignment

Figure 8. Normalized confusion matrices of the fine-tuned multi-class Koch’s
filters (top), the U-Net model with realignment, both at 400 m/px. Result are
given as mean and standard deviation over 5 training, as to mitigate the random
initialization. Large standard deviations indicates unstable training.
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SAR observation NEXRAD reflectivity (groundtruth)

Prediction from Koch’s filters Prediction from U-Net model

GOES16/ABI, band 14 (11.2 µm)

Figure 9. Example of SAR-derived reflectivity estimation from the observation from April 24th 2018 at 11:10:12.
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SAR observation NEXRAD reflectivity (groundtruth)

Prediction from Koch’s filters Prediction from U-Net model

Figure 10. Example of SAR-derived reflectivity estimation from the observation from August 05th 2018, at 20:07:39.

SAR observation NEXRAD reflectivity (groundtruth)

Prediction from Koch’s filters Prediction from U-Net model

Figure 11. Example of SAR-derived reflectivity estimation from the observation from August 19th 2018 at 23:19:09.
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Figure 12. Examples of wrong rainfall estimation. The overestimation from September 29th 2018 at 09:28:26 (left) is linked to the strong wind of Typhon
Trami. The overestimation from October 16th 2021 at 21:05:33 (right) is caused by topography-induced wind regimes. Lands are greyed out.
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