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A B S T R A C T

Autosomal-dominant polycystic kidney disease is a prevalent genetic disorder characterized by the development
of renal cysts, leading to kidney enlargement and renal failure. Accurate measurement of total kidney
volume through polycystic kidney segmentation is crucial to assess disease severity, predict progression and
evaluate treatment effects. Traditional manual segmentation suffers from intra- and inter-expert variability,
prompting the exploration of automated approaches. In recent years, convolutional neural networks have
been employed for polycystic kidney segmentation from magnetic resonance images. However, the use of
Transformer-based models, which have shown remarkable performance in a wide range of computer vision
and medical image analysis tasks, remains unexplored in this area. With their self-attention mechanism,
Transformers excel in capturing global context information, which is crucial for accurate organ delin-
eations. In this paper, we evaluate and compare various convolutional-based, Transformers-based, and hybrid
convolutional/Transformers-based networks for polycystic kidney segmentation. Additionally, we propose a
dual-task learning scheme, where a common feature extractor is followed by per-kidney decoders, towards
better generalizability and efficiency. We extensively evaluate various architectures and learning schemes on a
heterogeneous magnetic resonance imaging dataset collected from 112 patients with polycystic kidney disease.
Our results highlight the effectiveness of Transformer-based models for polycystic kidney segmentation and
the relevancy of exploiting dual-task learning to improve segmentation accuracy and mitigate data scarcity
issues. A promising ability in accurately delineating polycystic kidneys is especially shown in the presence of
heterogeneous cyst distributions and adjacent cyst-containing organs. This work contribute to the advancement
of reliable delineation methods in nephrology, paving the way for a broad spectrum of clinical applications.
1. Introduction

Autosomal-dominant polycystic kidney disease (ADPKD) is a sys-
temic genetic disorder that is the most common hereditary renal dis-
ease, affecting around 12.5 million people worldwide (Chapman et al.,
2015). This pathology is characterized by the enlargement of kidneys
due to the progressive development of renal cysts. Fourth leading
cause of kidney failure, it requires dialysis or kidney transplantation
for the majority of patients (Cornec-Le Gall et al., 2019). ADPKD,
whose degree of phenotypic variability among affected individuals is
extremely broad, can also manifest with extra-renal symptoms such
as the presence of cysts in the liver, intra-cranial aneurysms or car-
diac valvular disease. ADPKD is most commonly due to mutations in

∗ Corresponding author at: IMT Atlantique, LaTIM UMR 1101, Technopôle Brest-Iroise, 29238 Brest, France.
E-mail address: pierre-henri.conze@imt-atlantique.fr (P.-H. Conze).

the PKD1 or PKD2 genes, respectively in 78% and 15% of disease
pedigrees (Cornec-Le Gall et al., 2019). Patients with PKD1 truncating
(PKD1t) or non-truncating (PKD1nt) mutations have more severe
disease with larger kidneys and a larger number of cysts compared to
patients with PKD2 mutations or without detected mutation (Cornec-Le
Gall et al., 2018). The continuous growth of cysts in ADPKD leads to
a progressive increase in total kidney volume (TKV). TKV is the most
important imaging biomarker for quantifying the severity of ADPKD. As
recognized by the US Food and Drug Administration and the European
Medicine Agency, it is a prognostic enrichment biomarker in patients
with ADPKD that predicts future renal function decline (Higashihara
895-6111/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access ar
c-nd/4.0/).
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et al., 2014). In early disease, additional value over renal function mea-
surements can stay within normal ranges for a prolonged period of time
due to hyper-filtration of remaining nephrons (Grantham et al., 2006).
TKV is used in clinical care to assess the risk of individual disease
progression and select patients with rapid progression for Tolvaptan
treatment or clinical trials (van Gastel et al., 2019). TKV is also of-
ten employed as primary or secondary end-point to assess treatment
effects (van Gastel et al., 2019).

Reaching TKV measurements requires to perform polycystic kidney
segmentation which is usually done manually. Due to its superior soft
tissue contrast, accuracy, and non-ionizing radiation, magnetic reso-
nance (MR) imaging is the imaging modality of choice in this context.
However, manual delineation is prone to a strong intra- and inter-
expert variability due to severe alterations in the morphology, non-
uniform cyst formation as well as the presence of adjacent liver cysts.
As a consequence, several methods have been proposed to perform
TKV computation in a simple manner through ellipsoid volume equa-
tions (Higashihara et al., 2015). To provide a more reliable estimation
of TKV, particularly in the context of clinical trials, various image pro-
cessing techniques have been proposed including random walks (Daum
et al., 2007) or seeded region-growing (Mignani et al., 2011). However,
these methods generally tend to produce sub-optimal results and may
require manual adjustments. Alternative model-based approaches such
as level set (Kim et al., 2016) or active contours (Racimora et al.,
2010) can enable the isolation of the kidney areas from the surround-
ing abdominal anatomy. These models can be optimized by adjusting
their parameters or iteratively obtained through a differential equation
which is guided by the image properties and expected kidney shape.
Nevertheless, a major drawback of such approaches is the need for prior
knowledge (e.g. shape, texture). Therefore, model-based approaches
may not be flexible enough to adapt to variations in MR scans. More-
over, in ADPKD, cysts may strongly vary in shape, size, and texture,
making it difficult to define a single mathematical model that encom-
passes all cysts. This motivated the development of more sophisticated,
reproducible, and operator-independent delineation strategies.

With the rise of deep learning which enables to design segmentation
pipelines without defining hand-crafted features, the polycystic kidney
segmentation and derived TKV computation tasks have been gradually
automatized and improved using convolutional neural networks (CNN).
While extensive research has been conducted using deep neural net-
works for tumoral kidney segmentation from computed tomography
(CT) scans (Heller et al., 2021) and apart from the study of healthy
kidney delineation for MR images (Kavur et al., 2021; Conze et al.,
2021), the use of MR imaging remains relatively limited, especially
for ADPDK patients. In particular, Kline et al. developed in Kline et al.
(2017) a U-shaped architecture (Ronneberger et al., 2015) comprising
five downsampling and upsampling blocks, along with skip connec-
tions. Subsequently, 11 instances of this architecture were employed
to create an artificial multi-observer deep neural network, which was
trained on distinct data subsets for the automated segmentation of
polycystic kidneys from MR scans. The final segmentation was obtained
by simulating a multi-observer majority voting scheme. However, de-
spite the promising performance, the computational complexity and
time required for the segmentation process are high, which may limit
the feasibility in practical applications. Bevilacqua et al. conducted
in Bevilacqua et al. (2019) a comparison between the 2D SegNet
segmentation network (Badrinarayanan et al., 2017) and a two-step
classification approach involving region of interest (ROI) detection
using R-CNN, followed by semantic segmentation of the extracted ROIs.
Interestingly, the authors found that performing segmentation on the
entire MR volume was more reliable than on extracted ROIs. More
recently, Guo et al. presented in Guo et al. (2022) a cascaded CNN
including two 2D UNet models based on the ResNet34 backbone. Both
networks were trained independently with three slices as inputs and
the ground truth as additional input for the second network. During
2

