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A B S T R A C T

Diabetic Retinopathy (DR), an ocular complication of diabetes, is a leading cause of blindness worldwide.
Traditionally, DR is monitored using Color Fundus Photography (CFP), a widespread 2-D imaging modality.
However, DR classifications based on CFP have poor predictive power, resulting in suboptimal DR management.
Optical Coherence Tomography Angiography (OCTA) is a recent 3-D imaging modality offering enhanced
structural and functional information (blood flow) with a wider field of view. This paper investigates
automatic DR severity assessment using 3-D OCTA. A straightforward solution to this task is a 3-D neural
network classifier. However, 3-D architectures have numerous parameters and typically require many training
samples. A lighter solution consists in using 2-D neural network classifiers processing 2-D en-face (or frontal)
projections and/or 2-D cross-sectional slices. Such an approach mimics the way ophthalmologists analyze OCTA
acquisitions: (1) en-face flow maps are often used to detect avascular zones and neovascularization, and (2)
cross-sectional slices are commonly analyzed to detect macular edemas, for instance. However, arbitrary data
reduction or selection might result in information loss. Two complementary strategies are thus proposed to
optimally summarize OCTA volumes with 2-D images: (1) a parametric en-face projection optimized through
deep learning and (2) a cross-sectional slice selection process controlled through gradient-based attribution.
The full summarization and DR classification pipeline is trained from end to end. The automatic 2-D summary
can be displayed in a viewer or printed in a report to support the decision. We show that the proposed 2-D
summarization and classification pipeline outperforms direct 3-D classification with the advantage of improved
interpretability.
1. Introduction

Diabetic Retinopathy (DR), a complication of diabetes, is a ma-
jor and growing cause of vision impairment and blindness. By 2040,
around 600 million people throughout the world will have diabetes [1],
a third of whom will have DR [2]. One major problem in the manage-
ment of DR is its reliance on an older imaging technique, namely Color

∗ Correspondence to: LaTIM - IBRBS - 22, avenue Camille Desmoulins 29200 Brest, France.
E-mail address: gwenole.quellec@inserm.fr (G. Quellec).

Fundus Photography (CFP). Various classifications based on CFP were
proposed over the years [3–5]. Unfortunately, decisions based on these
classifications have poor predictive power. For instance, a severe non-
proliferative DR case evolves to proliferative complication in 51.5%
of cases, with only 17.1% evolving to a high risk of blindness [4].
This makes the management of DR challenging: clinicians often err
vailable online 6 February 2024
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on the side of caution and treat all those patients to mitigate the risk
of complications. In the past decades, a significant number of studies
have relied on CFP images for the automatic assessment of DR. The
application of machine learning techniques, particularly deep learning,
to these images has shown promising results in the detection and
categorization of DR [6,7]. While these advancements are noteworthy,
such techniques will always suffer from the poor predictive power
of CFP. Fortunately, new imaging modalities are emerging that may
improve predictions.

Optical Coherence Tomography (OCT) is a non-invasive imaging
technique that uses interferometric information of partially coherent
light to create cross-sectional (2-D B-scans) and three-dimensional (C-
scans) structural images of biological tissues. Within optical scattering
media, it can penetrate a few millimeters in depth, with microme-
ter resolution, and is therefore particularly well-suited to image the
retina [8]. OCT Angiography (OCTA) is a motion-sensitive extension
of OCT enabled by fast OCT acquisitions: it was shown to contrast the
retinal vasculature and can provide quantitative blood flow informa-
tion [9]. An OCTA acquisition can be summarized by two volumes:
a structure volume, obtained by averaging consecutive 3-D scans, and
flow volume, describing the amplitude of local intensity variations

