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ABSTRACT: The radius of maximum wind (𝑅𝑚𝑎𝑥), an important parameter in tropical cyclones

(TCs) ocean surface wind structure, is currently resolved by only a few sensors, so that, in most

cases, it is estimated subjectively or via crude statistical models. Recently, a semi-empirical

model relying on an outer wind radius, intensity and latitude was fit to best-track data. In this

study we revise this semi-empirical model and discuss its physical basis. While intensity and

latitude are taken from best-track data, 𝑅𝑚𝑎𝑥 observations from high-resolution (3 𝑘𝑚) spaceborne

synthetic aperture radar (SAR) and wind radii from an inter-calibrated dataset of medium-resolution

radiometers and scatterometers are considered to revise the model coefficients. The new version

of the model is then applied to the period 2010-2020 and yields 𝑅𝑚𝑎𝑥 reanalyses and trends more

accurate than best-track data. SAR measurements corroborate that fundamental conservation

principles constrain the radial wind structure on average, endorsing the physical basis of the model.

Observations highlight that departures from the average conservation situation are mainly explained

by wind profile shape variations, confirming the model’s physical basis, which further shows that

radial inflow, boundary layer depth and drag coefficient also play roles. Physical understanding will

benefit from improved observations of the near-core region from accumulated SAR observations

and future missions. In the meantime, the revised model offers an efficient tool to provide guidance

on 𝑅𝑚𝑎𝑥 when a radiometer or scatterometer observation is available, for either operations or

reanalysis purposes.
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1. Introduction30

Estimating tropical cyclone (TC) ocean surface wind structure is challenging but crucial for31

several applications. In particular, TC surface wind spatio-temporal distributions are used as input32

of surface wave studies (Wright et al. 2001; Young 2017; Kudryavtsev et al. 2021), storm surge33

studies (Irish et al. 2008; Takagi and Wu 2016), or the upper ocean responses to TC passages34

(Price 1981; Ginis 2002; Kudryavtsev et al. 2019; Combot et al. 2020b). In such studies, the35

radius of maximum winds (hereafter 𝑅𝑚𝑎𝑥) is a critical parameter that significantly affects the wave36

developments, surges estimates, sea surface height, temperature and salinity variations within the37

TC wakes. Most parametric surface wind fields, often used for those applications, assume that38

𝑅𝑚𝑎𝑥 is known (Holland 1980; Willoughby et al. 2006). Thus, 𝑅𝑚𝑎𝑥 errors cascade into errors for39

the entire spatial distribution of wind speeds. Figure 1 shows a comparison between two Rankine40

profiles for two different 𝑅𝑚𝑎𝑥 values41

𝑉𝑅𝑎𝑛𝑘𝑖𝑛𝑒 (𝑟) =

𝑉𝑚𝑖𝑛 + (𝑉𝑚𝑎𝑥 −𝑉𝑚𝑖𝑛) ( 𝑟

𝑅𝑚𝑎𝑥
) if 𝑟 ≤ 𝑅𝑚𝑎𝑥

𝑉𝑚𝑖𝑛 + (𝑉𝑚𝑎𝑥 −𝑉𝑚𝑖𝑛) ( 𝑅𝑚𝑎𝑥𝑟 ) if 𝑟 > 𝑅𝑚𝑎𝑥
(1)

TC Lane, a North Eastern Pacific hurricane that reached category 5 on the Saffir-Simpson scale42

in 2018, provides an example of such a situation. TC Lane’s wind speeds were estimated by a43

swath of satellite-based SAR observation on 23 August at 0437 UTC. From the SAR wind speeds,44

the azimuthally-averaged wind profile can be derived (dashed green curve in Fig. 1). The inferred45

𝑅𝑚𝑎𝑥 is 15 𝑘𝑚, about 2 to 3 times smaller than the 37 𝑘𝑚 value interpolated to the SAR aquisition46

time in the best-track data (Knapp et al. (2010); hereafter IBTrACS). Such a mismatch between47

best-track and SAR 𝑅𝑚𝑎𝑥 estimates is representative of what has been reported in the literature48

(Combot et al. 2020a). In the present case (Fig. 1), this discrepancy results into a Mean Absolute49

Error (MAE) as high as 28 𝑚𝑠−1 near the eyewall region when using subsequent Rankine profile50

estimates.51

To date, airborne Stepped Frequency Microwave Radiometer (SFMR) surface winds (Uhlhorn56

et al. 2007) provide means to estimate 𝑅𝑚𝑎𝑥 . Yet, airborne measurements have limited azimuthal57

coverage, and are operated over only few ocean regions and events. From a satellite perspective,58

high spatial resolution estimates of TC ocean surface wind field are now more systematically carried59

out, especially from SAR dedicated acquisitions (Mouche et al. 2017; Combot et al. 2020a). More60
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Fig. 1. Comparison between two Rankine profiles inspired by the SAR acquisition over TC Lane on 23 August 2018 at 0437

UTC. Rankine profiles are defined with SAR 𝑅𝑚𝑎𝑥 (15 𝑘𝑚, solid green) or IBTrACS 𝑅𝑚𝑎𝑥 (37 𝑘𝑚, solid blue) and the same

𝑉𝑚𝑎𝑥 (54 𝑚𝑠−1) and 𝑉𝑚𝑖𝑛 (7 𝑚𝑠−1), consistently with the SAR azimuthally-averaged profile (dashed green). MAE between the

two Rankine profiles is shaded in red.
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reliable 𝑅𝑚𝑎𝑥 estimates are then obtained for all ocean basins, though with limited spatio-temporal61

sampling. Presently, the most often available spaceborne observing systems, capable of probing62

the ocean surface during TC conditions, are the combined capabilities from active scatterometers63

and passive radiometers (Quilfen et al. 2007). Compared to radiometers, scatterometers generally64

have an improved medium spatial resolution. Yet, the strong gradients of the surface wind existing65

at scales of a few kilometers may still be smoothed to precisely locate the wind maxima, and the66

position of the center (Quilfen et al. 1998). In addition, scatterometers, especially those operating at67

Ku-band and higher microwave frequencies, can suffer from rain contamination. Signal sensitivity68

at high winds, above hurricane force wind (33 𝑚𝑠−1), has also been questioned (Donnelly et al.69

1999; Mouche et al. 2019). Radiometer measurements may be less impacted by rain, especially70

those operating at L-band (Reul et al. 2012, 2017), and demonstrated to be still highly sensitive71
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above hurricane force winds. However, actual spaceborne radiometers operating at L- or C-band72

have a lower spatial resolution. High wind speed gradients near the 𝑅𝑚𝑎𝑥 region for most intense73

TCs are then generally indistinct. Direct estimates of 𝑅𝑚𝑎𝑥 using scatterometers or radiometers are74

thus difficult to perform, possibly limited to particular large storm cases.75

More indirect means to infer 𝑅𝑚𝑎𝑥 were also considered. Both Mueller et al. (2006) and Kossin76

et al. (2007) used geostationary infrared satellite data. For the cases where a clear eye is well-77

defined on the infrared image, using linear regression to estimate 𝑅𝑚𝑎𝑥 results in a MAE of only ∼578

𝑘𝑚 when compared to aircraft-based estimates. Under less favourable conditions, 𝑅𝑚𝑎𝑥 can still79

be estimated via multiple linear regression in combination with a principal components analysis,80

but leads to a degraded MAE of ∼20 𝑘𝑚. Notably, for the clear-eye case, Tsukada and Horinouchi81

(2023) trained the linear regression with available SAR 𝑅𝑚𝑎𝑥 estimates and improved the method,82

decreasing the MAE to ∼2 𝑘𝑚.83

In the absence of infrared data, a rough 𝑅𝑚𝑎𝑥 estimate can also be obtained, considering the84

storm intensity and latitude known, as evidenced by Willoughby et al. (2006) and Vickery and85

Wadhera (2008). Indeed, following the angular momentum conservation, 𝑅𝑚𝑎𝑥 must decrease86

when the intensity increases. On average, such a physical constrain agrees well with observations87

(see for instance Fig. 9 in Combot et al. (2020a)). In addition, it is also known that 𝑅𝑚𝑎𝑥 increases88

with latitude (e.g. Willoughby and Rahn (2004)), another consequence of angular momentum89

conservation along with the decrease of intensity with latitude. Solely using intensity and latitude90

to predict 𝑅𝑚𝑎𝑥 yields a root-mean square error of the order ∼20 𝑘𝑚. Results from Vickery and91

Wadhera (2008) show that in several cases, the observed 𝑅𝑚𝑎𝑥 is inconsistent with the general92

principle of angular momentum conservation. This suggests that 𝑅𝑚𝑎𝑥 natural variability can93

hardly be captured by such simple statistical models.94

More recently, Chavas and Knaff (2022) - hereafter CK22 - suggested to use information on the95

TC outer-size in combination with latitude and intensity. In CK22 framework, 𝑅𝑚𝑎𝑥 is estimated96

from the TC intensity 𝑉𝑚𝑎𝑥 , the radius of gale 𝑅34 (i.e the maximum radial extent of the 34-knots97

winds) and the Coriolis parameter, defined as 𝑓 = 2Ω𝑠𝑖𝑛(𝜙), whereΩ= 7.292𝑥10−5 𝑠−1 is the Earth98

angular velocity and 𝜙 is the latitude of the TC center. Such an approach is practical, especially99

because 𝑅34 is well estimated by satellite scatterometers and radiometers (Brennan et al. 2009;100
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Chou et al. 2013; Reul et al. 2017). In fact, 𝑅34 estimates are routinely produced for every TC and101

included in IBTrACS.102

The CK22 framework is based on physical understanding of the radial wind structure (Emanuel103

2004; Emanuel and Rotunno 2011) and phrased in terms of absolute angular momentum 𝑀 (𝑟) =104

𝑟𝑉 + 1
2 𝑓 𝑟

2, where 𝑓 , 𝑟 and 𝑉 are the Coriolis parameter, the radius and the tangential wind speed105

of an air parcel, respectively. If the ratio 𝑀𝑚𝑎𝑥
𝑀34

:= 𝑀 (𝑟=𝑅𝑚𝑎𝑥)
𝑀 (𝑟=𝑅34) is prescribed, one can then estimate106

𝑅𝑚𝑎𝑥 provided estimates for the 3 above-mentioned parameters using:107

𝑅𝑚𝑎𝑥 =
𝑉𝑚𝑎𝑥

𝑓

(√︄
1+ 2 𝑓 𝑀𝑚𝑎𝑥

𝑉2
𝑚𝑎𝑥

−1

)
(2)

CK22 fitted a log-linear regression model to estimate the ratio 𝑀𝑚𝑎𝑥
𝑀34

with the two predictors108

𝑋
(1)
34 := (𝑉𝑚𝑎𝑥 −17.5𝑚𝑠−1) and 𝑋 (2)