inference, delineation masks for all slices from a given subject were
predicted in a sequential manner. Nevertheless, the manual selection
of subjects for training was shown to introduce variability in the
delineation results. Furthermore, the algorithm failed to discriminate
renal parenchyma from small renal cysts. In line with previous works,
Goel et al. developed in Goel et al. (2022) a deep architecture extending
UNet with EfficientNet (Tan and Le, 2019) as encoder. Despite accurate
kidney contours, notable errors were reported in the following circum-
stances: fluid-filled stomach, distended urinary bladder, hemorrhagic
renal cysts and hepatic cysts in the vicinity of the right kidney. In
contrast to prior studies, Raj et al. introduced in Raj et al. (2022)
novel improvements to the UNet architecture (Ronneberger et al.,
2015) for image segmentation. Specifically, they incorporated three
attention mechanisms into the UNet framework: convolutional block
attention, squeeze and excitation attention, and channel attention.
These mechanisms aimed at enhancing the ability to focus on salient
features, thereby improving the accuracy of the segmentation task.
Additionally, the authors implemented a cosine loss function, which
has been shown to be effective for training deep models on small
datasets. To further enhance the generalizability of their network, they
applied a sharpness-aware minimization technique, which regularizes
the network by penalizing predictions that are too sharp or too blurred.
However, the potential heterogeneous distributions of cysts through-
out the abdomen still poses challenges in accurately distinguishing
polycystic kidneys from surrounding organs. As a result, models may
occasionally over-segment the kidneys by erroneously delineating parts
of other abdominal structures that also contain cysts, such as the liver.

Polycystic kidney delineation from MR data has predominantly
relied on CNN architectures so far (Zöllner et al., 2021). However,
recent developments in medical image analysis have demonstrated the
potential of Transformer-based models, which have shown superior
performance in various computer vision applications (Dosovitskiy et al.,
2020; Carion et al., 2020; Touvron et al., 2021). Vision Transformer
(ViT) models have especially gained significant attention in medical
image analysis tasks, including medical image segmentation, with an
exponential growth of related publications (Jun et al., 2021; Shamshad
et al., 2022). Unlike CNNs, Transformers do not require any convolu-
tion or pooling operations but instead rely on self-attention mechanisms
to model the relationships between different image regions. This ap-
proach has shown to be particularly effective for capturing global
context information in medical images, which can be critical to reach
sufficiently efficient delineations that meet clinical requirements. Re-
cently, novel Transformer-based models such as UNETR (Hatamizadeh
et al., 2022b) and Swin UNETR (Hatamizadeh et al., 2022a) have been
proposed and have shown promising semantic segmentation results.
Both Swin UNETR and UNETR maintain the encoder–decoder UNet
architecture but differ in the encoder component. Specifically, UNETR
leverages a 3D ViT as encoder which reshapes the last feature map
and upsamples it before using CNN upsampling with multi-level feature
aggregation to generate segmentation outputs. Despite delivering com-
petitive results, the vanilla ViT suffers from shortcomings when making
dense predictions due to the absence of prior information from images.
Hierarchical ViT models such as Swin UNETR (Hatamizadeh et al.,
2022a) address this issue by injecting more-specific inductive biases
derived from CNN-like features into the Transformers. Thus, Swin UN-
ETR computes local attention through shifted windows, starting with
small-sized patches and progressively merging neighboring patches
in the subsequent layers. Although Transformer-based models have
gained significant interest and have shown promising results in various
applications (Cirrincione et al., 2023; Dhamija et al., 2023; Andrade-
Miranda et al., 2023), their use in polycystic kidney segmentation from
MR images has not been investigated to our knowledge.

In addition to model architecture, multi-task learning has also be-
come increasingly important in medical image analysis (Zhao et al.,
2022; Conze et al., 2023). The integration of multi-task learning offers
several advantages. First, it avoids redundant learning of common-

shared features for different tasks, leading to a substantial reduction
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in overall memory consumption. Second, it has the capacity to learn
more generalized features by averaging inherent noise patterns among
various tasks. Third, it can prioritize crucial features that are usually
challenging to distinguish within a single-task framework. Lastly, it
introduces inductive biases to mitigate the overfitting problem, proving
superior to conventional regularization methods. Multi-task learning
has been used for automatic breast mass detection (Yan et al., 2021)
through a unified Siamese network leveraging craniocaudal (CC) and
mediolateral-oblique (MLO) views. This network combines patch-level
mass/non-mass classification with dual-view mass matching to fully
exploit multi-view information. In prostate cancer, Duran et al. (2022)
proposed an all-in-one multi-class network. Using a parallel and cas-
caded approach for multi-task learning, it encodes MR information
into a latent space. Two decoding branches follow: the first for binary
prostate segmentation and the second using the segmented prostate as
a prior for lesion detection and grading through an attention mech-
anism. The prostate decoder’s output serves as a soft attention map
for the lesion decoder, enhancing its performance. A multi-task, multi-
domain bone MR segmentation method was proposed in Boutillon
et al. (2022) to address the scarcity of pediatric imaging datasets
by simultaneously considering multiple intensity domains and seg-
mentation tasks, leveraging shared features across imaging datasets.
To enhance generalization, a transfer learning scheme from natural
image classification was applied. Additionally, a multi-scale contrastive
regularization was used to encourage domain-specific clusters in shared
representations, and multi-joint anatomical priors were incorporated to
ensure anatomically consistent predictions. Despite the significance of
multi-task learning in medical imaging, its potential benefits remain
largely unexplored in the context of polycystic kidney segmentation,
creating a notable gap in current studies. Integrating multi-task learn-
ing has the potential to improve the model’s generalizability and reduce
overfitting. Furthermore, joint training of multiple tasks can mitigate
issues related to data scarcity, while shared network parameters allow
models to acquire a more efficient and compact representation of the
data, especially when tasks are inter-related or share commonalities.

With the aim of designing the best possible polycystic kidney de-
lineation system from MR scans, our contributions are three folds.
First, this paper aims at evaluating and comparing various purely
CNN-based, Transformers-based, and hybrid CNN/Transformers-based
networks in the context of polycystic kidney segmentation. Second, we
propose to extend these backbones with a simple yet effective dual-
task learning scheme involving a common feature extractor followed
by per-kidney decoders. Third, a comprehensive evaluation is provided
on a heterogeneous MR imaging dataset collected from 111 patients
with ADPDK. The structure of this paper is as follows. In Section 2,
we introduce three types of networks (i.e. CNN-based, Transformers-
based, and hybrid CNN/Transformers-based) and extend them through
dual-task learning. In Section 3, we provide a detailed description of
the implementation and evaluation strategy. The obtained results are
presented and discussed in Section 4. Finally, Section 5 summarizes
the key findings of our study and provides insights into future research
directions.