cross those consecutive 3-D scans [10]. To analyze the blood flow
n specific vascular plexuses, clinicians generally inspect en-face (or
rontal) Maximal Intensity Projections (MIP) of the flow volume in
he corresponding retinal or choroidal layers [10]. In such 2-D pro-
ections, each 1-D A-scan is replaced with the maximal intensity value
throughout the entire A-scan or within the considered layers only).
ecent OCTA devices enable ultra-widefield acquisitions of the retina
90◦) [11]. In summary, OCTA can capture ultra-widefield volumetric
tructural and functional (flow) images of the retina: it is, therefore, a
romising technique to diagnose various ocular pathologies [12–15].
n particular, DR can clearly benefit from OCTA [16]: (1) the structure
olume allows objective and quantitative assessment of diabetic macu-
ar edema (DME), (2) flow MIPs allow quantification of retinal vascular
lexuses, non-perfusion and vessel density as well as the identification
f damage; Vujosevic et al. [17] lists the various biomarkers of DR and
ME in OCTA acquisitions.

Computer-aided DR diagnosis using OCTA is an emerging field of
esearch: it is motivated by the above promises (i.e., useful biomark-
rs) and the challenge of integrating large amounts of data (i.e., 3-D
ltra-widefield structural and flow images). In particular, various quan-
itative metrics were automated to assist in early detection, staging,
nd progression of DR [18]. Those metrics quantify retinal fluid vol-
mes [19], retinal vasculature features (e.g., density, tortuosity) [12,
0,21], avascular zones [19,22], including the Foveal Avascular Zone
FAZ) [12,23], and proliferative DR features such as neovasculariza-
ion [24].

Through a radiomics approach, these features were used for auto-
atic DR severity assessment [21,25,26]. Various methods were also

nvestigated to assess DR severity directly from OCTA images. Some
uthors classified 2-D en-face MIP images with 2-D Convolutional
eural Networks (CNN): [20,26–29] classified one en-face flow MIP

superficial plexus, deep plexus or full retina), Heisler et al. [30] jointly
lassified two en-face flow MIPs (superficial and deep plexus) and the
orresponding en-face structure MIPs, Yasser et al. [31] and Li et al.
23] jointly classified en-face flow MIPs and 2-D feature maps derived
rom feature segmentation. Other authors classified 3-D images with 3-

CNNs: Zang et al. [32] classified one 2-channel (structure and flow)
-D image, Li et al. [33] jointly classified one 2-channel 3-D images and
ne 2-D Line-Scanning Ophthalmoscope (LSO) localizer, and Li et al.
34] jointly classified two 2-channel 3-D images acquired with different
ields of view (6 × 6 mm2 and 15 × 15 mm2).

Theoretically, the radiomics approach and the 2-D classification
approach are suboptimal in the sense that relevant features useful
for classification may have been lost during the preprocessing (MIP)
2

and feature extraction steps. However, the 3-D classification approach
also has some limitations. First, compared to their 3-D counterparts,
2-D neural architectures have better pre-trained weights (e.g., Ima-
geNet weights) and have fewer parameters to optimize, thus requiring
fewer training samples. Given the limited OCTA data sets available,
this aspect is critical. Second, end-to-end 3-D classification lacks the
interpretability power of the radiomics approach and, to a lesser extent,
of the end-to-end 2-D classification approach. To alleviate these limi-
tations, we propose an end-to-end 3-D image classification approach
relying on 2-D views as intermediate steps, the 2-D view extraction
process being trainable. This guarantees that: (1) 2-D neural architec-
tures can be used at the end of the classification pipeline, while (2)
relevant problem-specific features can be extracted at the beginning of
the pipeline. In detail, two types of view are extracted:

1. 2-D en-face (or frontal) projections, generalizing the flow (or
structure) MIP images used to assess OCTA flow features [16],

2. selected 2-D slices (B-scans), often used to assess structural OCT
features [16]: attribution methods [35,36] are used to identify
the most relevant scan lines in the en-face projection, which are
deemed worthy of further investigation in 2-D.