34 := (𝑉𝑚𝑎𝑥 −17.5𝑚𝑠−1) ( 1
2 𝑓 𝑅34).109

It is tempting to use this framework in combination with best-track data. CK22 used best-110

track estimates (in a region west of 50°W) of 𝑅𝑚𝑎𝑥 , 𝑉𝑚𝑎𝑥 , 𝑅34 and latitude to fit the log-linear111

regression model. As a result, their model inherited best-track biases. In particular, the reported112

𝑅𝑚𝑎𝑥 overestimation in best-tracks compared to SAR (Combot et al. 2020a) translated into an113

overestimation of the ratio 𝑀𝑚𝑎𝑥
𝑀34

during the regression training, further leading to overestimated114

𝑅𝑚𝑎𝑥 values.115

The quality of 𝑅34 best-track estimates has also already been questioned (Sampson et al. 2017).116

This parameter is reanalyzed and compiled in IBTrACS since 2004 for North Atlantic and North117

Eastern Pacific and since 2016 for North Western Pacific (Knaff et al. 2021). Yet, surveying118

specialists who produce best-tracks in the Atlantic ocean (Landsea and Franklin 2013) are on119

average much less confident in their wind radii estimates (∼25-50% of relative uncertainty) than120

in their intensity estimates (∼10-20%).121

In addition, best-tracks may also suffer from temporal and spatial heterogeneities (Schreck III122

et al. 2014; Wang and Toumi 2021). Indeed, the reanalysis methodology depends on the available123

data at each reanalysis time: best-track estimates of TC events covered by aircraft data are for124

instance more trustworthy (Landsea and Franklin 2013). Reanalysis is also subjective, each agency125

or Regional Specialized Meteorological Center (RSMC) specialist conducting his own weighting of126
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the available observations. Lastly, best-tracks are finalized annually and not updated with evolving127

reanalysis methodology, creating a temporal discontinuity in the final IBTrACS database.128

Finally, a possible limitation of the CK22 approach is the arbitrary choice of the outer wind129

radius 𝑅34. Indeed, their model could well be trained using 𝑅50 or 𝑅64. In CK22, the choice of130

𝑅34 was motivated by the fact that best-track estimates of 𝑅50 and 𝑅64 are generally more uncertain131

than 𝑅34 estimates. With more reliable 𝑅50 and 𝑅64 estimates, possibly obtained from radiometer132

or scatterometer observations, one could assess whether using these wind radii would improve the133

CK22 model.134

The physical basis for wind structure relationships such as CK22 is a long-running issue. The135

assumption that an outer wind radius partly constrains the wind structure dates back to Riehl (1963).136

Riehl (1963) used a two-layer conceptual model constrained by an angular momentum conservation137

in the outflow and a potential vorticity (PV) conservation in the inflow layer. Riehl (1963) could then138

derive a relationship between 𝑅𝑚𝑎𝑥 , 𝑉𝑚𝑎𝑥 , 𝑓 , and an outer radius 𝑅𝑜𝑢𝑡 , corresponding to a distance139

where the outflow velocity vanishes. Later, Kalashnik (1994) considered the Holland parametric140

profile (Holland 1980) within a theoretical framework, to analyze the dependence of the near-core141

wind structure on the wind profile. Emanuel and Rotunno (2011) also derived an analytical solution142

for the near-core wind profile based on an assumption on the outflow temperature.143

While these studies offer theoretical guidance, these theoretical inferences of 𝑅𝑚𝑎𝑥 are difficult144

to apply in practice. Indeed, most actual sensors fail to capture the wind profile shape used in145

Kalashnik (1994), while the model of Emanuel and Rotunno (2011) relies on parameters that are146

difficult to evaluate. Following Riehl (1963), the theoretical outer radius 𝑅𝑜𝑢𝑡 is unknown and147

cannot be specified to correspond to a given surface wind speed.148

Building on the above considerations, the aim of this study is twofold. First, the CK22 model is149

revised using SAR 𝑅𝑚𝑎𝑥 estimates, different wind radii (referring hereafter to 𝑅34, 𝑅50, and 𝑅64)150

estimated on inter-calibrated radiometers and scatterometers, and intensity and latitude best-track151

estimates. Second, the physical basis of the CK22 model is further assessed through an examination152

of conservation equations and a thorough analysis of the SAR database.153

The data used in the present work are introduced in section 2 and further analysed in section 3.154

Then, the CK22 model is revised and its performance assessed in section 4. Finally, the physical155
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basis of the model is discussed with respect to SAR observations in section 5. Concluding remarks156

and possible routes for future investigations are provided in the last section.157

2. Data158

In the present work, different radiometer and scatterometer data (table 1) over the period 2010-159

2020 were used to estimate wind radii (𝑅34, 𝑅50, and 𝑅64), while SAR data (table 2) were used160

to estimate the 𝑅𝑚𝑎𝑥 values required to fit the CK22 log-linear model. Furthermore, IBTrACS161

provided intensity and latitude estimates (𝑉𝑚𝑎𝑥 and 𝑓 ).162

We used different radiometer and scatterometer missions to constitute the most extensive dataset163

of 𝑅𝑚𝑎𝑥 reanalyses. These sensors rely on different physical principles (passive or active sensors),164

and have different frequencies (L-band, C-band or Ku-band) and spatial resolutions. In order165

to ensure homogeneity of the wind radii estimates, we used radiometer and scatterometer winds166

inter-calibrated by Portabella et al. (2022).167

A thorough analysis of this database revealed that the wind profiles issued from Ku-band scat-168

terometer data barely exceed 64 knots, even for most intense TCs, as shown in appendix A. Thus,169

we chose to remove Ku-band scatterometers from the present analysis.170

a. Radiometer missions171

Because both the foam coverage and bubble surface layer thickness increase with surface wind172

speed (Reul and Chapron 2003), passive microwave measurements have long been known to display173

very high sensitivity under extreme wind conditions. With large ∼1000 𝑘𝑚 swaths, satellite-borne174

radiometers are well suited to monitor TCs. However, they have nominally low spatial resolutions175

(∼40 𝑘𝑚) that generally prevent accurate retrieval of the extreme surface wind speeds associated176

with the inner-core of most intense TCs. The radiometer wind products used in this work are at 50177

𝑘𝑚 spatial resolution with a 25 𝑘𝑚 grid spacing (Portabella et al. 2022).178

In the present study, four different sources of radiometer data were used. Among them, the179

L-band (1.4 GHz, 21 cm wavelength) radiometers from the European Space Agency (ESA) Soil180

Moisture and Ocean Salinity (hereafter SMOS) mission and the National Aeronautics and Space181

Administration (NASA) Soil Moisture Active Passive (hereafter SMAP). The ability of L-band182

radiometers to retrieve ocean surface wind speeds under TCs has been discussed both in the case183
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of SMOS (Reul et al. 2012, 2016) and SMAP (Yueh et al. 2016; Meissner et al. 2017). Reul et al.184

(2017) demonstrated that SMOS, SMAP, as well as AMSR-2 can be used to estimate wind radii.185

The Japan Aerospace Exploration Agency launched the Advanced Microwave Scanning Ra-186

diometer 2 (hereafter AMSR-2) onboard the Global Change Observation Mission Water 1 satellite187

in 2012. This instrument is still operating today and uses 7 different frequencies (6.93, 7.3, 10.65,188

18.7, 23.8, 36.5 and 89.0 GHz. For TCs, the first 3 channels (6.93, 7.3, and 10.65 GHz) are189

used. With two C-band channels, initially intended for radio-frequency interference identifica-190

tion, surface wind estimates are improved. Signals at these two C-band frequencies have similar191

sensitivity to the sea wind speed but differ in sensitivity to rain by about 12%. Accuracy of the192

AMSR-2-retrieved wind speed in storms is comparable to results obtained from SMOS and SMAP193

L-band sensors (Zabolotskikh et al. 2015; Reul et al. 2017).194

Windsat is a polarimetric radiometer onboard Coriolis, a mission designed by the Naval Research195

Laboratory and the Air Force Research Laboratory, and launched in 2003. The sensor provided196

data until May 2021. This instrument operates at 5 different channels (6.8, 10.7, 18.7, 23.8 and197

37.0 GHz). To minimize heavy precipitation impacts, the C-band 6.8 and the X-band 10.7 GHz198

channels are used for TC wind retrieval algorithms. Again, changes in the respective contribution199

of wind and rain to the signal measured by each channel can be used to better infer and discriminate200

both quantities (Klotz and Uhlhorn 2014). Heavy precipitation is still found to complicate surface201

wind speed retrieval with this sensor (Quilfen et al. 2007), and more recent studies addressed this202

issue (Meissner et al. 2021; Manaster et al. 2021).203

b. Scatterometer missions204

Scatterometers are active sensors that emit a pulse and measure the signal backscattered by the205

rough ocean surface with different viewing angles. Because backscatter signals are dependent206

upon both wind speed and wind direction, ocean surface wind vectors can be retrieved. The207

achieved nominal spatial resolution (up to ∼25 𝑘𝑚) is higher than satellite-borne radiometers.208

Actual scatterometers operate at different frequencies (C-band or Ku-band).209

The Meteorological Operational satellite programme is a series of 3 satellites (Metop-A, -B210

and -C) launched by ESA (in 2006, 2012 and 2018, respectively) which include scatterometers211

(ASCAT, for ”Advanced Scatterometer”) operating at 5.3 GHz (C-band). With 3 antennas oriented212
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at 45°, 90° and 135° with respect to the satellite track, the wind direction can be retrieved. ASCAT213

instruments have 2 sub-swaths, each having a width of ∼550 𝑘𝑚. At C-band, the signal may be214

influenced by very heavy rain. Backscatter signals also tend to saturate at high winds (Donnelly215

et al. 1999), and ASCAT measurements progressively lose sensitivity under high wind speeds216

(Soisuvarn et al. 2012; Polverari et al. 2021). The ASCAT wind product used in the present study217

is at 25 𝑘𝑚 spatial resolution with a 12.5 𝑘𝑚 grid spacing (Stoffelen et al. 2017; Portabella et al.218

2022).219

Scatterometers operating at Ku-band (∼ 13.5 GHz) usually have larger swaths (∼1000 𝑘𝑚) than220

C-band scatterometers, but suffer more contamination in heavy rainfall conditions (see Quilfen et al.221

(2007) for more details). The Ku-band scatterometer wind products used in Portabella et al. (2022)222

were finally removed (see appendix A). They include the China National Space Administration223

(CNSA) Haiyang missions (hereafter HSCAT), the Indian Space Research Organisation (ISRO)224

OceanSat-2 and SCATSat-1 satellites (hereafter OSCAT), and the NASA RapidScat (hereafter225

RSCAT) onboard the International Space Station (Table 1).226

RADIOMETER SMOS SMAP AMSR-2 Windsat

Period 2010-2020 2015-2020 2012-2020 2010-2019

Spatial resolution 50 𝑘𝑚 50 𝑘𝑚 50 𝑘𝑚 50 𝑘𝑚

Pixel spacing 25 𝑘𝑚 25 𝑘𝑚 25 𝑘𝑚 25 𝑘𝑚

Frequency L-band L-band C-band, X-band C-band, X-band

SCATTEROMETER ASCAT HSCAT OSCAT RSCAT

Period 2010-2020 (Metop-A) 2012-2015 (HY-2A) 2010-2014 (Oceansat-2) 2014-2016

2012-2020 (Metop-B) 2019-2020 (HY-2B) 2017-2020 (Scatsat-1)

2019-2020 (Metop-C)

Spatial resolution 25 𝑘𝑚 50 𝑘𝑚 50 𝑘𝑚 50 𝑘𝑚

Pixel spacing 12.5 𝑘𝑚 25 𝑘𝑚 25 𝑘𝑚 25 𝑘𝑚

Frequency C-band Ku-band Ku-band Ku-band

Table 1. The radiometer and scatterometer data used in Portabella et al. (2022). The period, spatial resolution, and pixel

spacing rows refer to the wind product. The same data were used for the present work, except the Ku-band scatterometers, which

were removed from the analysis.

