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Abstract— This study focuses on the impact of planar near-

field measurement parameters, such as plane size, sampling 

step and the distance between the Antenna Under Test (AUT) 

and the measurement plane. The main objective of this work is 

to determine the optimal near-field measurement parameters 

that achieve an assessment of far-field (FF) radiation pattern 

accuracy versus measurement duration.  
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I. INTRODUCTION 

Near-field antenna characterization methods offer an 
alternative to direct far-field measurements but often 
necessitate considerable data acquisition and both amplitude 
and phase measurements for subsequent near-to-far-field 
transformations. Phaseless techniques have emerged as a 
practical alternative to these traditional methods and offer 
several advantages, such as the ability to eliminate the need 
of expensive equipment and highly precise positioning 
systems [1]. Additionally, they hold the promise of 
simplifying OTA (Over-The-Air) for devices without direct 
access to the antenna. The most commonly used technique in 
this type of measurement is called the Iterative Fourier 
Technique (IFT) [2], which is based on propagating the 
measured amplitude between two surfaces, located at 
different distances from the antenna aperture using plane 
wave spectrum in order to reconstruct the phase and then 
apply a traditional near-field to far-field transformation.  

The parameters that the user must define for a standard 
planar near-field measurement are the size of the 
measurement plane, the distance separating the Antenna 
Under Test (AUT) and the measurement plane, and the 
sampling step. In theory, for complete and precise 
reconstruction, the measurement plane should be infinite in 
size, and the sampling step should be as small as possible to 
capture all variations in the electric field on this plane. In 
practice, the plane is truncated from infinity, and the sampling 
step is calculated while respecting Nyquist's condition. 
Furthermore, the required separation distance between the 
AUT and the measurement plane is determined by the 
reactive field radiated. 

 

Fig. 1. Phaseless measurement principle 

 

The Phaseless Iterative Fourier Technique (IFT)starts 
with an initial guess of phase and amplitude across the 
antenna's aperture. Then, it propagates this initial distribution 
towards Plane 1 using Plane Wave Spectrum (PWS) theory. 
Here, the propagated amplitude is replaced with the actual 
measured one, while the phase is retained. This process 
repeats forward (from Plane 1 to Plane 2) and backward (from 
Plane 2 to Plane 1), updating the propagated amplitude with 
the real measurements on each plane. The phase is adjusted 
on each iteration and it keeps iterating until a predefined error 
rate or when a maximum number of iterations is reached. 

The parameters addressed in this study for planar near-
field measurement using phaseless IFT method are the size of 
the measurement plane, the distance separating the Antenna 
Under Test (AUT) and the measurement plane, the sampling 
step. The main objective of this work is to contribute to the 
specification of near-field measurement parameters that 
achieve an assessment of far-field (FF) radiation pattern 
accuracy versus measurement duration.  

II. DEFINE OPTIMAL MEASUREMENT PARAMETERS 

A. Measurement plane size and distance for the AUT 

Firstly, to establish the optimal near-field measurement 
parameters regarding the desired radiation pattern cutoff 
angle, a criterion (Fig. 2) has been empirically established 
through extensive measurements [2] and substantiated 
through theoretical analysis [3]. It could be used to determine 
the minimum size of the scan plane for a given desired 
angular region of coverage and the distance d between the 
aperture of the antenna and the measurement plane. 

 

Fig. 2. Critical cutoff angle (θc) 
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Fig. 3. Critical cutoff angle (θc) versus measurement plane size (L) for 

differents distance (d)  
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The curves on the fig. 3 show that this criterion is very 
restrictive but necessary if very small measurement error is 
wanted over a large angle range.  In our case, to optimise the 
size of the measurement, an amplitude range from the 
maximum amplitude will be defined, for example (30dB). 
Outside, the measurement plane size could be increase by 
filling null value.  