To maximize the interpretability of en-face projections, a novel ‘‘model
dropout’’ mechanism is introduced. Projections are processed by an
ensemble of 2-D image classifiers, and during training, classifiers in
the ensemble are dropped randomly. The extracted 2-D features thus
become more classifier-independent, i.e., more general and hopefully
more meaningful to the human eye.

This paper aims to automate the most recent DR severity classifi-
cation [5] from OCTA acquisitions, using the proposed interpretable
classification approach, one step toward better management of DR.

2. Related methods

2.1. 3-D→2-D projection

In recent years, 3-D→2-D projection was used to solve various
medical image analysis tasks. One such task is 2-D/3-D registration:
in that case, the 2-D image is registered to a 2-D projection of the
3-D image. Fei et al. [37] used that strategy to register 2-D X-ray
images to 3-D Computed Tomography (CT) images: the goal was to
compare the ability of both modalities to detect cardiac calcifica-
tions. More recently, Schaffert et al. [38] and Jaganathan et al. [39]
registered intra-operative 2-D X-rays to pre-operative 3-D CT images
for navigation purposes during minimally invasive surgeries. Alterna-
tively, Van Houtte et al. [40] registered intra-operative 2-D X-rays to a
pre-operative 3-D atlas. For 2-D/3-D registration, 3-D→2-D projection
is typically achieved by simulating a 2-D perspective projection from
the 3-D image to the plane: in [38] and [39], a linear system of
equations (point-to-plane correspondences) is solved; Van Houtte et al.
[40] relies on projective spatial transformers. In Jaganathan et al. [39],
an adversarial domain adaptation step is added.

3-D→2-D projection was also used for en-face segmentation of 3-
D images. This is useful when ground truth masks are obtained using
en-face projections of the 3-D images or using a different 2-D imaging
modality. Li et al. [41] segmented blood vessels and foveal avascular
zones in 3-D structural and flow OCTA images: the ground truth masks
were obtained using the flow MIP between the Internal Limiting Mem-
brane (ILM) layer and the Outer Plexiform Layer (OPL). Lachinov et al.
[42] segmented geographic atrophies, a sign of age-related macular
degeneration, in 3-D structural OCT images: the ground truth masks
were obtained using 2D Fundus Auto Fluorescence (FAF) images. They
also segmented blood vessels in 3-D OCT: the ground truth masks
were obtained using en-face OCT images. Le et al. [43] segmented
blood vessels in 3-D Adaptive Optics OCT (AO-OCT) images: ground
truth masks were obtained using en-face AO-OCT images. For en-face
segmentation of 3-D images, variations on the U-Net architecture are

typically used: in the proposed architectures, the encoder part contains
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3-D operations, and the decoder part contains 2-D operations [41,42].
Alternatively, an LSTM is combined with the encoder part of a 2-D
U-Net in [43].

A variation on the previous task is the generation of high-quality 2-
D images from 3-D images for visualization purposes or, optionally, for
downstream segmentation tasks. Forsgren et al. [44] generated high-
quality 2-D projections from low-quality 3-D fluorescence microscopy
images, which can be acquired fast. In biology, Haertter et al. [45]
projected curved 2-D manifolds from 3-D microscopy image stacks on a
2-D plane. Solutions to this problem are supervised: Haertter et al. [45]
use a U-Net-like structure, Forsgren et al. [44] use conditional GANs
with a U-Net-like backbone.

3-D→2-D projection was also used for fast feature detection or seg-
mentation in 3-D images. In this case, ground truth masks are obtained
from 3-D images: 2-D projections are simply used as intermediate
steps. Shen et al. [46] detected 3-D junction points from various tree-
like structures (blood vessels, neurons) in 2-D projections, followed by
2-D→3-D reverse mapping. Similarly, Wang et al. [47] segmented 3-
D microvessels in 2-D projections of 3-D brain Magnetic Resonance
Imaging (MRI), followed by 2-D→3-D reverse mapping. For this task,
non-parametric 3-D→2-D projections are used, namely MIP [46,47].
Finally, Guo et al. [48] segmented blood vessels in OCTA images. A
variation on MIP was used in that study: all voxel intensities in the
same retinal layer are multiplied by a layer-specific trainable weight
prior to MIP.