2. Method

2.1. Problem formulation

Let 𝐼𝐼𝐼 ∈ R𝐻×𝑊 ×𝐷 denote a input 3D MR volume with dimensions 𝐻×
×𝐷. Each 2D slice 𝑥𝑥𝑥 ∈ R𝐻×𝑊 from 𝐼𝐼𝐼 is associated with a ground truth

nnotation mask 𝑦𝑦𝑦 ∈ [0, 1]𝐻×𝑊 ×𝐶 where 𝐶 is the number of classes. The
D segmentation problem can be formulated as finding the function
∶ 𝑥𝑥𝑥 → 𝜙(𝑥𝑥𝑥;𝛩𝛩𝛩) = 𝑦̂𝑦𝑦 with weights 𝛩𝛩𝛩 that produce the best mapping

between the slice 𝑥𝑥𝑥 and the label map 𝑦𝑦𝑦 from 𝑁 training samples,
by optimizing a loss function 𝜙(𝑦𝑦𝑦, 𝑦̂𝑦𝑦). It is now common practice to
formulate the 𝜙 function as a U-shaped encoder–decoder network. The
encoder, denoted by 𝑓 (⋅), takes the input 𝑥𝑥𝑥 and compresses it into a
3

hidden representation ℎℎℎ = 𝑓 (𝑥𝑥𝑥). The decoder, denoted by 𝑔(⋅), takes the
compressed representation ℎℎℎ as input and generates the final predicted
segmentation map, 𝑦̂𝑦𝑦 = 𝑔(ℎℎℎ).

In multi-task segmentation, each 𝑥𝑥𝑥 sample is associated with a
et of masks 𝑌𝑌𝑌 = {𝑦𝑦𝑦𝑖}, where 𝑦𝑦𝑦𝑖 is the ground truth delineation for
he 𝑖th task. A common approach in this context is to use a global
ncoder to extract features from the input image for all tasks, followed
y individual decoder branches (i.e. one decoder for each task). This
nables the network to share a common feature extraction process
hile also being able to learn task-specific features. The global encoder
(⋅) extracts features from the input image, with the resulting hidden
epresentation ℎℎℎ serving as input for each of the task-specific decoders.
he task-specific decoder for the 𝑖th task, denoted as 𝑔𝑖(⋅), is responsible
or generating the segmentation map 𝑦̂𝑦𝑦𝑖 = 𝑔𝑖(ℎℎℎ). Finally, the function
(𝑥𝑥𝑥;𝛩𝛩𝛩) that produces the best mapping between 𝑥𝑥𝑥 and 𝑌𝑌𝑌 is obtained
y optimizing the following joint loss function:

𝜙(𝑌𝑌𝑌 ,𝑌𝑌𝑌 ) =
𝐾
∑

𝑖=1
𝜆𝑖𝜙𝑖(𝑦𝑦𝑦𝑖, 𝑦̂𝑦𝑦𝑖) (1)

here 𝐾 is the number of segmentation tasks, 𝑌𝑌𝑌 the set of 𝑘 predicted
egmentation maps, 𝜙𝑖(𝑦𝑦𝑦𝑖, 𝑦𝑦𝑦𝑖) the individual loss function for the 𝑖th
ask and 𝜆𝑖 an hyper-parameter that controls the relative importance
f the 𝑖th task with respect to the remaining ones, with ∑𝐾

𝑖=1 𝜆𝑖 = 1.

.2. Learning schemes

Segmenting both left and right kidneys for patients with ADPDK
s challenging because each of them are present in a different spatial
ontext, close to different anatomical structures. For instance, the right
idney is in interaction with the liver whereas the left kidney is in
he vicinity of the spleen. In addition, the spatial distribution and
eterogeneity of cysts can greatly vary from one kidney to another. In
his context, three learning schemes can be considered (Fig. 1) towards
olycystic kidney segmentation with deep learning:

• both organs (BO): the most common configuration consists in
exploiting a single deep network segmenting both left and right
kidneys, without any distinction between them. Therefore, the
network made of one single encoder 𝑓𝙱𝙺(⋅) followed by one single
decoder 𝑔𝙱𝙺(⋅) performs a binary segmentation task, distinguishing
between renal (including cysts) and non-renal tissues, whatever
the laterality.

• independent (IND): this strategy involves two separate encoder–
decoder networks : 𝑓𝙻𝙺(⋅) followed by 𝑔𝙻𝙺(⋅) and 𝑓𝚁𝙺(⋅) followed
by 𝑔𝚁𝙺(⋅). Each of them performs a binary segmentation task
without any weight sharing. One aims at delineating the left
kidney whereas the second segment the right kidney.

• dual-task (DT): this multi-task scheme makes use of a single
network comprising one single encoder 𝑓𝙻𝙺+𝚁𝙺(⋅) and two task-
specific decoders 𝑔𝙻𝙺(⋅) and 𝑔𝚁𝙺(⋅), one for each kidney. Features
arising from the encoder are common to both task.

In IND and DT configurations, both results are then fused through a
imple union operator to get a full renal cartography, comprising both
eft and right kidneys.

.3. Network architectures

In this work, we explore the use of different deep models for
olycystic kidney segmentation: CNN-based (v19pUNet (Conze et al.,
020)), hybrid CNN/Transformer-based (TransUNet (Chen et al., 2021),
edT (Valanarasu et al., 2021), SwinUNetV2 (Liu et al., 2022)) and
ransformer-based (Segmenter (Strudel et al., 2021)) . Each architec-
ure, explained in detail below, is employed in a single- (BO, IND) and
ual-task (DT) learning fashion.
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Fig. 1. BO, IND and DT learning schemes for kidney segmentation in patients with ADPKD. For sake of clarity, skip-connections are not displayed. Refer to text for further details.
Fig. 2. v19pUNet (Conze et al., 2021), CNN-based encoder–decoder architecture.
v19pUNet. The v19pUNet model is a CNN-based architecture success-
fully applied to the CHAOS challenge (Conze et al., 2020; Kavur et al.,
2021), built upon the standard UNet (Ronneberger et al., 2015) and
incorporating a VGG19 backbone (Simonyan and Zisserman, 2014) as
encoder (Fig. 2). Compared to UNet, the first convolutional layer of
v19UNet generates 64 channels instead of 32, and the channel count
doubles after each max pooling operation, until it reaches 512 (256
only for UNet). Additionally, after the second max pooling, v19pUNet
has four consecutive layers per pattern, unlike UNet’s two consecutive
layers as used in Ronneberger et al. (2015). This VGG19-like encoder
branch is pre-trained on ImageNet (Russakovsky et al., 2015) to benefit
from 1 million non-medical data collected for object recognition pur-
poses. While VGG19 includes fully-connected and softmax top layers,
these are omitted in v19pUNet. Instead, the last three convolutional
layers of VGG-19 are used as a central part to separate both contracting
and expanding paths. To get a symmetric architecture, the decoder
branch is extended in the same way as the encoder by adding four
convolutional layers and more feature channels. At the end, a final
1 × 1 convolutional layer with a sigmoid activation achieves pixel-wise
segmentation at the original resolution.

