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ABSTRACT
Machine Learning (ML)-based Intrusion Detection Systems (IDS)
have shown promising performance. However, in a human-centered
context where they are used alongside human operators, there is
often a need to understand the reasons of a particular decision.
EXplainable AI (XAI) has partially solved this issue, but evaluation
of such methods is still difficult and often lacking. This paper re-
visits two quantitative metrics, Completeness and Correctness, to
measure the quality of explanations, i.e., if they properly reflect the
actual behaviour of the IDS. Because human operators generally
have to handle a huge amount of information in limited time, it is
important to ensure that explanations do not miss important causes,
and that the important features are indeed causes of an event. How-
ever, to be more usable, it is better if explanations are compact. For
XAI methods based on feature importance, Completeness shows
on some public datasets that explanations tend to point out all
important causes only with a high number of features, whereas
Correctness seem to be highly correlated with prediction results
of the IDS. Finally, besides evaluating the quality of XAI methods,
Completeness and Correctness seem to enable identification of
IDS failures and can be used to point the operator towards suspi-
cious activity missed or misclassified by the IDS, suggesting manual
investigation for correction.

CCS CONCEPTS
• Security andprivacy→ Intrusion detection systems; •Human-
centered computing→ HCI design and evaluation methods;
• Computing methodologies→Machine learning.
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1 INTRODUCTION
XAI is an important tool in making ML-based IDSs more trustable
and usable in real world scenarios. It is especially the case when
IDSs are supporting and supported by human decision-making.
Among the various XAI methods developed, feature importance
methods are more commonly used for tabular data. LIME [24] and
SHAP [17] are two methods often encountered when using XAI
with IDSs [12, 18, 32]. In other cases, as suggested in [25], methods
relying on inherently interpretable ML algorithms are employed
[1, 6, 30].

However, XAI is still an emerging field and suffers from various
difficulties. Most notably, despite research trying to solve this issue
[9, 11, 21], XAI methods are still lacking evaluationmetrics used as a
standard [10], especially in the context of IDSs [22, 33]. Furthermore,
XAI methods can sometimes be mistaken [14] or manipulated [8].
In such a context, it is actually unclear which benefits XAI methods
can provide, and research suggests that AI might be enough by
itself [5, 26]. Moreover, when explanations are ostensibly wrong, it
is actually unclear if the fault lies with the XAI methods or with
the IDS. Possible solutions are relying on specific tests as in [2] or
defining new metrics.

This paper revisits two metrics introduced as properties in [21]:
Completeness and Correctness, and explore their relation with the
number of important features returned by the XAI method. Com-
pleteness reflects the fact that explanations are sufficient to explain
the cause of a prediction, i.e., all important causes are visible in
the explanation. Correctness reflects the fact that the most impor-
tant features returned by the XAI methods indeed have the biggest
influence on the prediction given by the IDS. Besides serving as
evaluation metrics for XAI methods, Completeness and Correctness
can also be used as debugging tools to identify when the IDS is
potentially mistaken. In a context where IDSs are used alongside
human operators, XAI methods along with the two metrics can
explain the decision process of an IDS and point out cases where it
behaves abnormally, resulting in higher chances of making wrong

https://doi.org/10.1145/3630050.3630079
https://doi.org/10.1145/3630050.3630079


SAFE ’23, December 8, 2023, Paris, France Duraz, et al.

predictions, to instead help human operators by suggesting manual
investigations to correct IDS misclassifications.

The rest of the paper is organized as follows: Section 2 presents
related works. Section 3 describes the two metrics along with the
proposed approach. Section 4 presents and analyzes the results. Fi-
nally, Section 5 discusses results and their limitations, and Section 6
concludes the paper and discusses future avenues of research.

2 RELATEDWORK
XAI methods are generally used in a user-centric context, and as
such, need to cater to users. Therefore, much work has been done
to identify and define criteria of "good" explanations [9, 13, 19].
However, these criteria are often qualitative and focus on how well-
received explanations are, and do not measure how much these
explanations reflect the actual decision process of the explained ML
method.