A final task explored in this paper is 3-D image classification. Stat-
senko et al. [49] use 3-D→2-D projection to diagnose COVID-19-
associated pneumonia in 3-D CT images. Gupta et al. [50] concate-
nates multiple 2-D projections of coronary arteries/branches to identify
diseased coronary arteries/branches in 3-D Computed Tomography
Angiography (CTA). Mandal et al. [51] use 3-D→2-D projection to
differentiate lentigo maligna from atypical intraepidermal melanocytic
proliferation, two melanoma subtypes, in 3-D Reflectance Confocal
Microscopy (RCM). The motivation is to take advantage of 2-D neu-
ral architectures: compared to their 3-D counterparts, 2-D architec-
tures have better pre-trained weights and fewer parameters to op-
timize [49,50]. Using 2-D architectures also reduces computational
requirements [51]. For this task, non-parametric 3-D→2-D projections
are also used: averaged 2-D slices [49], MIP [50,51].

Unlike previous 3-D image classification tasks, we propose a train-
able parametric 3-D→2-D projection to allow the extraction of dis-
criminant and interpretable problem-specific features. The proposed
approach is more general than Guo et al. [48]’s solution for segmen-
tation, which solely emphasizes specific retinal layers. Other trainable
techniques proposed for (1) 2-D/3-D registration, (2) en-face segmen-
tation of 3-D images, or (3) high-quality 2-D image generation assume
that dense ground truth (e.g., 2-D images) is available to supervise 3-
D→2-D projection training. This is not our case: the only supervision
signal at our disposal is the DR diagnosis. This calls for a different
architecture to ensure that feature localization is not lost in the en-face
plane, as demonstrated in this paper.

2.2. Attribution methods

Over the past decade, with the growing popularity of deep learning,
various methods were introduced to visualize what ‘‘black box’’ CNNs
have learned. The purpose was notably to attribute an importance score
to each image pixel for a given output target (e.g., a class prediction
or a neuron activation). They can be classified into gradient-based or
perturbation-based attribution methods.

The simplest gradient-based attribution method is the Saliency
method by Simonyan et al. [52], which computes the gradient of
the output target with respect to each image pixel. This approach is
advantageous because it allows pixel-level attribution at the cost of a
single gradient backpropagation. However, not all operations in a CNN
3

are invertible, which often leads to unsatisfactory attributions. Zeiler o
Fig. 1. Geometry of an Optical Coherence Tomography (OCT) acquisition. A 3-D B-scan
consists of multiple 2-D B-scans, which in turn consist of multiple 1-D A-scans.

and Fergus [53] thus introduced a mechanism to correctly backpropa-
gate attributions through MaxPool operations (Deconvolution method),
and Springenberg et al. [54] introduced another way to correctly back-
propagate them through ReLU activations (Guided Backprop method).
These ideas were extended in Layer-Wise Relevance Propagation (LRP)
and Deep Learning Important FeaTures (DeepLIFT), with additional
properties: LRP ensures that the magnitude of any output is conserved
through the backpropagation process [55]; DeepLIFT bases the attribu-
tions on the difference between the activation of each neuron (for the
current image) to its ‘‘reference activation’’ [56].