227

228

229
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c. SAR missions230

The SAR data used here come from three different missions: ESA Sentinel-1A and Sentinel-231

1B (hereafter S1A and S1B, respectively), and the Canadian Space Agency (CSA) Radarsat-2232

(hereafter RS2). The SAR instrument onboard these three missions is an active sensor operating233

at 5.4 GHz (C-band). By analysing the received signal in both co- and cross-polarization, wind234

speeds can be inferred under TC conditions including at very high wind speeds (Mouche et al.235

2017, 2019). Convincing comparisons with passive radiometers have been performed (Zhao et al.236

2018). The ability of SAR-derived wind speeds to accurately capture the TC ocean surface wind237

structure, including 𝑅𝑚𝑎𝑥 , has further been demonstrated and discussed by Combot et al. (2020a).238

Today, SAR wide-swath acquisitions cannot be continuously performed over oceans. Based on239

track forecasts, it is still possible to best anticipate when the sensor will overpass a TC, and to240

trigger a SAR acquisition. ESA started the Satellite Hurricane Observation Campaign (SHOC) in241

2016, resulting in more than ∼500 acquisitions over TCs. The derived wind products (Mouche242

et al. 2017) are further interpolated on a regular polar grid based on the TC center (see appendix243

in Vinour et al. (2021)). The product has a 3 𝑘𝑚 spatial resolution, with a 1 𝑘𝑚 grid spacing. This244

spatial resolution approximates a 1-minute wind speed as a 50 𝑚𝑠−1 wind moves 3 𝑘𝑚 in a minute.245

In this study, a certain number of SAR cases have been discarded on a qualitative basis, e.g. when246

the detected TC center was judged to be wrong, or when the SAR file contained corrupted pixel247

values.248

SAR S1A S1B RS2

Period 2016-2021 2016-2021 2012-2021

Spatial resolution 3 𝑘𝑚 3 𝑘𝑚 3 𝑘𝑚

Pixel spacing 1 𝑘𝑚 1 𝑘𝑚 1 𝑘𝑚

Frequency C-band C-band C-band

Table 2. The SAR data used in the present study. The period, spatial resolution, and pixel spacing rows refer to the wind

product.

249

250

d. Best-tracks251

Here, IBTrACS were used for several purposes: the storm centers (latitude and longitude) allowed252

to azimuthally average the radiometer and scatterometer wind fields, while the wind radii (𝑅34,253
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𝑅50, and 𝑅64) were compared to satellite-based wind radii. Both IBTrACS latitude (to compute 𝑓 )254

and maximum sustained wind speed (𝑉𝑚𝑎𝑥) were used in the CK22 framework, and the distance to255

closest land (from the TC center) enabled filtering of the dataset. These parameters were extracted256

for the period 2010-2020.257

In IBTrACS, some storm tracks are given on a six-hourly basis, while others are interpolated and258

thus given on a three-hourly basis. To account for this varying sampling time, all tracks and their259

associated parameters were interpolated to an hourly basis with a monotonic cubic interpolation.260

Lastly, because of varying definitions of the maximum sustained wind speed across the different261

agencies, we selected only USA agencies (i.e National Hurricane Center, Joint Typhoon Warning262

Center, and Central Pacific Hurricane Center) which all provide the 1-minute maximum sustained263

wind speed.264

e. Data filtering265

To further restrain the analysis to well-formed systems, i.e. for which 𝑅𝑚𝑎𝑥 can be well deter-266

mined from the axisymmetric mean profile, and to best ensure consistency with CK22 for further267

comparison, the following filters have been applied to our dataset:268

1. 𝑉𝑚𝑎𝑥 > 20 𝑚𝑠−1;269

2. 𝑅𝑚𝑎𝑥 < 150 𝑘𝑚;270

3. Any wind radius must be > 5 𝑘𝑚;271

4. Absolute latitude < 30°;272

5. Distance to closest land > 𝑅34.273

Unlike CK22, we didn’t apply any filter on longitude. Therefore, the method presented here274

applies in every basin and does not depend on the availability of aircraft analysis.275

3. Methods and data analysis276

a. Estimation of the CK22 predictors277

In order to apply the CK22 framework to the inter-calibrated dataset of radiometer and scat-278

terometer data, estimates of the predictors (𝑉𝑚𝑎𝑥 , 𝑅34, 𝑓 ) were needed for every satellite file.279
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Regarding the wind radii, an azimuthally-averaged wind profile was first computed for every280

satellite file using the corresponding IBTrACS center linearly-interpolated to the acquisition time.281

For each of the three speed values of interest (i.e 34, 50 and 64 knots), we then selected the radius282

where the outer-profile matches this value to the closest kilometer. Should there be more than one283

radius value, the wind radius was defined as the smallest of the radii.284

Unlike the wind radii,𝑉𝑚𝑎𝑥 and 𝑓 cannot be accurately estimated from radiometer and scatterom-285

eter data, especially for intense small TCs, but both parameters are systematically reanalyzed in the286

best-tracks. However, IBTrACS 𝑉𝑚𝑎𝑥 definition does not strictly coincide with the axi-symmetric287

view adopted here. In particular, the analysis (appendix A) highlighted that 𝑉𝑚𝑎𝑥 estimated using288

SAR azimuthally-averaged profiles were, on average, lower than IBTrACS 𝑉𝑚𝑎𝑥 . This can be289

modeled by applying a linear regression (dashed grey line in Fig. A1) to IBTrACS 𝑉𝑚𝑎𝑥 estimates.290

The resulting intensity estimates are denoted by 𝑉𝑅𝐸𝐺𝑚𝑎𝑥 and were used (instead of the raw IBTrACS291

𝑉𝑚𝑎𝑥) to ensure the consistency with the wind radii defined on azimuthally-averaged wind profiles.292

The pair of parameters (𝑉𝑅𝐸𝐺𝑚𝑎𝑥 , 𝑓 ) was then linearly-interpolated to the satellite acquisition time for293

every file.294

b. Quality assessment of radiometer and scatterometer wind radii estimates295

To assess the quality of the satellite-based wind radii, comparisons were performed with IBTrACS296

wind radii. A strict comparison cannot be achieved because of varying definitions. In IBTrACS,297

wind radii are relative to the geographical quadrants and correspond to the maximum radial extent298

of the associated wind speed in each of the four quadrants. To make IBTrACS values as close299

as possible to the satellite-based wind radii, the nonzero IBTrACS values were averaged over all300

the quadrants. Furthermore, both the methodologies and the available observational data can vary301

across the IBTrACS dataset. Here, the adopted strategy was to compare the whole IBTrACS302

wind radii dataset (including non-USA agencies for this section) to the satellite-based wind radii.303

Accounting for the differences between the specialists and agencies is beyond the scope of this304

study. Finally, after removing the Ku-band sensors (see appendix A), we separated radiometer305

wind radii from the C-band scatterometer wind radii to further investigate possible discrepancies306

between the remaining sensors.307
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Figure 2 shows a comparison between radiometer wind radii and IBTrACS values (top) and308

their corresponding distributions (bottom). While radiometer wind radii look well correlated with309

IBTrACS values, with 𝑅2-scores ranging from 0.4 to 0.5, large discrepancies arise, with a Residual310

Standard Deviation (RSD) as high as 56.7 𝑘𝑚 for 𝑅34. The RSD decreases to 37.3 𝑘𝑚 for 𝑅50, and311

further to 24.1 𝑘𝑚 for 𝑅64, reflecting the decrease of the mean wind radius, i.e. 181 𝑘𝑚 for 𝑅34 to312

51 𝑘𝑚 for 𝑅64 in IBTrACS. In terms of relative uncertainties, this leads to ∼31%, ∼36%, and ∼41%313

for 𝑅34, 𝑅50, and 𝑅64, respectively. Interestingly, the Mean Error (ME) is negative for both 𝑅34 and314

𝑅50, showing that, on average, these wind radii are lower when extracted from azimuthally-averaged315

radiometer profiles than from IBTrACS. This is likely the result of the differing definition of the316

wind radii in the satellite data and in IBTrACS. Indeed, on average, a wind radius extracted from an317

azimuthally-averaged profile is expected to be smaller than the maximum radial extent of the same318

wind speed. Biases due to the differing definition are lower for 𝑅50 and 𝑅64 than for 𝑅34, because319

these radii are smaller on average. This definition effect is illustrated on the distribution for 𝑅34,320

where the radiometer 𝑅34 distribution is biased toward lower values compared to IBTrACS.321
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Fig. 2. (Top) Comparison between radiometer (y-axis) and corresponding IBTrACS (x-axis) wind radii. Coefficient of

determination (𝑅2), Mean Error (ME) and Residual Standard Deviation (RSD) are displayed. (Bottom) Corresponding distributions

and averages.

322

323

324

Figure 3 shows comparisons between C-band scatterometer wind radii and IBTrACS values.325

Again, an overall consistency emerges between both data sources for all wind radii. RSD values326
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and 𝑅2 scores are comparable to the previous comparisons between radiometer and IBTrACS.327

Data and methodology are thus consistent with IBTrACS (which is expected since radiometer and328

scatterometer data are often used during the reanalysis process), but it also shows that there is a329

good consistency between the various sensors in terms of wind radii.330
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Fig. 3. Same as Fig. 2, but for the C-band scatterometer wind radii.