The optimal distance d of the measurement planes from 
the antenna aperture should be in the Rayleigh zone to avoid 
the reactive where strong coupling effect between the AUT 
and the probe could disturb the measurement. Our test bench 
“caronchip” is presented on the fig.4. On the fig. 5, the 
evolution of the electric field amplitude measured and 
simulated above a rectangular horn antenna at 96GHz along 
vertical axis, allows firstly to validate your test bench and 
from the antenna aperture size to define the optimal distance 
of the measurement planes. The first plane will be located at 
the end of the reactive in order to minimise the measurement 
plane size. In the case of the horn antenna, the distances of 
measurement planes should be selected between 24λ and 64λ.   

 

Fig. 4. “Caronchip” test bench 

 

Fig. 5. Evolution of the amplitude in the near field zone 

B.  Spatial sampling  

Once the measurement plane size and the distance are 
optimized, the measurement duration depend on the number 
of measurement point. The general rule is to fix a half 
wavelength spatial sampling without angle restriction. It is 
possible to increase the spatial sampling but with an impact 
about the angle range and the goal is to evaluate it. 

The spatial sampling effect could be study from the theory 
of PWS [2]. The electric field is written as follows : E�x, y, z�
�  14π� � �F��k�, k� x̂ " F��k�, k� ŷ$%

&%" F'�k�, k� ẑ) e&+,-.�$-/�$0-12&-.2&-/2'3dk�dk�             �2� 

With 

,k�x " k�y " 0k1� 	 k�� 	 k��z3 � k. r                     �3� 

And 

k1 � 2πλ        �4� 

The radiation condition in 3D requires that for z≥0, the 
relation between wavenumbers should ensure: k'
�  9 �k� 	 k�� 	 k�� :�

	j�k� 	 k�� 	 k�� :�     if   k�� " k��  > k�otherwise D                    �5� 

The method of stationary phase is used to derive easy-to-
use formula far field calculations.  ∂k. r∂k� �  ∂k. r∂k� � 0               �6� 

The solution to (5) is: k� � k1sinθcosφ             �7� k� � k1sinθsinφ             �8� 

Where θ and ϕ represent the angles associated with the 
spherical coordinate system: θ is the elevation angle, and ϕ is 
the azimuth angle. 

The wavenumbers kx  and ky  can be written in the 
Cartesian domain as: 

k� � 2πmMΔ�                          �9� 

k� � 2πnNΔ�                          �10� 

With Δx  and Δy the sampling steps following respectively 
the x and y-axis. M and N are the maximum number of 
samples. In addition, m and n index to the positions in the 
scan plane as: 

	 M2 > m > M2                           �1� 

	 N2 > n > N2                              �2� 

Let us now deduce the sampling step from the previous 
equations. We’ll show the development only for ky as the 
calculation is the same for kx. 

By replace in (6) T � 90°  for the far-field E plane, the 

maximum farfield cutoff VWWXYZ is obtained for 

k�[\] � _̂.                                        �3� . 

θ``[\] � sin	1 ak�bcdk1 e               �4� 

Thus 

θ``[\] � sin	1 a λ2Δ�e               �15� 

 



The curves Fig 6. illustrates the spatial sampling step as a 
function of the desired far-field cutoff angle respectively 
when there’s no aliasing. 

 

Fig. 6. Sampling step function of desired FF cutoff angle 

Fig 7. and 8. Shows respectively radiation pattern for the 
E and H plane of a 96 GHz horn antenna, computed using 
near-field data simulated in FEKO for various sampling steps 
computed. Plane size is about 256 λ  

 

Fig. 7. Radiation pattern - E Plane 

 

Fig. 8. Radiation pattern - H plane 

As mentioned earlier, equation (15) provides a theoretical 
result different from practical observations. Indeed, Fig 9 
illustrates the discrepancy compared to the case with a spatial 
sampling step of 0.5 lambda, as recommended by Nyquist. 
The error increases when the spatial sampling increase.  

 

Fig. 9. Difference between reference PWS for 0.5 lambda step and for 

greater steps – E PLANE 

Table 1. shows a comparison between calculated cutoff 
angle from (fig.6) and obtained angle from y axis Plane Wave 
Spectra in E plane with a maximum error of 0.1dB.  