Quantitative metrics have also been used in an attempt to eval-
uate various properties of XAI methods such as Faithfulness, Ro-
bustness or Complexity [29]. Faithfulness of an explanation is a
desirable property that describes the ability to capture the features
used by a predictor [7], but can be quite complex to compute. How-
ever, other methods can also be used to compute metrics related
to Faithfulness [16, 31]. Robustness measures the stability and con-
sistency of a given XAI method [15, 28], while Complexity [15]
ensures that explanation would be easily understandable by users.
Finally, it can be interesting to measure how explanations coin-
cide with ground truth [28, 32]. However, IDSs often rely on weak
signals to detect less obvious cyberattacks, relying on many fea-
tures. Feature importance methods can specify a number of features
present in the explanation. While this does not matter for some
applications, e.g., images, it is important in the context of IDSs and
often forgotten when evaluating the quality of explanations.

Finally, incorrect explanations according to a given metric does
not necessarily mean that the XAI method is to blame. Instead, it
might be caused by the IDS being incorrect and behaving abnor-
mally, because of the lack of data or simply from spurious patterns
in the training data. In these cases, XAI methods might be used to
correct either the dataset used in training [3, 23] or the IDS itself.

3 METHODOLOGY
In the context of IDSs, whether as a tool to help in human decision-
making or to enable auditing, it is important for the cause of pre-
dictions to be understood. The XAI methods that will be used in
this paper for explanations is LIME [24], a method that is based
on a surrogate linear model to output feature importance. Code
used to realize experiments, as well as instructions to reproduce
experiments, are available on GitLab1.

3.1 Metrics
Because verification by human operators is generally a time-consu-
ming task, it is important for XAI tools to explain using the most
important causes of a prediction, while hopefully ensuring that
there are only a few causes. When viewing explanations, it might

1https://gitlab.com/RobinKD/completeness-and-correctness-to-evaluate-xai-and-
improve-ids

confuse the operator if causes that are more aligned with his knowl-
edge are absent. As such, the first metric to consider is Completeness
and relates to the fact that the explanation is self-sufficient, i.e., all
features in the explanation are enough to explain a prediction and
no other features are needed.

Another important property of explanations is their faithfulness
to represent the behavior of the IDS. If features present in the
explanation are not actually considered causes of the event by the
IDS, it might instead mislead the user. As such, the second metric to
consider is Correctness and relates to the fact that features present
in the explanation are indeed important, i.e., their influence is higher
for the given prediction than for other classes. Both metrics will be
computed with different numbers of features to research the impact
of this parameter on the quality of explanations.

3.1.1 Completeness. In order to test the Completeness of an ex-
planation, non-important features are "deleted" (as in replaced by
median values computed over the whole dataset). The algorithm to
compute Completeness is described in Algorithm 1. To do so, an 𝐼𝐷𝑆
that outputs prediction probabilities is needed, as well as the me-
dian value (𝑚𝑒𝑑𝑖𝑎𝑛) for all features. An instance 𝑥 that is explained
is also given along with important features (𝑓 𝑒𝑎𝑡_𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒) re-
turned by the explanation of 𝑥 ’s prediction. An explanation is thus
deemed complete if the prediction using only important features is
the same as the original prediction.

Algorithm 1: Completeness computation
Data: 𝐼𝐷𝑆, 𝑥,𝑚𝑒𝑑𝑖𝑎𝑛, 𝑓 𝑒𝑎𝑡_𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒

𝑝𝑟𝑒𝑑 ← 𝐼𝐷𝑆.𝑝𝑟𝑜𝑏𝑎𝑠 (𝑥);
𝑖𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒_𝑥 ←𝑚𝑒𝑑𝑖𝑎𝑛;
𝑖𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒_𝑥 [𝑓 𝑒𝑎𝑡_𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒] ← 𝑥 [𝑓 𝑒𝑎𝑡_𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒];
if 𝐼𝐷𝑆.𝑝𝑟𝑜𝑏𝑎𝑠 (𝑖𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒_𝑥) 𝑖𝑠 𝑝𝑟𝑒𝑑 then

/* Explanation was complete */

return True;
else

return False;
end

3.1.2 Correctness. In order to test the Correctness of an explana-
tion, features are "deleted" incrementally and the impact on output
probabilities is measured. The explanation is correct if the relative
change in probability is the highest for the predicted class. The
algorithm to compute Correctness is described in Algorithm 2.