TransUNet. The TransUNet (Chen et al., 2021) architecture consists of
a hybrid CNN-ViT encoder (Fig. 3) that was designed to overcome the
limitations of traditional CNN-based models which may struggle with
capturing global context information, by incorporating the powerful
self-attention mechanism involved in ViT models (Dosovitskiy et al.,
2020). The 3D CNN feature extractor captures the local features that
are later fed into the Transformer-based layers to capture global feature
4

representation by applying several multi-head self-attention (MHSA)
blocks. The self-attention mechanism used in Transformers allows the
network to attend to relevant features across the entire image, thus
capturing long-range dependencies and global context information. By
combining this with the local feature extraction of the CNN, TransUNet
is able to effectively capture both local and global context information
and to produce highly accurate segmentation masks. Finally, the output
of the encoder network is then passed to a decoder consisting of a series
of upsampling and convolutional layers that progressively increase the
spatial resolution of the features and produce the final delineation
masks.

MedT. The MedT architecture is constructed using a gated axial Trans-
former layer, which effectively addresses the computational complexity
associated with computing the self-attention mechanism (Valanarasu
et al., 2021). Furthermore, the incorporation of a gating mechanism
enables precise control over the impact of the learned relative posi-
tional encodings on encoding non-local context. If a relative positional
encoding is accurately learned, the gating mechanism assigns it a
higher weight. MedT achieves image segmentation through the use of
two branches (Fig. 4): a global branch that operates on the original
resolution of the image, and a local branch that operates on patches of
the image. In the local branch, the image is divided into 16 patches of
size 𝐻∕4 × 𝑊 ∕4 of the original image. Each patch is then processed
through the network, and the output feature maps are re-sampled
based on their location to obtain the output feature maps. The output
feature maps from both branches are combined and passed through a
1 × 1 convolution layer to produce the final segmentation mask. This
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Fig. 3. TransUNet (Chen et al., 2021), hybrid CNN-Transformer encoder–decoder architecture.
Fig. 4. MedT (Valanarasu et al., 2021), hybrid CNN-Transformer encoder–decoder architecture.
approach enhances performance as the global branch focuses on high-
level information while the local branch concentrates on capturing finer
details.

SwinUNetV2. SwinUNetV2 is a UNet-like shape architecture with a
SwinV2 Transformer-based encoder and a CNN-based decoder (Liu
et al., 2022). Unlike ViT Transformer, Swin Transformers introduce
a sliding window strategy to only compute the attention within local
windows, thus reducing the computational cost of global multi-head
self-attention. Swin Transformers gradually decrease the initial number
of tokens by implementing patch merging layers as the network gets
deeper. This attribute delivers a hierarchical representation similar
to the way CNN behaves. In practice, Swin Transformer consists of
four stages and performs 2 × 2 spatial downsampling in the patch
merging layer of each stage (Fig. 5). The merging layer concatenates
the features of each group of 2 × 2 neighboring patches and applies
a linear transformation to reduce the number of concatenated features
to half their dimension. The SwinV2 Transformer proposes three main
modifications to better scale up model capacity and window resolution.
First, a res-post-norm configuration is suggested to replace the previous
pre-norm configuration. Second, a scaled cosine attention mechanism
is proposed to replace the original dot product attention. Finally, a
5

log-spaced continuous relative position bias approach is introduced
to replace the previous parameterized approach. These adaptations
make it easier for the model to scale up capacity and improve its
transferability across different resolutions. Specifically, the res-post-
norm configuration and the scaled cosine attention mechanism enhance
the model’s ability to handle larger input sizes and more complex tasks,
while the log-spaced continuous relative position bias approach ensures
that the model can effectively capture long-range dependencies across
spatial locations.

Segmenter. The Segmenter is an encoder–decoder architecture based
on a Transformer (Fig. 6) that is designed to map a sequence of
patch embeddings to pixel-level class annotations (Strudel et al., 2021).
The encoder follows the design proposed in the original ViT ap-
proach (Dosovitskiy et al., 2020). In this design, the input is reshaped
into a sequence of flattened, uniform, and non-overlapping patches.
The number of patches obtained becomes the effective input length of
the Transformer. To project the patches into a 𝑑-dimensional embed-
ding space, a linear layer is used, and a 1D learnable patch position
embedding is added to retain positional information. The projected
embeddings are then passed into the Transformer-based layers, which
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Fig. 5. SwinUNetV2 (Liu et al., 2022), hybrid CNN-Transformer encoder–decoder architecture.
Fig. 6. Segmenter (Strudel et al., 2021), Transformer-based encoder–decoder architecture.
include ℎ multi-head attention and multi-layer perceptron (MLP) sub-
layers. The resulting patch embeddings are combined with an ad-
ditional learnable class embedding in the Transformer decoder. The
decoder generates the final mask by calculating the scalar product
between the L2-normalized final output patches and the learnable class
embedding. Each patch then represents the probability of belonging to
a specific class. The resulting mask sequences are then reshaped and
linearly upsampled to the original image size. To get the pixel-wise
class scores forming the final segmentation, a softmax is applied on the
class dimension, followed by a normalization layer.

3. Experiments

3.1. Imaging dataset

Data were collected from the Genkyst1 study, a regional cohort in-
volving nephrologists working in private and public nephrology centers
in the West of France. It registered imaging, clinical and genetic data

1 https://clinicaltrials.gov/ct2/show/NCT02887729
6

of all consenting patients with ADPKD from this area. An institutional
review board approval was obtained for this study. Informed consents
were obtained for all subjects.