Regarding 𝑅64, the ME is slightly positive for both radiometer and scatterometer data (Figs. 2c331

and 3c), with a distribution of 𝑅64 skewed toward higher values for the satellite data compared332

to IBTrACS. First, this could be attributed to the satellite data limitations, such as low spatial333

resolution, signal saturation or rain contamination. Yet, Fig. 4 offers a different explanation. It334

again shows comparisons between scatterometer wind radii and IBTrACS values, but only over335

the 3-year period from 2018 to 2020. For such a period, the computed ME for 𝑅64 is only 1.5336

𝑘𝑚 (Fig. 4c), and the RSD drops to 19.4 𝑘𝑚 (compared to 24.1 𝑘𝑚 for the period 2010 to 2020).337

Consistency between scatterometer and IBTrACS also improves for both 𝑅34 and 𝑅50 over the same338

period (Figs. 4a and 4b). The positive ME for 𝑅64 in Fig. 3 likely corresponds to the improving339

quality of IBTrACS over the years. Mentioned in the introduction, wind radii best-track values340

were not necessarily reanalyzed depending on the year and the basin. Similar conclusions were341

obtained with radiometer data (not shown).342

To summarize, the comparison between IBTrACS and the inter-calibrated dataset shows that343

radiometers and scatterometers provide reliable wind radii estimates. Thus, for every radiometer344
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Fig. 4. Same as Fig. 3, but only for the 3-year period 2018-2020.

or scatterometer acquisition, we can extract a corresponding set of predictors constituted by a345

satellite-based wind radius along with IBTrACS 𝑉𝑅𝐸𝐺𝑚𝑎𝑥 and 𝑓 estimates.346

c. Collocations of radiometers and scatterometers with SAR347

In order to fit the CK22 model, we also needed an estimate of the predictand (𝑅𝑚𝑎𝑥) for each set348

of predictors. The latter cannot be directly evaluated from radiometer and scatterometer data, but is349

well observed on SAR data by taking the location of the wind profile maximum. Thus, we looked350

for collocations between SAR and radiometer or scatterometer TC overpasses. Two images were351

considered to be collocated if their absolute acquisition time difference is less than 90 minutes.352

Regarding radiometer data (table 3, first four columns), this procedure resulted in a total of 269353

collocations, which further reduced to 145 collocations after applying filters presented in section354

3e. Notably, no collocation was found between any of the 3 SAR missions (S1A, S1B, RS2) and355

AMSR-2.356

Regarding scatterometer data, no collocation was found between SAR and ASCAT (Table 3,357

penultimate column). In what follows, we thus refers to the dataset obtained by this collocation358

procedure as the ”SAR-radiometer collocation dataset”. It consists in predictors estimated on359

radiometer data (wind radii) or corresponding IBTrACS values (𝑉𝑅𝐸𝐺𝑚𝑎𝑥 and 𝑓 ), and predictands360

estimated on SAR (𝑅𝑚𝑎𝑥).361
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SMOS SMAP AMSR-2 Windsat ASCAT TOTAL

Before filtering 106 63 0 100 0 269

After filtering 67 33 0 45 0 145

Table 3. Number of collocations between SAR and the inter-calibrated dataset (radiometer and ASCAT).

4. Results362

a. Fitting CK22 model363

As explained in the introduction, the CK22 model relies on the estimation of the ratio 𝑀𝑚𝑎𝑥
𝑀34

via a364

log-linear regression model, using (𝑋 (1)
34 , 𝑋

(2)
34 ) as input. While CK22 used 𝑅34 in their study, this365

method is in fact agnostic from the choice of wind radius. Therefore, the ratio 𝑀𝑚𝑎𝑥
𝑀50

can also be366

estimated using 𝑋 (1)
50 :=𝑉𝑚𝑎𝑥 −25.7𝑚𝑠−1 and 𝑋 (2)

50 := (𝑉𝑚𝑎𝑥 −25.7𝑚𝑠−1) ( 1
2 𝑓 𝑅50) as input (or 𝑀𝑚𝑎𝑥

𝑀64
367

using 𝑋 (1)
64 :=𝑉𝑚𝑎𝑥 −32.9𝑚𝑠−1 and 𝑋 (2)

64 := (𝑉𝑚𝑎𝑥 −32.9𝑚𝑠−1) ( 1
2 𝑓 𝑅64) as input).368

CK22 estimated the coefficients of the log-linear regression model based solely on IBTrACS369

rather than direct observational estimates, and only for the ratio 𝑀𝑚𝑎𝑥
𝑀34

. In the present work,370

we use observational data not only to obtain improved estimates of the predictors in the CK22371

model framework, but also to obtain improved estimates of the model coefficients that relate the372

parameters to one another. We also extend the CK22 model for the ratios 𝑀𝑚𝑎𝑥
𝑀50

and 𝑀𝑚𝑎𝑥
𝑀64

. A log-373

linear regression model was fitted for each of the three ratios using the SAR-radiometer collocation374

dataset previously presented. The following relationships were obtained:375

𝑀𝑚𝑎𝑥

𝑀34
= 0.531𝑒−0.00214(𝑉𝑅𝐸𝐺𝑚𝑎𝑥 −17.5𝑚𝑠−1)−0.00314(𝑉𝑅𝐸𝐺𝑚𝑎𝑥 −17.5𝑚𝑠−1) ( 1

2 𝑓 𝑅34) (3)

𝑀𝑚𝑎𝑥

𝑀50
= 0.626𝑒0.00282(𝑉𝑅𝐸𝐺𝑚𝑎𝑥 −25.7𝑚𝑠−1)−0.00724(𝑉𝑅𝐸𝐺𝑚𝑎𝑥 −25.7𝑚𝑠−1) ( 1

2 𝑓 𝑅50) (4)

𝑀𝑚𝑎𝑥

𝑀64
= 0.612𝑒0.00946(𝑉𝑅𝐸𝐺𝑚𝑎𝑥 −32.9𝑚𝑠−1)−0.01183(𝑉𝑅𝐸𝐺𝑚𝑎𝑥 −32.9𝑚𝑠−1) ( 1

2 𝑓 𝑅64) (5)

With these formulas, 𝑅𝑚𝑎𝑥 can then be estimated using the steps presented in the introduction376

(eq. 2). Subsequent estimates will be referred to as 𝑅𝐶𝐾22−𝑅34
𝑚𝑎𝑥 , 𝑅𝐶𝐾22−𝑅50

𝑚𝑎𝑥 , or 𝑅𝐶𝐾22−𝑅64
𝑚𝑎𝑥 depending377

on which wind radius is used.378
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b. Assessment of the resulting 𝑅𝑚𝑎𝑥 estimates379

To check the fitting procedure, we compared 𝑅𝐶𝐾22−𝑅34
𝑚𝑎𝑥 estimates and SAR 𝑅𝑚𝑎𝑥 (Fig. 5a). The380

consistency between both is reasonably good, with a 𝑅2-score of 0.41 and a RSD of 10.6 𝑘𝑚. A381

low ME of 3.7 𝑘𝑚 is observed, which can be related to the distribution of 𝑅𝐶𝐾22−𝑅34
𝑚𝑎𝑥 being slightly382

skewed toward higher 𝑅𝑚𝑎𝑥 values compared to SAR.383
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385

386

Because 𝑅50 and 𝑅64 are closer to 𝑅𝑚𝑎𝑥 than 𝑅34, using one or the other wind radii thresholds387

should improve the quality of the ratio estimate compared to 𝑅34. Ideally, an estimate of 𝑅𝑚𝑎𝑥388

should be performed with 𝑅64 if available. If 𝑅64 is not defined (i.e if 𝑉𝑚𝑎𝑥 is less than 33 𝑚𝑠−1),389
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𝑅50 should be used. 𝑅34 should only be used if both 𝑅64 and 𝑅50 were not defined. Following this390

procedure, we further estimated 𝑅𝑚𝑎𝑥 using the ”best” available wind radius.391

Figure 5b shows a comparison between these estimates (hereafter 𝑅𝐶𝐾22−𝐵𝑅
𝑚𝑎𝑥 ) and SAR 𝑅𝑚𝑎𝑥 .392

The 𝑅2-score increased to 0.63 and the ME decreased to 0.9 𝑘𝑚 compared to the 𝑅𝐶𝐾22−𝑅34
𝑚𝑎𝑥393

methodology, while RSD decreased from 10.6 𝑘𝑚 to 8.8 𝑘𝑚. Therefore, using wind radii closer to394

𝑅𝑚𝑎𝑥 does improve the estimate quality. In addition, such a low RSD demonstrates the efficiency395

of the fitted CK22 relationships (eqs. 3-5) to provide reliable 𝑅𝑚𝑎𝑥 estimates.396

In their paper, the 𝑅𝑚𝑎𝑥 predicted by CK22 had a systematic bias that could be bias-adjusted397

in post-processing to improve the model. Here we find that our model does not require a bias398

adjustment, which may be an indication of the benefit of using direct observational data for 𝑅𝑚𝑎𝑥399

(SAR).400

While the method is successful on average, it is remarkable that errors can be large (more than401

∼10 𝑘𝑚), even for cases where 𝑅64 predictors are used (see for instance Kong-Rey and Mangkhut402

in Fig. 5b). Before discussing how to explain these large uncertainties, a single TC life cycle was403

chosen to illustrate the potential of the present methodology.404

c. Application to TC Kilo life cycle405

Producing 𝑅𝐶𝐾22−𝐵𝑅
𝑚𝑎𝑥 estimates every time a radiometer or a scatterometer TC overpass is available406

can be an efficient tool for characterizing the time evolution of 𝑅𝑚𝑎𝑥 for any given TC. Figure 6407

shows TC Kilo 𝑅𝑚𝑎𝑥 and 𝑉𝑅𝐸𝐺𝑚𝑎𝑥 time series between 27 August and 10 September 2015, a period408

over which𝑉𝑅𝐸𝐺𝑚𝑎𝑥 was larger than 20𝑚𝑠−1. TC Kilo evolved in the Pacific ocean, reaching category409

4 on the Saffir-Simpson scale. It intensified from 20 to 49 𝑚𝑠−1 between 27 August and 30 August410

before entering a weakening phase. In the meantime, 𝑅𝑚𝑎𝑥 first varied between 55 and 15 𝑘𝑚411

according to IBTrACS, then stagnated at 37 𝑘𝑚 between the 30 August and the 2 September, before412

varying again after these date. Stagnation phases of 𝑅𝑚𝑎𝑥 from IBTrACS are likely not physical413

according to the 𝑉𝑅𝐸𝐺𝑚𝑎𝑥 variations during that time interval (see section 5). 𝑅𝐶𝐾22−𝐵𝑅
𝑚𝑎𝑥 estimates414

show much more pronounced variations during those phases, with an increasing trend between 30415