3.2 Datasets, ML and XAI algorithms
In order to test the influence of the number of features as well
as the performance of the IDS on the quality of the explanations,
three datasets were used: WADI [4], which is an Industrial Control
System (ICS) dataset of a water plant, and CIC-IDS2017 [27] and
UNSW-NB15 [20], two network traffic datasets. All three datasets
were split using a stratified scheme into 70% train (60% and 10%
validation) and 30% test sets.

For the WADI dataset, features such as Row, Date, Time and
four other features that are missing all values were removed. The
resulting dataset has 124 features. Attacks are named Attack_i (i
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Algorithm 2: Correctness computation
Data:𝑚𝑜𝑑𝑒𝑙, 𝑥,𝑚𝑒𝑑𝑖𝑎𝑛, 𝑓 𝑒𝑎𝑡_𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒

𝑝 ←𝑚𝑜𝑑𝑒𝑙 .𝑝𝑟𝑜𝑏𝑎𝑠 (𝑥);
𝑝𝑟𝑒𝑑 ← 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑝);
𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑝 ← 𝑝;
/* max_di is used to retain max values of

deletion_impact (|𝑚𝑎𝑥_𝑑𝑖 | = |𝑙𝑎𝑏𝑒𝑙𝑠 |) */

𝑚𝑎𝑥_𝑑𝑖 ← [0, 0, ..., 0];
for 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 𝑖𝑛 𝑓 𝑒𝑎𝑡_𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 do

𝑖𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒_𝑥 [𝑓 𝑒𝑎𝑡𝑢𝑟𝑒] ←𝑚𝑒𝑑𝑖𝑎𝑛[𝑓 𝑒𝑎𝑡𝑢𝑟𝑒];
𝑖𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒_𝑝 ←𝑚𝑜𝑑𝑒𝑙 .𝑝𝑟𝑜𝑏𝑎𝑠 (𝑖𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒_𝑥);
/* Unit-wise division */

𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛_𝑖𝑚𝑝𝑎𝑐𝑡 =
𝑝

𝑖𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒_𝑝 ;
for 𝑖 ← 0 𝑡𝑜 𝑠𝑖𝑧𝑒 (𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛_𝑖𝑚𝑝𝑎𝑐𝑡) do

𝑚𝑎𝑥_𝑑𝑖 [𝑖] =𝑚𝑎𝑥 (𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛_𝑖𝑚𝑝𝑎𝑐𝑡 [𝑖],𝑚𝑎𝑥_𝑑𝑖 [𝑖]);
end
𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑝 ← 𝑖𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒_𝑝;

end
if 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑚𝑎𝑥_𝑑𝑖) 𝑖𝑠 𝑝𝑟𝑒𝑑 then

/* Explanation was correct */

return True;
else

return False;
end

from 1 to 15, e.g., Attack_1) and have different targets and objec-
tives. They can either affect physical equipment, starting pumps,
opening or closing valves, or manipulate sensor readings. For the
UNSW-NB15 dataset, features such as IP addresses, timestamps,
attack_cat were removed, while categorical features or features hav-
ing a small number of unique values, were one-hot encoded. The
resulting dataset has 229 features. For the CIC-IDS2017 dataset, two
features and 5792 instances were removed because of problematic
or missing values. A further eight features were removed because
they only had one value. The resulting dataset has 70 features.

For the ML algorithm used as an IDS, the Neural Network (NN)
algorithm is retained as a first experiment for multiple reasons. First,
it is often one of the best performing algorithms. Secondly, NNs are
also among the less inherently interpretable ML algorithms, thus
the interest in explaining their predictions. The NN architectures
used are those obtaining the highest accuracy on the three datasets.
They are fully connected with six hidden layers of size 256, 512,
1024, 512, 256, 128, with a ReLU activation function.