The simplest perturbation-based attribution method is the occlu-
sion method by Zeiler and Fergus [53], which studies how the out-
put target is impacted when parts of the image (square patches) are
occluded. Ribeiro et al. [57] introduced Local Interpretable Model-
agnostic Explanations (LIME), which looks for superpixels with the
strongest association with the output target by successively turning
superpixels off and on. Finally, Integrated Gradients can be regarded
as both a gradient-based and a perturbation-based attribution method:
(1) a set of images is generated by multiplying all pixel intensities
in the target image by a constant factor ranging from 0 (the first
image or reference) to 1 (the last image or target); (2) for each im-
age in the series, a gradient-based attribution score is computed; (3)
the final attribution is the integral of gradients over the series [35].
Intuitively, the most relevant features are detected early in the series
and have, therefore, a higher integral. Unlike the other gradient-based
attribution methods, multiple gradient backpropagation operations are
needed. More generally, all perturbation-based attribution methods
require multiple CNN evaluations, implying higher computation times
and memory requirements.

To the best of our knowledge, this study is the first attempt to use
attribution methods to extract and analyze relevant 2-D slices in a 3-D
volume.

3. Proposed method

3.1. Overview and notations

The geometry of an OCT/OCTA acquisition is illustrated in Fig. 1.
Let 𝑦 denote the depth axis along which the partial coherent light
penetrates the tissues (A-scan). Let 𝑥 denote the fast scanning axis: a
B-scan is thus indexed by 𝑥 and 𝑦. Let 𝑧 denote the slow scanning axis:
a volume (C-scan) is thus indexed by 𝑥, 𝑦, and 𝑧 and en-face projections
by 𝑥 and 𝑧. Let 𝑋×𝑌 ×𝑍 denote the size of the C-scans in voxels. Finally,

multi-channel volume (e.g., with a flow and a structure channel) is
ndexed by 𝑐, 𝑥, 𝑦, and 𝑧.

Given 𝐼 , a preprocessed multi-channel OCTA acquisition (see Sec-
ion 3.2), and 𝑁 acquisition-level labels, the goal is to predict whether

r not experts would assign the 𝑛th label to acquisition 𝐼 , 𝑛 = 1..𝑁 .
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Fig. 2. Overview of the proposed approach. A multi-channel 3-D volume is summarized as a 2-D image through a 3-D→2-D projection network, detailed in Fig. 4. Next, a first
classification branch classifies this 2-D summary image in order to produce a DR diagnosis. Through an attribution method, the most relevant 2-D B-scans are selected. Then, a
second classification branch classifies the selected B-scans to improve the DR diagnosis. Each classification branch is an ensemble of classifiers, detailed in Fig. 5. In this figure,
each 3-D channel in the input volume is represented by its Maximum Intensity Projection (MIP).
In the experiments (see Section 4), the goal is to assess DR severity
in the patient’s eye, according to the 5-level ICDR scale [5]: no DR
(level 0), mild non-proliferative DR (NPDR, level 1), moderate NPDR
(level 2), severe NPDR (level 3), proliferative DR (PDR, level 4); DR
severity assessment is formulated as an 𝑁-label classification problem
(𝑁 = 4): is DR severity 𝑑(𝐼) greater than or equal to level 𝑛? Let
𝐩(𝐼) =

{

𝑝𝑛(𝐼) = 𝑝(𝑑(𝐼) ≥ 𝑛) ∈ [0; 1], 𝑛 = 1..𝑁
}

denote the probabilistic
predictions and let 𝜆𝑛(𝐼) ∈ {0, 1}, 𝑛 = 1..𝑁 , denote the ground truth
labels.

As illustrated in Fig. 2, the preprocessed 3-D acquisition 𝐼 is con-
verted to a 2-D summary image 𝛱(𝐼), defined as a parametric en-face
projection of 𝐼 (see details in Section 3.3). 𝛱(𝐼) is defined as a color
(3-channel) image for two reasons:

1. Interpretability: it can be displayed in a viewer or inserted in a
report for human inspection.

2. Compatibility with off-the-shelf 2-D neural architectures with
ImageNet pre-trained weights.

Next, 𝛱(𝐼) is classified by a first ensemble 𝐶1 of 2-D off-the-shelf
image classifiers, as described in Section 3.4. A first estimation 𝐩(1)(𝐼)
of the probabilistic prediction 𝐩(𝐼) is given by 𝐶1 ◦𝛱(𝐼).