August and 8 September. This particular phase corresponds to an overall decrease of 𝑉𝑅𝐸𝐺𝑚𝑎𝑥 and an416

overall increase of 𝑅64 in our data (not shown), both of which would be expected to be associated417

with an increase in 𝑅𝑚𝑎𝑥 .418
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For reference, 3 SAR 𝑅𝑚𝑎𝑥 estimates were available during TC Kilo’s life cycle (green stars). The419

first SAR 𝑅𝑚𝑎𝑥 (10 𝑘𝑚) on 27 August, doesn’t match with our first estimate of 𝑅𝑚𝑎𝑥 (35 𝑘𝑚). This420

illustrates the limitations of our proposed methodology and is discussed hereafter. The second and421

third SAR 𝑅𝑚𝑎𝑥 estimates are in better agreement with 𝑅𝑚𝑎𝑥 estimates, especially if we account for422

the overall 𝑅𝑚𝑎𝑥 trend given by our estimates.423

Notably, there is more spread in the CK22 estimates on the last two days of the study period.424

Despite this increasing uncertainty, the increase of 𝑅𝑚𝑎𝑥 is well depicted, suggesting 𝑅𝑚𝑎𝑥 to425

significantly increase much before 8 September in contradiction with the IBTrACS trend.426

In summary, every time a radiometer or scatterometer wind profile is available, a subsequent427

𝑅𝐶𝐾22−𝐵𝑅
𝑚𝑎𝑥 estimate can be obtained, using the proposed objective method. In such a way, one can428

estimate 𝑅𝑚𝑎𝑥 trends that are more realistic than IBTrACS, less impacted from spatial or temporal429

heterogeneities. Such a framework could also be used operationally.430

5. Discussion436

The previous section demonstrated the potential of the CK22 model fitted with SAR, when used437

in combination with inter-calibrated medium-resolution radiometer and scatterometer data. Still,438

𝑅𝐶𝐾22−𝐵𝑅
𝑚𝑎𝑥 estimates can display rather large uncertainties, despite the expected improved use of439

𝑅64 as predictor. To better understand the sources of such uncertainties, three other case studies440

(cyan circles on Fig. 5a) were considered before examining theoretical aspects and drawing a441

picture of the average situation.442

a. Case studies from the SAR-radiometer dataset443

The first case (Fig. 7, left column) is TC Olivia in 2018, an Eastern Pacific ocean hurricane444

that reached category 4 on the Saffir-Simpson scale. It reached a first intensity peak (∼56 𝑚𝑠−1)445

on 5 September, then weakened before restrengthening (∼59 𝑚𝑠−1) during the night between 6446

and 7 September. On 8 September, both RS2 at 1510 UTC and Windsat at 1533 UTC overflew447

Olivia (Figs. 7a and 7d). Its eyewall, depicted by the high-resolution SAR observation, was clearly448

defined though asymmetric. With its rather low spatial resolution, the radiometer failed to map449

the inner core areas with high wind speed gradients, and eyewall asymmetries. From the SAR450

observation, Olivia’s 𝑅𝑚𝑎𝑥 was 30 𝑘𝑚 at that time, with a 𝑉𝑚𝑎𝑥 of 32 𝑚𝑠−1 (Fig. 7g). Notably,451
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𝑚𝑎𝑥 (left

axis, dashed black), and IBTrACS-based 𝑉𝑅𝐸𝐺𝑚𝑎𝑥 (right axis, solid brown). Also displayed are radiometers (squares), scatterometers

(circles) 𝑅𝐶𝐾22−𝐵𝑅
𝑚𝑎𝑥 estimates (color reveals which radius was used to define 𝑅𝐶𝐾22−𝐵𝑅

𝑚𝑎𝑥 for each observation), and SAR 𝑅𝑚𝑎𝑥

estimates (green stars). The dashed black line was obtained by applying a support vector regression to the radiometer- and

scatterometer-based 𝑅𝐶𝐾22−𝐵𝑅
𝑚𝑎𝑥 estimates.
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435

Windsat failed to estimate 𝑉𝑚𝑎𝑥 correctly, with a negative bias of almost 10 𝑚𝑠−1, which is largely452

attributable to sensor spatial averaging effects. In fact, the entire azimuthally-averaged wind profile453

is negatively biased, leading to an underestimation of 𝑅34, further reflected in 𝑅𝐶𝐾22−𝐵𝑅
𝑚𝑎𝑥 . This case454

illustrates how wind radii uncertainties translate into 𝑅𝐶𝐾22−𝐵𝑅
𝑚𝑎𝑥 uncertainties.455

The second case (Fig. 7, middle column), Mangkhut, was a super typhoon (category 5 on Saffir-456

Simpson scale), causing considerable damages in the Western Pacific ocean in 2018. It reached its457

peak intensity (∼80𝑚𝑠−1) on 12 September. On 11 September, both S1B at 2048 UTC and Windsat458

at 2126 UTC overflew Mangkhut (Figs. 7b and 7e). According to the SAR observation, Mangkhut459

had a clearly-defined symmetric eyewall at that time. Note that the eyebrow shape near the eyewall460

(Fig. 7b) is probably due to rain contamination (for discussion about such a feature see Mouche461
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et al. (2019)). The extent of high winds was seemingly well captured by the radiometer sensor, but462

the eye was not resolved. Nevertheless, a very good agreement between S1B and Windsat wind463

outer-profiles is obtained for this case (Fig. 7h), with only ∼3 𝑘𝑚 error between 𝑅64 estimates from464

the two sensors. Still, the estimate given by 𝑅𝐶𝐾22−𝐵𝑅
𝑚𝑎𝑥 (∼30 𝑘𝑚) largely overestimates the actual465

SAR 𝑅𝑚𝑎𝑥 (∼20 𝑘𝑚). With its large 𝑅64 and small 𝑅𝑚𝑎𝑥 at that time, Mangkhut illustrates the high466

variability that occurs in nature. Such a case is likely to depart from any statistical relationship467

(like CK22) that links a wind radius to 𝑅𝑚𝑎𝑥 .468

The last case study (Fig. 7, right column), Kong-Rey, in 2018, was a super typhoon reaching469

category 5 on the Saffir-Simpson scale, also evolving over the Western North Pacific ocean.470

Following a ∼72 𝑚𝑠−1 peak intensity on 2 October Kong-Rey experienced an eyewall replacement471

cycle (ERC) and entered its weakening phase. Kong-Rey was captured on 2 October by both S1A at472

2111 UTC and SMAP at 2133 UTC (Figs. 7c and 7f). The SAR observation depicts a well-defined473

symmetric eyewall, with a secondary ring of maximum winds further out from the TC center. In474

fact, Kong-Rey exhibited two eyewalls in 89 GHz imagery at this time (not shown). These two high475

wind regions were not well captured by the radiometer. The radiometer wind profile saturates in476

the 80 𝑘𝑚 inner-part of the TC, while the SAR wind profile exhibits two wind speed local maxima477

(Fig. 7i). Despite the inability of the radiometer sensor to capture the duel wind maxima observed478

at this time, the outer-part of the azimuthally-averaged wind profiles match well, both yielding a479

𝑅64 estimate of ∼128 𝑘𝑚. Though, 𝑅𝐶𝐾22−𝐵𝑅
𝑚𝑎𝑥 is 42 𝑘𝑚, far from the 14 𝑘𝑚 of SAR 𝑅𝑚𝑎𝑥 . However,480

it is noteworthy that 𝑅𝐶𝐾22−𝐵𝑅
𝑚𝑎𝑥 lies between the two SAR wind maxima. The complex shape of481

Kong-Rey during its ERC is the main cause to explain such a huge discrepancy. Indeed, the 𝑅64482

estimate is pushed to an outer radius due to the existence of secondary wind maxima.483

b. Structural aspects486

From these examples, we see that neither the use of high quality data (SAR) to train the algorithm487

nor the use of a radius that is very close to 𝑅𝑚𝑎𝑥 (i.e 𝑅64) precludes large uncertainties of 𝑅𝑚𝑎𝑥488

estimates using the CK22 framework. Underlying CK22, the use of an outer wind radius (e.g489

𝑅34 1) to estimate 𝑅𝑚𝑎𝑥 is justified by the angular momentum conservation principle: an air parcel,490

advected from the outer radii to the innermost radii, must lose angular momentum due to surface491

friction. The ratio 𝑀𝑚𝑎𝑥
𝑀34

thus represents the ability for an air parcel to keep its angular momentum492

1In this section we chose 𝑅34 as outer wind radius for clarity, but the reasoning well applies to any other wind radius (e.g 𝑅50 and 𝑅64).
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Fig. 7. Comparison of SAR and radiometer wind fields (top and middle rows, TCs are translating toward the top of each panel)

and corresponding wind profiles (bottom row) for Olivia (left column), Mangkhut (middle column) and Kong-Rey (right column).

484

485

while being advected from 𝑅34 to 𝑅𝑚𝑎𝑥 . In the log-linear framework, this ratio solely depends on493

𝑉𝑚𝑎𝑥 , 𝑅34, and 𝑓 .494

The use of these three parameters to estimate 𝑀𝑚𝑎𝑥
𝑀34

was discussed in Chavas et al. (2015) and495

Chavas and Lin (2016). In these studies, the ability of a radial parametric wind profile to represent496

the variability of observational data was tested. In brief, the radial parametric profile geometrically497

merges an inner-part profile with an outer-part profile, previously anticipated from theoretical498
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studies (Emanuel and Rotunno 2011; Emanuel 2004). Chavas and Lin (2016) concluded that the499

ratio 𝑀𝑚𝑎𝑥
𝑀0

between the angular momentum at 𝑅𝑚𝑎𝑥 and at an outer-radius 𝑅0 solely depends on500

four parameters: 𝑉𝑚𝑎𝑥 , 𝑓 𝑅0, 𝐶𝑘
𝐶𝑑

, and 𝑊𝑐𝑜𝑜𝑙
𝐶𝑑

, where 𝐶𝑘 and 𝐶𝑑 are the heat and momentum exchange501

coefficients, while𝑊𝑐𝑜𝑜𝑙 models the radiative-subsidence rate in the free troposphere of the outer-502

part model. Considering 𝑅0 = 𝑅34, a log-linear dependence of 𝑀𝑚𝑎𝑥
𝑀34

on (𝑉𝑚𝑎𝑥 , 𝑅34, 𝑓 ) thus neglects503

the variations of both 𝐶𝑘
𝐶𝑑

and 𝑊𝑐𝑜𝑜𝑙
𝐶𝑑

.504

Besides, the axisymmetric and steady-state theory of Emanuel and Rotunno (2011) invokes a505

direct relationship between 𝑀𝑚𝑎𝑥
𝑀34

and 𝐶𝑘
𝐶𝑑

, that can be stated as506

𝑀𝑚𝑎𝑥

𝑀34
= 𝜋(𝐶𝑘

𝐶𝑑
) (6)

with 𝜋(𝑥) := ( 1
2𝑥)