To explain NNs, as well as compute Completeness and Correct-
ness, LIME is used. This particular method has been chosen over
other methods because this is the most extensively used compared
to other similar feature importance methods, along with SHAP,
but is more computationally efficient. Raw values of feature im-
portances returned by LIME are used to compute XAI metrics, as
shown in Algorithm 1 and Algorithm 2, where feature importances
are given with the parameter feat_importance.

4 RESULTS
First, because performance of the IDS might impact the perfor-
mance of XAI methods, it is important to evaluate the IDS with
metrics such as Accuracy that represents the proportion of correctly
classified instances. Therefore, Accuracy on the different datasets
is reported in Table 1. More detailed Accuracy results are available
in the Appendix.

Table 1: NN Accuracy on the three datasets

Dataset WADI UNSW-
NB15

CIC-
IDS2017

Accuracy (%) 99.96 97.92 99.62

4.1 XAI Method Evaluation with Completeness
and Correctness

Completeness and Correctness were evaluated for each data point
of each class for all three datasets, depending on the number of fea-
tures asked of the explanation method. Results obtained are shown
in Figure 1 with values for Completeness and Correctness, both
representing the percentage of instances in each class having, re-
spectively, a complete and correct explanation. Features are ordered
by importance, i.e., retaining three features only keeps the three
most important features. Because predicting as Normal, i.e., not an
attack, seems to be the default behavior of the IDS, explanations
would be complete regardless of the number of features, thus results
for the Normal class have not been represented.

Figure 1a shows Completeness results on the WADI dataset.
First, Completeness seems to be correlated with the number of
features in most cases, with a higher number of features meaning
a more complete explanation. Secondly, there are two exceptions
to the previous observation. Attack_8 and Attack_9 have a very
high Completeness value even with the lowest number of features
returned. Attack_9 (turns on a pump) is relatively simple to detect
considering the feature 1_P_006’s (showing the status of the pump)
value that is normally 0, is 2 when that attack occurs. However, in
some cases during Attack_9, the feature 1_P_006’s value remains
0, causing both a prediction error, and the explanation to not be
complete. In the case of Attack_8 (opens the Motor Control Valve,
MCV, 007), a high enough value (𝑣𝑎𝑙𝑢𝑒 ≥ 30) for 2_MCV_007_CO
(showing opening percentage) also seems to be the only important
feature. Finally, Attack_13 (reduces a booster set point pressure)
explanations are often not complete, because this attack is weakly
impacting the whole water plant, thus needing many features to be
detected. In Figure 1d showing Correctness on WADI, results seem
to not be correlated with the number of features, and interestingly,
Correctness results for each class tend to be relatively close to each
class’ Accuracy.

In the case of the UNSW-NB15 dataset, as shown in Figure 1b, ex-
planations generally need less features to be complete than for other
datasets. This probably means that some features in this dataset
offer more discriminating power with regard to detecting some
attacks. However, Completeness is often above Accuracy, which
means these important features might be given more importance
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Figure 1: Completeness and Correctness results for each class on WADI (a) and (d), UNSW-NB15 (b) and (e), and CIC-IDS2017 (c)
and (f).

than they actually have, thus sometimes pushing the IDS towards
the wrong prediction. For Correctness, increasing the number of
features seems to have a negative impact for some attacks, which
seems a peculiar behavior. The most likely possibility is that impor-
tant features in these cases tend to be more important for another
class. Last but not least, similarly as Completeness, Correctness
values are above class Accuracy for many classes, which means
the IDS is often confidently wrong, e.g., Accuracy on Analysis and
Backdoor is less than 10% whereas Correctness is higher than 25%,
which is concerning.

For CIC-IDS2017, increase rate in Completeness seems disparate
for the different attack classes. This means that attack complexities
differ a lot for this dataset. Completeness remains close to 0% for
Web Attack XSS, Web Attack Brute Force, and Botnet. For
Botnet where Accuracy is around 60%, it probably means that a
combination of many features is generally required to predict cor-
rectly these classes. For Web Attack XSS (and Web Attack Brute
Force), it is probably a result of poor performance (Accuracy is 2%
for XSS, 13% for Brute Force). Interestingly, the IDS also seems of-
ten confidently wrong in the case of Web Attack SQL Injection
where Completeness reaches around 50% whereas Accuracy is 0%.