TABLE I.  COMPARISON BETWEEN SUPPOSED CUTOFF 

ANGLE AND OBTAINED ONE 

NF Sampling 
step E PLANE 

Supposed  Obtained 

0.64 λ 51.37° 32° 

0.8 λ 38.68° 19° 

0.96 λ 31.88° 10° 

1 λ 30° 10° 

The difference between supposed and obtained azimuthal 
angles is due to aliasing after Fourier transform in NF to FF 
algorithm that depends on the crossing point between the 
central spectrum and the first spectra repeated to the left, and 
right of it. During aliasing, some of the secondary spectra 
overlap with the main spectrum, resulting in distortions of the 
reconstructed spectrum as shown in Fig 13. An assessment of 
the aliasing impact depending on the electric field distribution 
should be taking into account to avoid or control the error. 

 

Fig. 10. Illustation of aliasing error due to overlapping of offset spectra 
(C.NEWELL, 1988) 

III. IFT METHOD VALIDATION 

The IFT (Iterative Fourier Transform) method allows 
measurements to be made in amplitude only and then 
reconstructs the phase through an iterative process between 
the two measurement surfaces. 

Before starting this iterative process, it's crucial to choose 
an initial distribution of amplitude and phase across the 
antenna aperture. While amplitude is usually set to 1 across 
all points on the aperture special attention is needed when 
setting the initial phase, as it impacts whether the iterative 
algorithm successfully converges to a global solution and 
influences the convergence time. Three main methods were 
developed for IFT initial guess and presented in [4]. In our 
study, we use the “Basic Approach” for the initial guess that 
defines constant phase and ones for amplitudes across the 
antenna aperture. 

 



Fig. 11. theoretical (left) and reconstructed (right) magnitude using ITF  d1 

= 24λ d2 = 45λ  

To validate the implementation of the IFT, Fig.11 and 
Fig.12 show the magnitude and phase correctly reconstructed 
with only near field planes amplitude data taken from FEKO 
simulatio, with a maximum in the plane center of 26.3128 
dBV/m for theoretical plane and 26.2815 dBV/m for 
reconstructed one. 

 

Fig. 12. Theoretical phase (left) and reconstructed phase (right) using ITF  

Fig 13. depicts the relationship between the amplitude 
error and phase difference according to the electric field 
magnitude between theoretical and reconstructed amplitudes 
and phases. It is evident that the error is concentrated in 
regions with low field magnitude and allow to validate the 
measurement. These plots could be very interesting to define 
a criterion during the iterative process of the ITF. 

 

 

Fig. 13. Amplitude and phase difference between theoretical and 
reconstructed field  

The measured radiation pattern computed with a spatial 
sampling of 0.64 and compare to the simulated radiation 
pattern in E plane is showed in the Fig.14. The blue and red 
curves are the measurement at two distances plane 
measurement. In this plane, the aliasing error is present. This 
can be explained by uniform distribution of the field in the 
antenna aperture. In the H plane, Fig.15, there is no aliasing 
error because the electric filed distribution in this plane is a 
cosinus distribution. The difference between the simulated 
and the measurement is due to the measurement test bench 
sensitivity.      

 

Fig. 14. Measured (Blue and red) and simulated (green) radiation pattern in 
the E plane. 

 

Fig. 15. Measured (Blue) and simulated (red) radiation pattern in the E 

plane. 

IV. CONCLUSION AND PERSPECTIVES 

In this paper, the impact of the nearfield antenna 
measurement parameters has been studied with the definition 
of primary rules to optimize the measurement duration 
according to the angle range and the error. Depending on the 
expected antenna parameters, for example, 3dB beamwidth, 
first side lobes level, it’s possible to increase the spatial 
sampling to reduce the measurement duration 

The future work will be to test these different criteria from 
different antenna radiation pattern to validate them and 
propose technics like interpolation or non-uniform mesh of 
measurement points. 
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