Then, based on attributions derived from 𝐩(1)(𝐼), the most relevant
B-scans 𝑆(𝐼) are selected, as described in Section 3.5. For interpretabil-
ity purposes, the number of selected B-scans is limited to 𝑁 : one per
classification output. The motivations are:

1. A small number of B-scans is compatible with human inspection
in a viewer or a report.

2. Each selected B-scan is associated with a severity cutoff and can,
therefore, be used to document the course of action associated
with that cutoff (treatment, follow-up, etc.).

Finally, the selected B-scans 𝑆(𝐼) are classified by a second ensem-
ble 𝐶2 of 2-D off-the-shelf image classifiers: a second estimation 𝐩(2)(𝐼)
of the probabilistic prediction is given by 𝐶2 ◦𝑆(𝐼). It is combined with
𝐩(1)(𝐼) to obtain the final probabilistic prediction 𝐩(𝐼), as described in
Section 3.6.
4

3.2. Preprocessing

An OCTA acquisition is stored as two volumes:

1. a structure volume 𝑆, where the retinal layers and various
retinal anomalies (e.g., fluid) are visible, among other structures
(e.g., the choroid, below the retina, and the vitreous core, above
it),

2. a flow volume 𝐹 , where the blood vessels of the retina and the
choroid are particularly highlighted.

Additionally, OCTA acquisitions are usually associated with:

1. A 2-D en-face localizer 𝑙, aligned with the OCTA data (size: 𝑋×𝑍
pixels), to track eye motion. The PLEX Elite 9000 (Carl Zeiss
Meditec Inc. Dublin, California, USA) device, for instance, is as-
sociated with a Line Scanning Ophthalmoscope (LSO) subsystem
for that purpose [11].

2. Automatically-segmented surfaces delineating the vitreoretinal
interface, namely the Inner Limiting Membrane (ILM), and the
chorioretinal interface, below the Retinal Pigment Epithelium
(RPE). Let 𝑠𝑠𝑢𝑝 and 𝑠𝑖𝑛𝑓 denote those two surfaces, respectively.
They are stored as matrices of 𝑋×𝑍 pixels: 𝑠(𝑥, 𝑧) represents the
depth of surface 𝑠 in the (𝑥, 𝑧) A-scan of volumes 𝑆 or 𝐹 .

Although the LSO image is used primarily for motion tracking, it
offers a complementary view on the retina (different optical properties,
different wavelength, etc.), analogous to a grayscale fundus image [11].
We propose to analyze it jointly with the OCTA data. Therefore, we
propose to preprocess an OCTA acquisition as follows (see Fig. 3).

First, an ‘‘LSO volume’’ 𝐿 is created by duplicating the LSO localizer
along the y-axis: 𝐿(𝑥, 𝑦, 𝑧) = 𝑙(𝑥, 𝑧),∀𝑥, 𝑦, 𝑧.

Second, a mask volume 𝑀 of 𝑋×𝑌 ×𝑍 voxels is created: 𝑀(𝑥, 𝑦, 𝑧) =
1 if 𝑠𝑖𝑛𝑓 (𝑥, 𝑧) ≤ 𝑦 ≤ 𝑠𝑠𝑢𝑝(𝑥, 𝑧), 0 otherwise, ∀𝑥, 𝑦, 𝑧. The flow, structure,
and LSO volumes are multiplied by 𝑀 , element-wise, to mask the
choroid and vitreous core out. Let 𝐼 ′ denote the 3-channel volume:

𝐼 ′ = [𝐹 ⊙𝑀,𝑆 ⊙𝑀,𝐿 ⊙𝑀] . (1)
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Fig. 3. Preprocessing pipeline for OCTA acquisitions (see Section 3.2) illustrated on
one B-scan. Each original 2-D flow and structure B-scan is flattened, masked out, and
cropped. The original 2-D LSO en-face localizer is transformed into a 3-D volume by
duplicating pixel intensities along the depth axis (within the masked region). A 3-
channel 3-D volume is obtained by stacking the resulting three volumes (flow, structure,
LSO).