The same behavior seems to be validated by Correctness results for
Web Attacks.

Correctness does not seem to be impacted much by the number
of features. Overall, it means that features in the explanation indeed
have the biggest impact on the class predicted by the IDS, so expla-
nations indeed properly reflect the IDS’s decision process. Moreover,
Correctness also seems to be highly correlated with performance
on the different classes. This is important because it possibly means
that incorrect explanations might be due to incorrect predictions,
thus allowing to find IDS errors. Completeness, however, is very
dependent on the number of features, except in cases where one or
a few features make the prediction too obvious, e.g., Attack_9 in
WADI. Performance also seem to have an impact, e.g., Web Attack
XSS, Web Attack Brute Force in CIC-IDS2017, although the im-
pact is lower than for Correctness. This metric also shows that
many attacks are generally complex and require many features to
be properly explained. Therefore, relying on explanations to ex-
plain and validate predictions might be more time-consuming than
expected for a human operator.

Furthermore, the IDS performance seem to heavily influence the
ability to obtain complete and correct explanations. Attack classes
that are poorly detected generally leads to their explanations being
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incorrect and often also incomplete, e.g., Web Attack XSS and Web
Attack Brute Force explanations are almost all incorrect and
incomplete, regardless of the number of features.

4.2 Completeness and Correctness to identify
IDS errors

Because Correctness seems to be highly correlated with class Accu-
racy, it is interesting to explore correlation between both metrics
and prediction results of the IDS. In case of a high correlation, both
metrics might be useful in detecting errors in prediction. Corre-
lation with Completeness might provide additional information,
especially at a high number of features, or when some features
are by themselves the determining factor, e.g., for Attack_8 and
Attack_9 in WADI. Results on the train set are shown in Figure 2.

For WADI, in two cases, correlation between Correctness and
prediction results is equal to 0 because performance on the class is
100%, thus lowering artificially the correlation to 0 as long as one
instance’s explanation is not correct, which is the case here.

Overall, for Completeness, correlation with prediction results
seems very dependant on model performance. The lower the per-
formance, the lower the correlation. However, for Attack_8 and
Attack_9 in WADI, correlation is (or reaches) 100% which means

it could be used to correct all errors. For Correctness, the impact
of model performance seems lower, but nonetheless still present,
and correlation seems positive, or even highly positive, for all three
datasets. Both metrics could thus be used to point out errors in
prediction and would be effective in different cases.

To test the potential of both metrics to find errors on the test set,
Completeness and Correctness are computed for uncertain predic-
tions (uncertain means the probability of the second most likely
class is superior to a threshold, to reduce unnecessary computation).
If either Correctness or Completeness invalidates prediction, the
instance is given to a human operator (considered as an oracle)
to investigate. The number of features returned by explanations
needs to be fixed for both metrics. It has been fixed at 40 for Com-
pleteness (because correlation prediction results seem higher with
more features) and 30 for Correctness (the number does not matter
much). Accuracy at 0.5 in threshold value represents the original
Accuracy. As the threshold values decreases, Figure 3a shows the
increase in Accuracy, while Figure 3b shows the required manual
investigations. Manual investigations are mainly required for the
Normal class. This is expected because many attacks are missed and
classified as Normal, thus the need to investigate this class. For DoS
Hulk, the class often possesses signal of other DoS attacks, but the
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Figure 2: Completeness and Correctness correlation with errors in prediction for each class on WADI (a) and (d), UNSW-NB15
(b) and (e), and CIC-IDS2017 (c) and (f).
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Figure 3: Possible gains in Accuracy (a) and Manual investigations required (b) for each class, with XAI pointing errors.

IDS is nevertheless correct, thus resulting in wasteful investigations.
Interestingly, by pointing out potential errors with XAI for the CIC-
IDS2017 dataset, there is a definite improvement for many classes
compared to only using an IDS. For attacks where performance was
originally low (below the 75% mark), the gain in Accuracy ranges
between 5-10% to even 90% for Web Attack XSS. However, this
creates a bigger load for a human operator, which can grow quickly
as traffic increases and the chosen threshold decreases. Therefore,
there is a need to find a correct trade-off between performance
increase and human workload.