In practice, a set of 118 MR images arising from 112 patients with
ADPKD was considered. The MR images were coronal single shot fast
spin echo T2 sequences, acquired in various centers and with various
devices. Among the 118 T2 images, 34 were identified as atypical
because of: 1 - artifacts (e.g. noise), 2 - unknown genetic mutation
different from PKD1t, PKD1nt, or PKD2 , or 3 - unknown genetic
mutation (approximately 5% of genetically unresolved patients). These
images were therefore used for training purposes only. Among the 84
remaining images, 10 images were identified from patients for which
2 examinations were available. Regarding genetic class distribution
(Fig. 7a), 42% of patients had a PKD1nt mutation, 52% for PKD1t, 9%
for PKD2 and 15% for other or unknown genetic mutations. The Mayo
class distribution, display in Fig. 7b, was as follows: 6% of patients for
1A, 21% for 1B, 54% for 1C, 22% for 1D, 10% for 1E, 2% for 2. Such
information was missing for 3% of patients. The average age of patient
was 47.1 years old in average, with a standard deviation of 14.2. 41.5%
(resp. 58.5%) of patients were males (resp. females). The employed
dataset covered a large range of various kidney volumetries (Fig. 8),
from around 200 to > 2000 mL per kidney.

https://clinicaltrials.gov/ct2/show/NCT02887729
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Fig. 7. Dataset visualization. Class distribution with (a) non-truncating (PKD1nt), truncating (PKD1t) PKD1, PKD2 and other mutations, (b) 1A, 1B, 1C, 1D, 1E and 2 Mayo
classes.
Fig. 8. Dataset visualization. Left kidney volume with respect to right kidney volume across the whole dataset with (a) truncating and non-truncating PKD1 (respectively PKD1t
nd PKD1nt), PKD2 and other gene mutations, (b) 1A, 1B, 1C, 1D, 1E and 2 Mayo classes.
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The images had a reconstructed matrix size of 512 × Y × 512, with
large enough to cover the full extent of both kidneys. Image voxel

izes were most commonly of the order of 0.8 mm coronal in-plane with
slice thickness of approximately 4 mm. For training and evaluation

urposes, left and right kidneys were manually outlined by clinical
xperts using the ITKSnap2 software. In practice, two clinical research
ssociates (from the clinical research unit attached to the nephrology
epartment of University Hospital of Brest, France) performed the
anual kidney delineation task. Subsequently, a senior nephrologist

with 15 years of experience) carefully reviewed and validated these
nnotations to verify their precision and quality.

.2. Implementation details

The different networks (v19pUNet, TransUNet, MedT, SwinUNetV2,
egmenter) and learning schemes (BO, IND, DT) were implemented in
D (i.e. by considering coronal slices) using Pytorch. Experiments were
erformed using a single NVIDIA 1080Ti GPU, with 11 Gb of RAM.
eep networks were trained with data augmentation (i.e. random affine

ransforms), 200 epochs, an Adam optimizer, a fuzzy Dice score as loss
unction, a learning rate of 10−3 for MedT and 10−5 for other architec-
ures. For BO and IND learning schemes, the batch size was set to 16, 16,

2 http://www.itksnap.org/
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a

5, 16 and 4 images for v19pUNet, TransUNet, MedT, SwinUNetV2 and
Segmenter respectively. 8, 8, 4, 8 and 3 were respectively used for DT
to avoid memory issues. 2D coronal slices were reshaped to 256 × 256.

3.3. Segmentation assessment

Each configuration (i.e, a given network architecture in one given
learning scheme) was performed in a 5-fold cross-validation manner.
Each fold employed 88 (or 89 depending on the fold) examinations for
training, 12 for validation and 17 (or 18) for test, hence performing a
75%, 10% and 15% split. The splitting process between training, vali-
dation, and test sets was guided by the patient independence criterion
such that two examinations from the same patient were assigned to
only one of the subsets.

To evaluate the performance of the different deep models, we
compared ground truth 𝐺𝑇 and prediction 𝑃 masks, respectively de-
fined by the surface 𝑆𝐺𝑇 and 𝑆𝑃 , through Dice similarity coeffi-
cient (DSC defined as 2|𝐺𝑇∩𝑃 |

|𝐺𝑇 |+|𝑃 | ), absolute volume difference (AVD ex-
pressed as ||𝐺𝑇 |−|𝑃 ||

|𝐺𝑇 | ) as well as average symmetric surface (𝙰𝚂𝚂𝙳 =
1

|𝑆𝐺𝑇 |+|𝑆𝑃 |
(
∑

𝑠∈𝑆𝐺𝑇
𝑑(𝑠, 𝑆𝑃 ) +

∑

𝑠∈𝑆𝑃
𝑑(𝑠, 𝑆𝐺𝑇 )) where 𝑑(𝑠, 𝑆𝑘) = min𝑠𝑘∈𝑆𝑘

𝑠 − 𝑠𝑘‖) and Haussdorf (𝙷𝙳 = max(ℎ(𝐺𝑇 , 𝑃 ), ℎ(𝑃 ,𝐺𝑇 )) with ℎ(𝐴,𝐵) =
ax𝑎∈𝐴 min𝑏∈𝐵 ‖𝑎 − 𝑏‖) distances. Final metric scores were averaged

mong the 5 folds to provide a reliable performance trend.

http://www.itksnap.org/
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Table 1
Quantitative assessment of automatic polycystic kidney segmentation. Comparison between v19pUNet (Conze et al., 2020), TransUNet (Chen
et al., 2021), MedT (Valanarasu et al., 2021), Segmenter (Strudel et al., 2021) and SwinUNetV2 (Liu et al., 2022) architectures for BO, IND
and DT strategies. Evaluation is provided for both kidneys (BK) using DSC, AVD, ASSD and HD metrics. Bold results indicate the best scores
among all architectures and learning schemes while underline results indicate the best results for a given network (among BO, IND and DT
strategies).

BK

DSC AVD ASSD HD

v19pUNet (Conze et al., 2020)
BO 92.2 ± 3.62 0.12 ± 0.10 1.90 ± 1.46 34.3 ± 18.8
IND 92.4 ± 3.85 0.11 ± 0.10 1.76 ± 1.74 32.9 ± 20.7
DT 93.2 ± 2.78 0.09 ± 0.06 1.44 ± 1.13 28.6 ± 18.1

TransUNet (Chen et al., 2021)
BO 92.9 ± 2.92 0.09 ± 0.06 1.50 ± 1.34 28.5 ± 18.6
IND 92.8 ± 3.07 0.10 ± 0.06 1.54 ± 1.36 29.0 ± 20.2
DT 93.2 ± 2.75 0.09 ± 0.05 1.42 ± 1.24 27.8 ± 18.3

MedT (Valanarasu et al., 2021)
BO 91.8 ± 4.26 0.09 ± 0.06 1.86 ± 1.62 31.2 ± 18.8
IND 91.6 ± 4.12 0.08 ± 0.04 1.96 ± 1.51 33.6 ± 20.0
DT 92.4 ± 3.94 0.08 ± 0.04 1.66 ± 1.41 29.4 ± 17.1

Segmenter (Strudel et al., 2021)
BO 92.0 ± 3.86 0.08 ± 0.06 1.82 ± 1.64 31.2 ± 19.2
IND 91.6 ± 4.80 0.09 ± 0.06 1.89 ± 1.73 31.8 ± 19.5
DT 92.1 ± 4.22 0.09 ± 0.06 1.84 ± 1.74 32.5 ± 21.4