Third, the retinal region is flattened by shifting all voxels of 𝐼 ′ along
the 𝑦-axis, so that the ILM surface is set to a small constant depth 𝑦 = 𝑌0.
Let 𝐼 ′′ denote the resulting volume:

𝐼 ′′(𝑐, 𝑥, 𝑦 + 𝑌0, 𝑧) = 𝐼 ′(𝑐, 𝑥, 𝑦 + 𝑠𝑖𝑛𝑓 (𝑥, 𝑧), 𝑧),∀𝑐, 𝑥, 𝑦 ∈ [0; 𝑌 − 𝑌0), 𝑧. (2)

Parameter 𝑌0 is set to a non-zero value (0 < 𝑌0 < 𝑌 ) to limit
the loss of useful information during random data augmentation (see
Section 3.6.1). Its value is determined as described in Section 4.3. This
flattening process ensures that all the relevant information is concen-
trated at the top of 𝐼 ′′. The advantage of flattening the ILM surface,
instead of the RPE (𝑠𝑖𝑛𝑓 ), is that its segmentation is less error-prone,
due to a better contrast. This reduces the risk of alignment errors, which
would lead to discontinuities between neighboring A-scans.

Fourth, 𝐼 ′′ is cropped: all voxels with a depth 𝑦 > 𝑌1 are discarded,
𝑌0 ≤ 𝑌1 ≤ 𝑌 . Parameter 𝑌1 is chosen to ensure the retinal region is never
occluded. The final preprocessed image 𝐼 denotes the cropped version
of 𝐼 ′′.

3.3. 3-D→2-D projection

The preprocessed 3-D acquisition 𝐼 is then converted to a 2-D
summary image 𝛱(𝐼) through a parametric 3-D→2-D en-face projection
𝛱 . Lachinov et al. [42] proposed a U-Net-like architecture for 𝛱 , where
the encoder part contains 3-D operations and the decoder part contains
2-D operations. U-Net-like architectures have smaller and smaller ac-
tivation maps as we go deeper into the encoder part, and their size
5

increases as we go deeper into the decoder part to finally reach the
size of the input image. This contraction aims to increase the receptive
field of deep encoder filters to better consider the context without
increasing their size and, therefore, the number of network parameters.
The drawback of this contraction is that small details are lost in the pro-
cess. To recover those details, skip-connections are therefore introduced
between encoder and decoder layers [58]. However, this trick assumes
that the ground truth signal contains small details. In particular, it
requires a dense supervision signal. For a classification task, the class
labels are the only supervision signals available for training 𝛱 .

Our solution to the problem is to ensure that the details in the en-
face plane are never lost throughout the 3-D→2-D projection process. In
particular, we guarantee that the activation maps all have the same size
in the en-face plane (𝑋 ×𝑍 pixels). Only the depth of these activation
maps decreases as we go deeper in 𝛱 , to reach a final depth of 1 voxel
(i.e., a 2-D image). To further prevent the loss of details in the en-face
plane, we also limit the receptive field of the filters to one pixel in
that plane. A simple solution based on 1-D operations, where each A-
scan is processed independently, is presented hereafter. It should be
noted that Li et al. [41]’s projection network for segmentation also
ensures that activation maps all have the same size in the en-face plane.
However, Li et al. [41] use 3-D convolution operators (kernel size:
3 × 3 × 3 voxels): with a receptive field larger than one voxel in that
plane, there is no guarantee that details are preserved without a dense
supervision signal.

The proposed network, illustrated in Fig. 4, is divided into basic
blocks containing:

1. a pooling operator,
2. two convolutional layers,
3. a batch normalization operator [59],
4. an optional skip-connection [60],
5. a ReLU activation.