5 DISCUSSION AND LIMITATIONS
Completeness tends to show that a low number of features (because
there is a limit to the amount of information a human user is able
to handle) seems to generally not be enough to identify a specific
class (explanations are not complete). This means that features po-
tentially important or more understandable for the operator might
not be present in the explanation. However, experiments were per-
formed using NNs as IDSs and explanations would possibly be more
sparse and thus more easily complete with other ML algorithms
such as Decision Trees or NNs using dropout, possibly at the cost
of lower performance.

Correctness, however, seems to be more correlated with predic-
tion results (the prediction being correct or not) than it is correlated
with the number of features. Correctness, and to a lesser extent
Completeness, seem to be able to point out errors in prediction, but
it requires a human to investigate. It would be interesting to see
if these two metrics could be used to automate correction of the
predictions, to reduce human workload.

Overall, the IDS’s performance also impacts the ability of XAI
methods to deliver sound and useful explanations. There are at
least three possible causes of this behavior. First, the IDS’s inferred
definition of a class presents flaws or is too broad, which could
be improved if the IDS can perform better. Secondly, important
features might be shared between multiple classes, but remain more
important for one of them. This might cause the explanations to be
incorrect for the other classes for which the feature is also important.
Finally, some instances might not correspond to what is expected

of a specific class, possibly because of errors in data collection or
labelling inconsistencies, e.g., the misclassified Attack_9 instances
in WADI.

6 CONCLUSION AND FUTUREWORK
Completeness has shown that usability of explanations might be
heavily impacted by the number of important features provided
to the user, because important causes of a prediction might not be
present in an explanation. Correctness is much less impacted by the
number of features, which means that features (with their values)
present in an explanation are indeed more important for the given
prediction than for other classes. Furthermore, Correctness tends
to be more highly correlated with the results of an IDS’s predic-
tions, which can help in pointing out errors. When considering the
prediction and its explanation with Completeness and Correctness
results, an explanation of a prediction both complete and correct
will be more trustable for a user. On the other hand, if it is either
incomplete or incorrect, it might instead point to the prediction
being wrong.

In future works, the usefulness of both metrics will be tested
with other ML algorithms and potentially other XAI methods such
as SHAP. Furthermore, both metrics will be researched to explore
the potential of automating the correction of IDS errors.
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A DETAILED ACCURACY RESULTS
A.1 WADI

Table 2: NN Accuracy for each class on WADI (Part 1)

Class Attack_1 Attack_10 Attack_13 Attack_14 Attack_15 Attack_2 Attack_3-
4 Attack_5 Attack_6

Accuracy (%) 0.975 0.995 0.852 0.994 0.989 0.971 1.0 1.0 0.970

Values were truncated to the third decimal.

Table 3: NN Accuracy for each class on WADI (Part 2)

Class Attack_7 Attack_8 Attack_9 Normal

Accuracy (%) 1.0 0.975 0.888 0.999

Values were truncated to the third decimal.

A.2 UNSW-NB15

Table 4: NN Accuracy for each class on UNSW-NB15

Class Analysis Backdoor DoS Exploits Fuzzers Generic Reconn-
aissance Shellcode Worms Normal

Accuracy (%) 0.028 0.034 0.176 0.884 0.456 0.982 0.740 0.821 0.0 0.996

Values were truncated to the third decimal.

A.3 CIC-IDS2017

Table 5: NN Accuracy for each class on CIC-IDS2017 (Part 1)

Class Botnet DDoS DoS
GoldenEye

DoS
Hulk

DoS
Slowhttp-

test

DoS
slowloris

FTP-
Patator Heartbleed Infiltration

Accuracy (%) 0.630 0.999 0.985 0.998 0.988 0.978 0.996 0.5 0.2

Values were truncated to the third decimal.

Table 6: NN Accuracy for each class on CIC-IDS2017 (Part 2)

Class PortScan SSH-
Patator

Web Attack
Brute Force

Web Attack
SQL

Injection

Web Attack
XSS Normal

Accuracy (%) 0.999 0.977 0.130 0.0 0.020 0.996

Values were truncated to the third decimal.
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