1
2−𝑥 a monotonically increasing function (see their eq. 38). This relationship507

assumes the TC is in steady-state and the Richardson number in the outflow is slightly below508

one. The latter implies the outflow is self-stratified by small-scale turbulence. Using numerical509

simulations that resolved convection, Emanuel and Rotunno (2011) showed that such an assumption510

was satisfied in an outflow region near 𝑅𝑚𝑎𝑥 . This assumption might then not hold true further out.511

Chavas et al. (2015) suggested that the optimal merging radius between the inner- and outer-part512

of the model was ∼ 2−3𝑅𝑚𝑎𝑥 when fitting the complete parametric profile to observational data.513

While not strictly corresponding to the region where the theoretical developments of Emanuel and514

Rotunno (2011) could remain valid, it identifies the region where the inner-part of the model is515

most likely to apply to the observations.516

When writing eq. 6, one assumes that the model of Emanuel and Rotunno (2011) is still valid at517

𝑅34, which largely exceeds 3𝑅𝑚𝑎𝑥 in nature. This might be a strong approximation, but it offers an518

instructive relationship between the rate of conservation of angular momentum (left-hand side) to a519

function of 𝐶𝑘
𝐶𝑑

, characterizing the balance between energy generation and friction loss (right-hand520

side). Most importantly, 𝐶𝑘
𝐶𝑑

controls the shape of the parametric radial wind profile, with higher521

values corresponding to more peaked profiles. In practice, unlike 𝐶𝑘
𝐶𝑑

values, this shape of the522

near-peak radial wind profile is more easily quantifiable using SAR data.523

To highlight these considerations, we present TC cases that have the same CK22 predictors (𝑉𝑚𝑎𝑥 ,524

𝑅64, 𝑓 ) but different wind profile shapes near their peak intensities. Figure 8 is representative of525

such a situation. SAR acquisitions over TC Rammasun (West Pacific, red curve) and TC Marie526
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(East Pacific, blue curve), occurred on 17 July 2014 at 1027 UTC and on 3 October 2020 at 1419527

UTC, respectively. Both storms display similar outer-core profiles, with almost the same 𝑅64 (∼52528

and ∼49 𝑘𝑚),𝑉𝑚𝑎𝑥 (∼42 and ∼43𝑚.𝑠−1) and 𝑓 (∼4.3 and ∼4.6 𝑠−1). Applying CK22 to these cases529

(vertical dashed lines) thus leads to almost the same 𝑅𝐶𝐾22−𝐵𝑅
𝑚𝑎𝑥 value (∼25 and ∼22 𝑘𝑚). However,530

SAR derived wind profiles provide different estimates, 𝑅𝑚𝑎𝑥 (∼34 and ∼24 𝑘𝑚, respectively).531
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532

533

Comprehensively, the CK22 model cannot fully adjust to peculiar local wind profiles. To quantify534

the wind profile shapes, a Holland parametric profile (Holland 1980) was adjusted to each SAR535

azimuthally-averaged wind profile:536

𝑉𝐻𝑜𝑙𝑙𝑎𝑛𝑑 (𝑟) =𝑉𝑚𝑖𝑛 +
√︂
(𝑉𝑚𝑎𝑥 −𝑉𝑚𝑖𝑛)2(𝑅𝑚𝑎𝑥

𝑟
)𝐵𝑒1−( 𝑅𝑚𝑎𝑥

𝑟
)𝐵 + ( 𝑟 𝑓

2
)2 − 𝑟 𝑓

2
(7)
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This parametric formulation is useful to quantify variations in the shape of observed wind537

profiles. In particular, the empirical B parameter controls the rate of radial decay of the tangential538

winds, with higher (smaller) values corresponding to narrower (broader) vortices. In addition, this539

parameter was found to be sensitive to TC intensity and size while independent of 𝑅𝑚𝑎𝑥 (Knaff540

et al. 2011).541

Note, Holland’s profiles were designed for gradient-level wind and are not necessarily suited542

for surface wind profiles with nonzero wind speeds at the TC center, well captured using SAR543

observations. A complementary degree of freedom (𝑉𝑚𝑖𝑛) was thus included in eq. 7 to cope with544

the existence of nonzero minimum wind speeds.545

Using the full extent of the wind profile, a solution for𝑉𝑚𝑖𝑛,𝑉𝑚𝑎𝑥 , 𝑅𝑚𝑎𝑥 and 𝐵 can be estimated via546

least squares. Applied to TC Rammasun and Maria, the fitting procedure results in two different 𝐵547

values, ∼2.1 and ∼1.7, respectively (Fig. 8). Such a difference quantifies the remaining variability548

of the near-core wind profile for comparable outer-core wind profiles.549

c. Analysis framework550

The shape of the near-core wind profile is generally associated with the radial gradient of absolute551

angular momentum and thus the loss of angular momentum when an air parcel is advected from552

𝑅34 to 𝑅𝑚𝑎𝑥 . To guide the analysis, we recall the equation of angular momentum conservation for553

an axi-symmetric vortex:554

𝜕𝑀

𝜕𝑡
+𝑢 𝜕𝑀

𝜕𝑟
+𝑤𝜕𝑀

𝜕𝑧
=
𝑟

𝜌

𝜕𝜏𝜃𝑧

𝜕𝑧
(8)

with 𝑢 and 𝑤, the radial and vertical velocities, 𝜏𝜃𝑧 a tangential stress component, and 𝜌 the555

density. The continuity equation links 𝑢 and 𝑤 as556

1
𝑟

𝜕 (𝑟𝑢)
𝜕𝑟

+ 𝜕𝑤
𝜕𝑧

= 0 (9)

Under steady state condition, eq. 8 can be integrated from the surface to a boundary layer height,557

ℎ, where the stress vanishes:558 ∫ ℎ

0
𝑢
𝜕𝑀

𝜕𝑟
𝑑𝑧+

∫ ℎ

0
𝑤
𝜕𝑀

𝜕𝑧
𝑑𝑧 = −𝑟𝜏𝜃𝑠

𝜌
= −𝐶𝑑𝑟𝑉2 (10)
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with 𝜏𝜃𝑠 ≈ 𝐶𝑑𝜌𝑉2 the surface stress, 𝐶𝑑 a drag coefficient and 𝑉 the tangential surface wind559

component. Assuming 𝑤(𝑧 = 0) = 0 and the use of the continuity equation (eq. 9), the second560

term of the left hand-side in eq. 10 is integrated by parts, following developments presented by561

Kalashnik (1994), to obtain562 ∫ ℎ

0
𝑢
𝜕𝑀

𝜕𝑟
𝑑𝑧+ [𝑤𝑀] |𝑧=ℎ +

∫ ℎ

0

𝑀

𝑟

𝜕 (𝑟𝑢)
𝜕𝑟

𝑑𝑧 = −𝐶𝑑𝑟𝑉2 (11)

Grouping the two integrals yields563

1
𝑟

𝑑

𝑑𝑟

(
𝑟

∫ ℎ

0
𝑢𝑀 𝑑𝑧

)
+ [𝑤𝑀] |𝑧=ℎ = −𝐶𝑑𝑟𝑉2 (12)

Defining 𝑢 := 1
ℎ

∫ ℎ

0 𝑢 𝑑𝑧 we can approximate the integral
∫ ℎ

0 𝑢𝑀 𝑑𝑧 ≈ ℎ𝑢𝑀 |𝑧=ℎ and rewrite the564

continuity equation 𝑤 |𝑧=ℎ = − ℎ
𝑟
𝑑
𝑑𝑟
(𝑟𝑢). Rearrangement finally yields:565

𝑟𝑉2 ≈ − ℎ𝑢
𝐶𝑑

𝑑𝑀

𝑑𝑟
(13)

where 𝑑𝑀
𝑑𝑟

is the radial gradient of absolute angular momentum at the top of the boundary layer.566

Assuming the latter closely related to its value at the surface, eq.13 then explicitly links the shape567

of the wind profile 𝑑𝑀
𝑑𝑟

to 𝑟𝑉2.568

Using SAR measurements, both quantities can be accurately estimated, and the validity of eq. 13569

assessed. Figure 9a represents 𝑅𝑚𝑎𝑥𝑉2
𝑚𝑎𝑥 (y-axis) as a function of 𝑅34𝑉

2
34 (x-axis) and colored by570

the fitted 𝐵 values2. On average, i.e 𝐵 ≃ 1.8, a relationship emerges when comparing 𝑅𝑚𝑎𝑥𝑉2
𝑚𝑎𝑥 and571

𝑅34𝑉
2
34. Departures from a one-to-one relationship, related to conservation of the 𝑟𝑉2 parameter,572

are seemingly well explained by 𝐵 values. Large 𝐵, corresponding to very peaked wind profiles573

near 𝑉𝑚𝑎𝑥 , leads to larger 𝑅𝑚𝑎𝑥𝑉2
𝑚𝑎𝑥 for a given 𝑅34𝑉

2
34. For broader wind profiles, corresponding574

to smaller 𝐵, smaller 𝑅𝑚𝑎𝑥𝑉2
𝑚𝑎𝑥 are generally found.575

Moreover, the space spanned in the (𝑅34𝑉
2
34, 𝑅𝑚𝑎𝑥𝑉2

𝑚𝑎𝑥)-plane is still apparently large, even at579

constant 𝐵. From eq. 13, this increased variability is possibly associated with the factor ℎ𝑢
𝐶𝑑

.580

Overall, these results suggest that the variability encountered in nature does not solely depends on581

the three predictors (𝑉𝑚𝑎𝑥 , 𝑅34, 𝑓 ).582

2𝐵, as a scalar value, was used instead of a criterion based on 𝑑𝑀
𝑑𝑟

to describe the shape of the wind profile
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Fig. 9. Evaluation of the PV conservation assumption in the SAR dataset (a) and for Kilo’s life cycle (b) using 𝑅34 estimated

on radiometer and scatterometer data along with corresponding 𝑅𝐶𝐾22−𝐵𝑅
𝑚𝑎𝑥 estimates and 𝑉𝑅𝐸𝐺𝑚𝑎𝑥 . The three SAR cases (green

stars) are also displayed for reference.
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To further illustrate this diagnosis, Fig. 9b displays the same (𝑅34𝑉
2
34, 𝑅𝑚𝑎𝑥𝑉2