SwinUNetV2 (Liu et al., 2022)
BO 93.1 ± 2.87 0.10 ± 0.06 1.55 ± 1.38 32.2 ± 21.3
IND 92.9 ± 3.14 0.10 ± 0.07 1.58 ± 1.37 31.0 ± 18.9
DT 93.4 ± 2.76 0.09 ± 0.06 1.35 ± 1.22 26.8 ± 17.2
Table 2
Statistical analysis in DSC for both kidneys (BK) between DT and BO/IND strategies using v19pUNet (Conze et al., 2020), TransUNet (Chen et al., 2021), MedT (Valanarasu et al.,
021), Segmenter (Strudel et al., 2021) and SwinUNetV2 (Liu et al., 2022) through Student’s paired t-tests. Bold 𝑝-values (<0.05) highlight statistically significant results.

v19pUNet (Conze et al., 2020) TransUNet (Chen et al., 2021) MedT (Valanarasu et al., 2021) Segmenter (Strudel et al., 2021) SwinUNetV2 (Liu et al., 2022)

DT

BO 1.19 × 10−𝟕 3.47 × 10−𝟓 3.02 × 10−𝟒 3.07 × 10−1 2.19 × 10−𝟐
IND 1.78 × 10−𝟔 1.44 × 10−𝟕 9.31 × 10−𝟖 4.44 × 10−𝟓 5.96 × 10−𝟒
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4. Results and discussion

Results are reported and discussed by taking into consideration
the segmentation performance for both kidneys (BK) as well as for
individual left (LK) and right (RK) kidneys through DSC, AVD, ASSD
and HD metrics (Section 3.3). In particular, the assessment focuses
on both standard (BO, IND) versus dual-task (DT) learning schemes
(Section 4.1), while also comparing the performance of convolutional
(v19pUNet) versus hybrid CNN/Transformer-based (TransUNet, MedT,
SwinUNetV2) and Transformer-based (Segmenter) architectures (Sec-
tion 4.2). The performance achieved for each architecture/learning
scheme couple at the level of both kidneys (BK) is summarized in
Table 1 whereas Table 3 provides a more detailed analysis by studying
the delineation accuracy for each kidney (LK, RK). This analysis is
supplemented by statistical analyses (Table 2 and 4) through Student
paired t-tests with bilateral distribution, Bland-Altman and concor-
dance curves (Fig. 9, 10 and 12) as well as qualitative results (Fig. 11,
13) to provide a thorough evaluation of the models’ performance
and facilitates informed decision-making dealing with their potential
integration into clinical routine.

4.1. Standard versus dual-task learning schemes

When studying the delineation performance for both kidneys simul-
taneously (BK), it appears that the models and their respective learning
scheme range from an average DSC of 91.6% to 93.4%. The worst
performance is observed when using MedT and Segmenter architectures
trained through the IND strategy, whereas the best performance is
achieved with the SwinUNetV2 model employing the DT configuration.
Notably, whatever the used network, the employment of the multi-task
learning scheme (i.e. DT) consistently yields the highest overall DSC
performance with respect to BO and IND strategies. This observation
remains consistent across the other metrics (AVD, ASSD and HD) with
the exception of the Segmenter architecture where AVD, ASSD and HD
metric values are slightly better in BO configuration (e.g. 1.82 mm
8

m

versus 1.84 mm in ASSD). Except when comparing DT and BO strate-
gies for Segmenter, above conclusions (DT > BO and DT > IND) are
further supported by the statistical analysis provided in Table 2 through
Student’s paired t-tests.

Two main findings arise from Table 1. First, task-specific decoders
are better able to process features from a single joint encoder 𝑓𝙻𝙺+𝚁𝙺(⋅)
(DT) than from kidney-specific encoders (IND), i.e. 𝑓𝙻𝙺(⋅) and 𝑓𝚁𝙺(⋅).
ncoding features simultaneously extracted from both kidneys hence
mproves the per-kidney delineation tasks, making DSC scores increas-
ng from 92.4% (resp. 91.6%) to 93.2% (resp. 92.4%) and ASSD values
ecreasing from 1.76 mm (resp. 1.96 mm) to 1.44 mm (resp. 1.66 mm)
or v19pUNet (resp. MedT). Second, exploiting decoding branches,
.e. 𝑔𝙻𝙺(⋅) and 𝑔𝚁𝙺(⋅), respectively targeting left and right kidneys (DT),
rovides better results than employing a single joint decoder 𝑔𝙱𝙺(⋅)
BO). Although more computationally costly than BO, the DT scheme
llows the reconstruction task to be further specialized. Thus, the
SC (resp. HD) metric is increased (resp. reduced) from 92.2% (resp.
4.3 mm) to 93.2% (resp. 28.6 mm) for v19pUNet and from 93.1% (resp.
2.2 mm) to 93.4% (resp. 26.8 mm) for SwinUNetV2. It is noteworthy
o mention that the BO strategy reaches a slight improvement over
he IND learning scheme for all models, except for v19pUNet where
he IND demonstrates superior performance. Finally, models that in-
lude Transformer blocks (e.g. TransUNet, MedT, Segmenter, Swin-
NetV2) demonstrate a closer performance across learning schemes

han v19pUNet, particularly when the DSC metric is considered.
The same conclusions arise when studying the accuracy of contours

eached for each kidney (Table 3). Note that for the BO learning
cheme, kidney-specific results were obtained by identifying the two
argest connected components and classifying them (left or right kid-
ey) with respect to their minimal position in 𝑋-axis. When focusing
xclusively on the left kidney (LK), the metric values demonstrate a
ange spanning from 92.6% to 94.1% for DSC, 0.10% to 0.07% for
VD, 1.70 mm to 1.14 mm for ASSD, and 26.6 mm to 20.2 mm for HD.
he DT strategy consistently delivers the best performance across all
odels and metrics. However, the magnitude of the difference varies
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Fig. 9. Bland-Altman analysis of the percent difference of TKV measurements obtained by v19pUNet (Conze et al., 2020), TransUNet (Chen et al., 2021), MedT (Valanarasu et al.,
2021) and SwinUNetV2 (Liu et al., 2022) architectures for BO, IND and DT strategies with respect to reference TKV estimated from ground truth annotations.
Table 3
Quantitative assessment of automatic polycystic kidney segmentation. Comparison between v19pUNet (Conze et al., 2020), TransUNet (Chen et al., 2021), MedT (Valanarasu et al.,
2021), Segmenter (Strudel et al., 2021) and SwinUNetV2 (Liu et al., 2022) architectures for BO, IND and DT strategies. Evaluation is provided for left (LK) and right (RK) kidneys
using DSC, AVD, ASSD and HD metrics. Bold results indicate the best scores among all architectures and learning schemes while underline results indicate the best results for a
given network (among BO, IND and DT strategies).