𝑚𝑎𝑥)-plane, but583

using the radiometer and scatterometer database, and corresponding 𝑉𝑅𝐸𝐺𝑚𝑎𝑥 , 𝑅34 and 𝑅𝐶𝐾22−𝐵𝑅
𝑚𝑎𝑥584

estimates. As expected, the variability captured by using 𝑅34 or 𝑅50 to estimate 𝑅𝑚𝑎𝑥 via CK22 is585

poor. While using 𝑅64 increases this variability, the overall spread is reduced compared to Fig. 9a,586

suggesting that the variability of the wind profile shapes associated with the 𝑅𝐶𝐾22−𝐵𝑅
𝑚𝑎𝑥 estimates587

is low.588

Note, the average situation 𝑟𝑉2 ≈ constant which is depicted in our study thanks to the SAR589

database has already been discussed by Riehl (1963) when he argued that PV is conserved within590

the inflow layer. PV conservation implies the vertical component of the curl of the frictional force591

to be zero, or592

𝑟

𝜌

𝜕𝜏𝜃𝑧

𝜕𝑧
= constant (14)

Integrating this equation over the boundary layer height yields (assuming constant density):593

𝑟𝜏𝜃𝑠

𝜌
= 𝐶𝑑𝑟𝑉

2 = constant (15)
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Thus, for a constant or slowly varying drag coefficient𝐶𝑑 , PV conservation leads to 𝑟𝑉2 ≈ constant594

(Riehl 1963). Mentioned above, such a relationship is, on average, consistent with the SAR595

estimates. However, for this relationship, the only source of variability comes from 𝐶𝑑 . From596

arguments raised above (eq. 13), ℎ and 𝑢 should also be further considered.597

Lastly, one limitation of our observational analysis is that SAR 𝑉𝑚𝑎𝑥 is an estimate of the598

maximum total wind speed rather than the maximum tangential wind speed. Knowing how the599

total wind speed is distributed between its tangential and radial component near the eyewall region600

would allow to better estimate the impact of 𝑢 on PV conservation and its variability.601

d. Comparison of 𝑅𝐶𝐾22−𝐵𝑅
𝑚𝑎𝑥 with existing 𝑅𝑚𝑎𝑥 estimates602

With these results in mind, we assessed how much 𝑅𝐶𝐾22−𝐵𝑅
𝑚𝑎𝑥 estimates improved existing 𝑅𝑚𝑎𝑥603

estimates. Figure 10 displays density contours of (𝑉𝑚𝑎𝑥 , 𝑅𝑚𝑎𝑥) joint distributions using IBTrACS604

𝑅𝑚𝑎𝑥 (dashed blue) or 𝑅𝐶𝐾22−𝐵𝑅
𝑚𝑎𝑥 estimates (solid black). For comparison, the same density contours605

are shaded for the SAR dataset (green).606

We remind readers that SAR wide-swaths acquisitions cannot be continuously performed over607

the ocean. As a consequence, not only does the SAR dataset contain much fewer cases, it is also608

biased towards higher intensities. Indeed, acquisition orders are most often requested to observe609

higher intensity systems. Thus, for the lowest 𝑉𝑚𝑎𝑥 (less than ∼ 30 𝑚𝑠−1), possible inconsistencies610

in 𝑅𝑚𝑎𝑥 densities arise when comparing SAR to radiometer and scatterometer or IBTrACS. The611

density contours suggest that both IBTrACS 𝑅𝑚𝑎𝑥 and 𝑅𝐶𝐾22−𝐵𝑅
𝑚𝑎𝑥 estimates are larger than SAR612

𝑅𝑚𝑎𝑥 , while, in fact, this is just a consequence of the lack of SAR data at these intensities.613

Nevertheless, and more importantly for high surface winds, discrepancies in 𝑅𝑚𝑎𝑥 densities are618

observed. Indeed, on average IBTrACS density contours are centered on a higher 𝑅𝑚𝑎𝑥 (∼30 𝑘𝑚)619

than SAR (progressively decreasing to ∼20 𝑘𝑚). Confirming the efficacy of the revised model,620

radiometer- and scatterometer-based density contours display an average 𝑅𝐶𝐾22−𝐵𝑅
𝑚𝑎𝑥 (∼20 𝑘𝑚) that621

is consistent with SAR 𝑅𝑚𝑎𝑥 . Depicted by the 𝑅𝑚𝑎𝑥 density curves (right panel), for low 𝑅𝑚𝑎𝑥 ,622

IBTrACS density is lower than both SAR and 𝑅𝐶𝐾22−𝐵𝑅
𝑚𝑎𝑥 values.623

For further comparison, we computed 𝑅𝑚𝑎𝑥 estimates from 𝑅34 on the radiometer and scatterom-624

eter data using eq. 7 of Chavas and Knaff (2022). The corresponding density curve (dotted red)625

shows only a minor improvement compared to IBTrACS at low 𝑅𝑚𝑎𝑥 .626
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Fig. 10. Density contours of (𝑉𝑚𝑎𝑥 , 𝑅𝑚𝑎𝑥) joint distribution for the SAR dataset (shaded green, 𝑉𝑚𝑎𝑥 based on IBTrACS),

for the dataset based upon radiometers and scatterometers with 𝑅𝐶𝐾22−𝐵𝑅
𝑚𝑎𝑥 (solid black) and based on corresponding IBTrACS

𝑅𝑚𝑎𝑥 values (dashed blue). The corresponding 𝑅𝑚𝑎𝑥 density curves are displayed on the right panel, along with 𝑅𝑚𝑎𝑥 estimates

obtained by applying eq. 7 of Chavas and Knaff (2022) to the radiometer- and scatterometer-based dataset (dotted red).
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Finally, the density contours of the radiometer and scatterometer dataset with 𝑅𝐶𝐾22−𝐵𝑅
𝑚𝑎𝑥 span a627

larger space than IBTrACS in the (𝑉𝑚𝑎𝑥 , 𝑅𝑚𝑎𝑥)-plane. This shows that the former captures more628

variability than best-track data. This is likely due to the use of 𝑅64 in the regression, a result629

already suggested by Fig. 9b. Even though the datasets don’t have the same 𝑉𝑚𝑎𝑥 distributions,630

Fig. 10 also suggests that the radiometer and scatterometer density contours span less space than631

SAR observations in the (𝑉𝑚𝑎𝑥 , 𝑅𝑚𝑎𝑥)-plane. While this is consistent with the above analysis, more632

SAR cases are needed to properly interpret Fig. 10.633
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6. Conclusions and perspectives634

Understanding TC intensity changes certainly remains an observationally challenging problem.635

As expressed during the Tenth International Workshop on Tropical Cyclones (IWTC-10, rec-636

ommendation 4), both the operational and research communities recognize the need for more637

homogeneous and standardized datasets for TC wind structure parameters, such as 𝑅𝑚𝑎𝑥 and the638

wind radii. The fact that 𝑅34 was not systematically reanalyzed in all basins, and that 𝑅𝑚𝑎𝑥 is still639

not reanalyzed today (best-track 𝑅𝑚𝑎𝑥 value typically stems from its operational estimate) hampers640

the consolidation of such a dataset. Systematic and standardized wind radii are needed when using,641

and further improving, a semi-empirical model such as CK22. Although satellite sensors have their642

limitations, especially regarding the inter-calibration of different missions and sensors, resulting643

multi-modal observations shall serve for such a systematic and global approach, at least for wind644

radii estimation.645

More specifically and thanks to high-resolution (SAR) data, it is now possible to more systemati-646

cally estimate 𝑅𝑚𝑎𝑥 . Fitted with SAR estimates and used in conjunction with the closest wind radius647

to 𝑅𝑚𝑎𝑥 , our study proposed a revised CK22 model. It is shown to be an efficient tool to provide648

improved reliable estimates, with an average uncertainty of ∼ 9 𝑘𝑚. Because outer-core wind radii649

can be estimated from radiometer or C-band scatterometer data, the developed framework thus650

allows to produce a more extensive dataset of reanalyzed 𝑅𝑚𝑎𝑥 estimates. The resulting time series651

are generally more realistic than those obtained from best-track 𝑅𝑚𝑎𝑥 estimates. The method can652

also be used to provide operational guidance on the location of the maximum intensity every time653

a radiometer or C-band scatterometer overflies the TC, as long as its intensity and location are also654

estimated, noting that such estimates are routinely available from operational centers. Furthermore,655

the proposed method could also be used to guide the best-tracking process when no reliable 𝑅𝑚𝑎𝑥656

observation is available.657

The efficacy of the semi-empirical CK22 model stems from fundamental conservation principles.658

Indeed, the high-resolution SAR database highlights that TCs, on average, conserve their PV, with659

a resulting approximation 𝑟𝑉2 ≈ constant. Accordingly, the use of CK22 to retrieve 𝑅𝑚𝑎𝑥 , based660

on an outer-radius wind observation coupled with an intensity estimate is, on average, justified.661

Single cases can still depart considerably from the PV conservation assumption, especially those662
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at very high intensity (𝑉𝑚𝑎𝑥) or with large inner- (𝑅𝑚𝑎𝑥) or outer-size (𝑅34). And, to first order,663

those deviations are well explained by variations of the observed wind profile shapes.664

While the use of 𝑅64 can account for some of the deviations due to the radial gradient of665

absolute angular momentum, the CK22 model seems to fail to capture the remaining variability666

observed in the SAR database. Large variability is apparently still occurring near the TC core.667

To further advance our understanding, there continues to be a need for spaceborne SAR and668

airborne SFMR sensors as these are the only tools that resolve surface winds in this area. Both669

sensors however suffer from a lack of spatio-temporal sampling, and airborne measurements suffer670

from a lack of azimuthal coverage. The future is bright with the recently launched RADARSAT671

Constellation Mission (RCM) operated by CSA, which should improve the satellite SAR spatio-672

temporal sampling. RCM has already proved useful by providing significantly more 𝑅𝑚𝑎𝑥 estimates673

than anticipated for the 2022-2023 season. And, increasing the number of available SAR cases will674

certainly allow to better understand how absolute angular momentum gradients are constrained in675

the near-core region.676

Furthermore, the integrated equations show that both the boundary layer depth (ℎ), the average677

radial inflow (𝑢), and the drag (𝐶𝑑) also impact the relationship between PV conservation and678

the near-core wind profile shape. While the 𝐶𝑑 behaviour under very high winds is still actively679

debated (Powell et al. 2003; Bell et al. 2012), measurements of both ℎ and 𝑢 may be facilitated by680

the Doppler-based motions derived from the Imaging Wind and Rain Airborne Profiler (IWRAP)681

instrument (Sapp et al. 2022). For the radial inflow, improved estimates at the surface, in the near-682

core region, shall be made possible with the future Harmony mission (ESA 2022), the ESA Earth683

Explorer 10. This mission will augment Sentinel 1D observations with two satellite companions,684

providing azimuth diversity from these bi-static observations. In addition, the Second Generation685

Meteorological Operational satellite programme (Metop-SG) will operate in both co- and cross-686

polarization. Unlike the current spaceborne instruments, ASCAT, which have only co-polarization687

measurements, the higher sensitivity of cross-polarized signals to ocean breaking waves may thus688

improve the ocean surface wind vectors measured by scatterometers, approaching the TC core689

regions. Also, the coming Copernicus Imaging Microwave Radiometer (CIMR) promises to offer690

large swath with improved resolution, low uncertainty observation capabilities, combining L-, C-691

and X-band frequencies . The presence of 1.4 GHz L-band channel on board CIMR will open692
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up the possibility to further interpret the high-resolution C- and X-band measurements, to provide693

improved surface wind vector estimates under extreme conditions (Kilic et al. 2018).694

Finally, in the absence of high-resolution observations, the shape of the near-core wind profile may695

also be indirectly estimated. Given the relation 𝑟𝑉2 ≈ constant under a steady-state assumption,696

a departure from this relation can help understand the temporal variations of absolute angular697

momentum. Estimates of these temporal variations may then be used to evaluate how much the698

near-core wind profile shape departs from the average relationship. The wind profile shape is699

also linked to the drag coefficient (see for instance the steady-state view of Emanuel and Rotunno700

(2011)), which modulates asymmetries in the boundary layer response (Shapiro 1983; Kepert701

2001). Asymmetries possibly captured by medium- or low-resolution observations (scatterometers702

or radiometers), may thus help to infer boundary layer frictional drag terms, and to quantify the703

resulting shape of the wind profile.704
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APPENDIX A719

Scatterometer wind speed estimates720

As explained in section 2, the wind speed estimates from different radiometer and scatterometer721

sensors have been inter-calibrated prior to our study. During this process, the C-band ASCAT722

missions were calibrated using a 25 𝑘𝑚 resolution, while the Ku-band scatterometer sensors were723

calibrated using a 50 𝑘𝑚 resolution. Spatial resolution was already demonstrated to impact how724

well TCs intensities are resolved in numerical models (Davis 2018) and observations (Quilfen et al.725

1998). Here, we expect discrepancies between the C- and Ku-band observational wind products.726

To quantify this resolution effect, SAR wind fields were degraded to both 25 and 50 𝑘𝑚 spatial727

resolution and then azimuthally-averaged. The 𝑉𝑚𝑎𝑥 values estimated from these degraded wind728

profiles were then compared to IBTrACS 𝑉𝑚𝑎𝑥 , as represented by the green (25 𝑘𝑚) and red (50729

𝑘𝑚) stars of Fig. A1. Here, SAR 𝑉𝑚𝑎𝑥 refers to the maximum found in an azimuthally-averaged730

wind profile. We thus expect slight discrepancies with IBTrACS 𝑉𝑚𝑎𝑥 , whose definition does not731

strictly coincide with a wind profile maximum. The comparison between SAR azimuthal means732
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and IBTrACS is indicated by the grey stars and modelled by a linear fit (grey dashed line in Fig.733

A1) which defines 𝑉𝑅𝐸𝐺𝑚𝑎𝑥 :734

𝑉𝑅𝐸𝐺𝑚𝑎𝑥 = 0.6967𝑉 𝐼𝐵𝑇𝑟𝐴𝐶𝑆𝑚𝑎𝑥 +6.1992 (A1)

The green and red scatters in Fig. A1 should be compared to this regression line (grey dashed)735

rather than the 1:1 line. The 25- and 50-𝑘𝑚 simulated 𝑉𝑚𝑎𝑥 values show that as spatial resolution736

decreases 𝑉𝑚𝑎𝑥 also decreases, and the decreasing tendency is more pronounced as intensity737

increases. On average, a 𝑉𝑚𝑎𝑥 of ∼38 𝑚𝑠−1 observed at the full-resolution azimuthally-averaged738

wind profile (i.e the raw SAR wind profile) would yield ∼32 𝑚𝑠−1 when observed at a 25 𝑘𝑚739

spatial resolution and ∼28 𝑚𝑠−1 at a 50 𝑘𝑚 spatial resolution. Second-order polynomial fits were740

constructed to model this spatial resolution effect.741

Using these linear and polynomial fits as reference, we then compared C-band and Ku-band746

scatterometer 𝑉𝑚𝑎𝑥 values with IBTrACS in Fig. A2. It shows that C-band scatterometer 𝑉𝑚𝑎𝑥747

values are consistent with the 25 𝑘𝑚 spatial resolution polynomial model (green dashed curve). In748

contrast, Ku-band scatterometer 𝑉𝑚𝑎𝑥 are still underestimated when compared to IBTrACS values749

following the correction for their 50 𝑘𝑚 resolution (red dashed curve). In particular, Ku-band750

scatterometer 𝑉𝑚𝑎𝑥 estimates rarely exceed 64 knots (33 𝑚𝑠−1), precluding their use to estimate751

wind radii in our analysis.752

References756

Bell, M. M., M. T. Montgomery, and K. A. Emanuel, 2012: Air–sea enthalpy and momentum757

exchange at major hurricane wind speeds observed during cblast. Journal of the Atmospheric758

Sciences, 69 (11), 3197–3222.759

Brennan, M. J., C. C. Hennon, and R. D. Knabb, 2009: The operational use of quikscat ocean760

surface vector winds at the national hurricane center. Weather and Forecasting, 24 (3), 621–645.761

Chavas, D. R., and J. A. Knaff, 2022: A simple model for predicting the tropical cyclone radius of762

maximum wind from outer size. Weather and Forecasting, 37 (5), 563–579.763

Chavas, D. R., and N. Lin, 2016: A model for the complete radial structure of the tropical764

cyclone wind field. part ii: Wind field variability. Journal of the Atmospheric Sciences, 73 (8),765

35



20 30 40 50 60 70 80 90
Vmax IBTrACS (m/s)

20

30

40

50

60

70

80

90

Vm
ax

 S
AR

 (m
/s

)

1D
1D - 25 km
1D - 50 km
1D reg
1D 25 km reg
1D 50 km reg

0.0

0.1

Fr
eq

ue
nc

y
IBTrACS
Mean IBTrACS

0.0 0.1
Frequency

1D
Mean 1D
1D - 25 km
Mean 1D - 25 km
1D - 50 km
Mean 1D - 50 km

Fig. A1. Comparison between SAR (y-axis) and IBTrACS (x-axis) 𝑉𝑚𝑎𝑥 for the raw dataset (grey) and when degraded at

25 𝑘𝑚 (green) or 50 𝑘𝑚 (red) resolution. Dashed lines represent best linear fit for the raw dataset (grey) and best second order

polynomial fits for the 25 𝑘𝑚 (green) and 50 𝑘𝑚 (red) datasets. A solid black line represents identity. 𝑉𝑚𝑎𝑥 distributions and

averages are displayed for the different SAR samples (right) and for corresponding IBTrACS values (top).

742

743

744

745

3093–3113.766

Chavas, D. R., N. Lin, and K. Emanuel, 2015: A model for the complete radial structure of767

the tropical cyclone wind field. part i: Comparison with observed structure. Journal of the768

36



20 30 40 50 60 70 80 90
Vmax IBTrACS (m/s)

20

30

40

50

60

70

80

90

Vm
ax

 S
ca

tte
ro

m
et

er
 (m

/s
)

ASCAT
HSCAT
OSCAT
RSCAT
1D reg
1D 25 km reg
1D 50 km reg

0.0

0.1

0.2

Fr
eq

ue
nc

y
IBTrACS
Mean IBTrACS

0.0 0.1 0.2
Frequency

ASCAT
Mean ASCAT
Others 
(HSCAT 
+ OSCAT 
+ RSCAT)
Mean others

Fig. A2. Comparison between scatterometer (y-axis) and IBTrACS (x-axis) 𝑉𝑚𝑎𝑥 for ASCAT (green), HSCAT (yellow),

OSCAT (orange), and RSCAT (red). Solid and dashed lines are identical to Fig. A1. 𝑉𝑚𝑎𝑥 distributions and averages are displayed

for the different scatterometer datasets (right) and for corresponding IBTrACS values (top).

753

754

755

Atmospheric Sciences, 72 (9), 3647–3662.769

Chou, K.-H., C.-C. Wu, and S.-Z. Lin, 2013: Assessment of the ascat wind error characteristics by770

global dropwindsonde observations. Journal of Geophysical Research: Atmospheres, 118 (16),771

9011–9021.772

37



Combot, C., A. Mouche, J. Knaff, Y. Zhao, Y. Zhao, L. Vinour, Y. Quilfen, and B. Chapron,773

2020a: Extensive high-resolution synthetic aperture radar (sar) data analysis of tropical cyclones:774

Comparisons with sfmr flights and best track. Monthly Weather Review, 148 (11), 4545–4563.775

Combot, C., Y. Quilfen, A. Mouche, J. Gourrion, C. de Boyer Montégut, B. Chapron, and J. Tour-776

nadre, 2020b: Space-based observations of surface signatures in the wakes of the 2018 eastern777

pacific tropical cyclones. Journal of Operational Oceanography, 13 (Suppl. 1).778

Davis, C., 2018: Resolving tropical cyclone intensity in models. Geophysical Research Letters,779

45 (4), 2082–2087.780

Donnelly, W. J., J. R. Carswell, R. E. McIntosh, P. S. Chang, J. Wilkerson, F. Marks, and P. G.781

Black, 1999: Revised ocean backscatter models at c and ku band under high-wind conditions.782

Journal of Geophysical Research: Oceans, 104 (C5), 11 485–11 497.783

Emanuel, K., 2004: Tropical cyclone energetics and structure. Atmospheric turbulence and784

mesoscale meteorology, 165, 192.785

Emanuel, K., and R. Rotunno, 2011: Self-stratification of tropical cyclone outflow. part i: Impli-786

cations for storm structure. Journal of the Atmospheric Sciences, 68 (10), 2236–2249.787

ESA, 2022: Report for mission selection: Earth explorer 10 candidate mission harmony. Tech.788

rep., ESA, Noordwijk, The Netherlands, 369 pp.789

Ginis, I., 2002: Tropical cyclone-ocean interactions. Advances in Fluid Mechanics Series, 33.790

Holland, G. J., 1980: An analytic model of the wind and pressure profiles in hurricanes.791

Irish, J. L., D. T. Resio, and J. J. Ratcliff, 2008: The influence of storm size on hurricane surge.792

Journal of Physical Oceanography, 38 (9), 2003–2013.793

Kalashnik, M., 1994: On the maximum wind velocity in the tropical cyclone. Izvestiâ Akademii794
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