LK RK

DSC AVD ASSD HD DSC AVD ASSD HD

v19pUNet (Conze et al., 2020)
BO 93.4 ± 3.01 0.10 ± 0.08 1.36 ± 0.76 22.7 ± 10.5 91.2 ± 5.88 0.14 ± 0.13 2.02 ± 2.03 28.6 ± 17.9
IND 92.8 ± 4.23 0.11 ± 0.13 1.70 ± 2.11 26.6 ± 19.4 91.7 ± 5.41 0.13 ± 0.13 1.79 ± 1.77 27.7 ± 18.7
DT 93.9 ± 2.50 0.08 ± 0.06 1.24 ± 1.02 22.4 ± 13.6 92.2 ± 4.91 0.12 ± 0.13 1.61 ± 1.83 24.6 ± 16.7

TransUNet (Chen et al., 2021)
BO 93.6 ± 2.09 0.08 ± 0.05 1.21 ± 0.52 20.5 ± 9.48 91.8 ± 5.57 0.12 ± 0.16 1.78 ± 2.34 26.0 ± 20.5
IND 93.6 ± 2.29 0.08 ± 0.05 1.22 ± 0.55 20.9 ± 10.6 91.6 ± 5.90 0.13 ± 0.20 1.82 ± 2.29 26.1 ± 20.7
DT 93.9 ± 1.89 0.07 ± 0.04 1.16 ± 0.48 20.2 ± 10.1 92.2 ± 5.36 0.12 ± 0.17 1.61 ± 2.16 24.0 ± 18.5

MedT (Valanarasu et al., 2021)
BO 92.6 ± 3.44 0.08 ± 0.06 1.55 ± 1.00 23.8 ± 11.8 90.7 ± 6.86 0.12 ± 0.18 2.08 ± 2.58 27.0 ± 20.1
IND 92.6 ± 3.77 0.07 ± 0.05 1.56 ± 1.02 24.0 ± 11.0 90.3 ± 6.49 0.12 ± 0.11 2.32 ± 2.52 29.8 ± 21.4
DT 93.1 ± 3.33 0.07 ± 0.04 1.42 ± 1.08 22.7 ± 11.5 91.4 ± 5.92 0.10 ± 0.11 1.87 ± 2.09 26.4 ± 19.3

Segmenter (Strudel et al., 2021)
BO 92.7 ± 2.83 0.08 ± 0.05 1.55 ± 0.97 23.9 ± 11.3 91.0 ± 6.48 0.11 ± 0.15 2.04 ± 2.69 26.8 ± 20.4
IND 92.7 ± 3.13 0.07 ± 0.05 1.49 ± 0.91 23.0 ± 10.6 90.1 ± 8.74 0.14 ± 0.19 2.26 ± 3.00 28.2 ± 21.5
DT 93.0 ± 2.62 0.07 ± 0.05 1.43 ± 0.80 22.5 ± 11.5 90.9 ± 7.15 0.13 ± 0.18 2.18 ± 2.89 28.7 ± 22.8

SwinUNetV2 (Liu et al., 2022)
BO 93.9 ± 2.20 0.08 ± 0.05 1.21 ± 0.75 23.2 ± 12.3 92.0 ± 5.32 0.13 ± 0.14 1.86 ± 2.38 28.1 ± 22.4
IND 93.8 ± 2.28 0.08 ± 0.05 1.21 ± 0.70 22.3 ± 11.5 91.6 ± 5.77 0.14 ± 0.17 1.92 ± 2.37 27.8 ± 21.1
DT 94.1 ± 2.16 0.07 ± 0.04 1.14 ± 0.61 20.7 ± 10.8 92.4 ± 5.48 0.12 ± 0.17 1.54 ± 2.18 23.0 ± 17.2
9
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Fig. 10. Concordance analysis between TKV measurements obtained by v19pUNet (Conze et al., 2020), TransUNet (Chen et al., 2021), MedT (Valanarasu et al., 2021) and
SwinUNetV2 (Liu et al., 2022) architectures for BO, IND and DT strategies and reference TKV estimated from ground truth annotations.
epending on the model. For instance, the v19pUNet model exhibits
larger disparity between the standard (BO, IND) and multi-task (DT)

strategies up to 1.1% gap in DSC, 0.03% in AVD, 0.26 mm in ASSD, and
4.2 mm in HD for LK. On the contrary, metrics values for right kidney
(RK) span from 90.1% to 92.4% for DSC, 0.14% to 0.10% for AVD,
2.32 mm to 1.54 mm for ASSD and 29.8 mm to 23.0 mm for HD. These
findings provide evidence that right kidney segmentation presents a
greater challenge compared to left kidney delineation, as manifested by
an approximate 2% decrease in DSC. This underscores the heightened
difficulty in accurately delineating the right kidney, especially due to
its vicinity with the liver which often present cysts in patients with
ADPKD. Similar to the observations for left kidney (LK) and apart from
TransUNet in AVD and Segmenter in all metrics, the involved models
consistently achieve their highest performance when employing the
DT learning scheme. However, the magnitude of this difference varies
depending on the employed deep architecture.

The concordance between predicted and ground truth TKV esti-
mates demonstrates a stronger correlation for DT than for BO and IND
with individual estimations closer to the lines of perfect agreement
(Fig. 9) and concordance (Fig. 10). A tendency to over-estimate kid-
ney volumes is revealed across all tested deep networks and learning
schemes (Fig. 9, 10). Visually, the contours obtained through the DT
learning scheme more closely follow the ground truth delineations
compared to both BO and IND strategies (Fig. 11). A better distinction
between hepatic and renal cysts is also noteworthy, which further sup-
ports the benefits of task-specific decoders processing features arising
from a joint encoder.
10
4.2. Convolutional versus transformers-based architectures

Several notable insights emerge when comparing the performance
of CNN versus Transformer-based architectures for polycystic kidney
delineation (Table 1). Particularly, among the examined models, hierar-
chical Transformers (i.e. SwinUNetV2) showcase superior performance
across the different learning schemes. However, it is essential to high-
light that the hybrid CNN-Transformer model, TransUNet, and the pure
convolutional network, v19pUNet, closely approach the performance of
SwinUNetV2, particularly in the DT scenario, with differences in DSC
scores falling within a margin of 0.2%. Unlike other network pairs,
DSC comparisons for both kidneys (BK) between v19pUNet, TransUNet
and SwinUNetV2 does not reach statistical significance (Table 4). This
difference is much more pronounced in both BO and IND configurations
(e.g. 92.2% for v19pUNet against 93.1% for SwinUNetV2 in DSC using
the BO scheme). In regard to the remaining metrics, SwinUNetV2
exhibits a decrement of at least 1.0 mm in HD compared to its competi-
tors. Conversely, the CNN-based models with attention mechanisms,
MedT, and the pure Transformer-based network, Segmenter, display the
poorest performance in the DT scenario. Notably, both networks exhibit
a decrease of 1.0% and 1.3% in DSC respectively, when compared
to the best-performing model. Contrary to other models, the MedT
network tends to provide downward TKV predictions according to both
agreement and concordance analyses (Fig. 12). It reaches the best AVD
score with 0.08% in BK. The Segmenter architecture reveals strong
limitations in accurately capturing fine details and fully delineating the
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Fig. 11. Visual results using v19pUNet (Conze et al., 2020) and SwinUNetV2 (Liu et al., 2022) trained with BO, IND and DT learning strategies. Ground truth and estimated
contours are resp. in green and red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 4
Statistical analysis in DSC for both kidneys (BK) between v19pUNet (Conze et al., 2020), TransUNet (Chen et al., 2021), MedT (Valanarasu et al., 2021), Segmenter (Strudel et al.,
2021) and SwinUNetV2 (Liu et al., 2022) with DT strategy through Student’s paired t-tests. Bold 𝑝-values (<0.05) highlight statistically significant results.

v19pUNet
(Conze et al., 2020)

TransUNet
(Chen et al., 2021)

MedT
(Valanarasu et al., 2021)

Segmenter
(Strudel et al., 2021)

SwinUNetV2
(Liu et al., 2022)

v19pUNet (Conze et al.,
2020)

. 9.96 × 10−1 3.96 × 10−𝟓 3.63 × 10−𝟔 1.59 × 10−1

TransUNet (Chen et al.,
2021)

– . 5.73 × 10−𝟒 1.26 × 10−𝟓 1.02 × 10−1

MedT (Valanarasu et al.,
2021)

– – . 1.46 × 10−𝟐 1.55 × 10−𝟓

Segmenter (Strudel et al.,
2021)

– – – . 8.02 × 10−𝟕

SwinUNetV2 (Liu et al.,
2022)

– – – – .
target structures, as evidenced by the high values observed for both
ASSD and HD metrics (Table 1, Table 3) as well as the visual results
depicted in Fig. 13. This issue aligns with previous findings in the
literature regarding Transformers-based networks for segmentation (Liu
et al., 2021) which utilize patch-based approaches for a task that
requires dense prediction at the pixel level. The use of patches can
result in the omission of certain regions or the inclusion of non-target
regions as part of the segmented structure, leading to sub-optimal
segmentation robustness.

These findings remain consistent with the ones revealed by the per-
kidney metric values provided in Table 3. Among the models evaluated,
SwinUNetV2 consistently outperforms the other models, showcasing its
superiority. However, it is worth noting that MedT performs similarly
or better according to the AVD metric, with scores of 0.07 and 0.10
for LK and RK, respectively. A more detailed analysis of Fig. 13
allows for better observations. Notably, the Segmenter model, a full
Transformer network, struggles with correct segmentation, leading to
under-segmentation issues (1B, 1C, 1D, 1E). Although Transformers
excel at capturing long-range dependencies, they fall short when it
comes to preserving fine details. On the other hand, MedT, which
combines a global and local branch, encounters challenges in capturing
intricate details and experiences problems related to adjacent liver cysts
(1B) and over-segmentation (1D). While v19pUNet shows improved
performance in capturing fine details, it faces difficulties in accurately
delineating the concavity of the left and right kidneys (1B, 1C, 1D).
11
The hybrid TransUNet model, with its fusion of hierarchical features
(CNN) and long-range modeling (Transformers), demonstrates a better
representation of kidney concavities but still displays minor contouring
errors. It is interesting to note that SwinUNetV2 is the only model able
to accurately capturing the cyst belonging to the upper part of the left
kidney in the 1E sample from Fig. 13. More globally, it emerges as
the front-runner, boasting the highest accuracy in kidney delineation
(Table 3), providing TKV estimates that are consistent with ground
truth (Fig. 12) and excelling in capturing the kidney’s shape (Fig. 13).

Our study underscores the substantial advancements made by hier-
archical Transformers, as they exhibit a strong proficiency for the kid-
ney MR delineation task. Their ability to capture multi-scale informa-
tion and leverage hierarchical representations significantly contributes
to their superior performance. Additionally, the hybrid TransUNet
model and the pure convolutional network v19pUNet also demon-
strate competitive performance, indicating the continued relevance and
effectiveness of CNN-based approaches.

5. Conclusion

In this work, we successfully addressed fully-automated kidney
delineation for patients with autosomal-dominant polycystic kidney
disease. In particular, we contributed to the advancement of polycystic
kidney segmentation from MR scans by investigating and comparing
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Fig. 12. Bland-Altman and concordance analyses between TKV measurements obtained by BO, IND and DT strategies using v19pUNet (Conze et al., 2020), TransUNet (Chen
et al., 2021), MedT (Valanarasu et al., 2021), Segmenter (Strudel et al., 2021) and SwinUNetV2 (Liu et al., 2022) architectures and reference TKV estimated from ground truth
annotations.
different network architectures including CNN-based, Transformers-
based, and hybrid CNN/Transformers-based models. Furthermore, we
emphasized the importance of multi-task learning in medical image
analysis by proposing a dual-task learning scheme, where a com-
mon feature extractor is followed by per-kidney decoders. To evaluate
and compare the performance of different network architectures and
learning strategies, we conducted comprehensive experiments on a
heterogeneous MR imaging dataset collected from 112 patients. The
results of our study provided valuable insights into the effectiveness
of hybrid CNN/Transformers trained in a dual-task fashion. Moving
12
forward, future research will focus on addressing the challenges posed
by the heterogeneous distributions of cysts throughout the abdomen
and improving the robustness of deep models to differentiate polycystic
kidneys from surrounding cyst-containing organs. Additionally, the use
of longitudinal data could further enhance the predictive capabilities
of hybrid CNN/Transformer-based segmentation tools. Conducting a
multi-center study involving multiple institutions and leveraging a
service-oriented network-based infrastructure to bolster service con-
tinuity should also deserve further investigation in the near future.
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Fig. 13. Visual results using v19pUNet (Conze et al., 2020), TransUNet (Chen et al., 2021), MedT (Valanarasu et al., 2021), Segmenter (Strudel et al., 2021) and SwinUNetV2 (Liu
et al., 2022) trained with our dual-task learning scheme (DT). The Mayo grading scale is covered from 1B to 1E. Ground truth and predicted contours are in green and red. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Ultimately, our contributions could contribute to better perform patient
stratification, treatment planning and progression monitoring.
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