Note that the pooling operator precedes the convolutional layers in
order to limit network complexity: since no contraction in the en-face
plane is performed, this is critical. An average pooling operator is used
in the first block; otherwise, half of the voxels would never be used.
However, a max pooling operator is used in the following blocks to
add more nonlinearity. Following common practice [60], the number
of convolutional filters increases as we go deeper into the network. Let
𝛷 denote the number of filters per layer in the first block. The number
of filters per layer in the 𝑖th block is set to 2𝑖−1𝛷.

Each block reduces the depth by a factor of 4 (2 due to pooling ×
2 due to the stride in the first convolution layer). After three blocks, a
global mean operator along the depth axis is performed to eliminate
the depth dimension. Finally, a dense layer with sigmoid activation
is applied to obtain a 2-D image with the desired number of chan-
nels, namely three channels (see Section 3.1). The sigmoid activation
facilitates conversion to a bitmap image for visualization.

3.4. Classification of the 3-D→2-D projection

Now that a 2-D color image 𝛱(𝐼) is obtained, any image classifier 𝐶1
can be used to predict DR severity: a CNN, a transformer, an ensemble
of CNNs and/or transformers, etc. However, two novel contributions
specifically suited to this proposed framework are presented hereafter
and illustrated in Fig. 5.

3.4.1. Ensuring 3-D→2-D projection generality
For interpretation purposes, we would like 𝛱(𝐼) to be as indepen-

dent from the classifier as possible. The rationale is as follows: if the
projection is useful for any classifier, then we expect it to be informative
for human experts as well. Various solutions can be considered:

• Following federated learning, multiple
{

𝛱 (𝑗), 𝐶 (𝑗)
1

}

couples can
be trained in parallel, and the weights of the 𝛱 (𝑗) instances can
be aggregated at regular intervals.
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Fig. 4. Architecture of the 3-D → 2-D projection network, detailed in Section 3.3. The input is the preprocessed acquisition, a 3-channel volume of 𝑋×𝑌1 ×𝑍 voxels, with 𝑌1 = 224
in this example. Parameter 𝛷, the number of filters in the first block, controls the complexity of the projection network. The figure on the right illustrates the size of the data
tensors at the output of each block.
Fig. 5. Ensemble of classification networks
{

𝜸𝑘 , 𝑘 = 1..𝐾
}

with model dropout (con-
trolled by random parameters 𝛿𝑘 , 𝑘 = 1..𝐾) and differentiable random transformations
(affine transformations and horizontal flips, controlled by random parameters 𝜀𝑘 , 𝑘 =
1..𝐾). This pipeline, detailed in Section 3.4, is illustrated for the first classification
branch of Fig. 2, in which the input images are 2-D summary images.

• Following continual learning, multiple classifiers 𝐶 (𝑗)
1 can be

trained sequentially, initializing training with the weights ob-
tained for 𝛱 with the previous 𝐶 (𝑗−1)

1 classifier.

However, such approaches imply longer training or require more re-
sources. Instead, we propose to train one ensemble of classifiers, but
with one trick that we call model dropout : for each mini-batch, a random
subset of the classifiers is used for prediction. Like the other solutions
mentioned above, this ensures that the 3-D→2-D projection 𝛱 does not
6

specialize for one specific classifier or one static ensemble of classifiers.
Let 𝜸𝑘, 𝑘 = 1..𝐾, denote the classifiers of the ensemble. We assume
that these classifiers have no final activation function (i.e., they return
logits). The ensemble prediction is given by:

𝐶1 ◦𝛱(𝐼) = 𝜎

(

∑𝐾
𝑘=1 𝛿𝑘𝜸𝑘(𝛱(𝐼))

∑𝐾
𝑘=1 𝛿𝑘

)

(3)

subject to: 𝛿𝑘 ∈ {0, 1}, 𝑘 = 1..𝐾 ,

1 ≤
∑𝐾

𝑘=1 𝛿𝑘 ≤ 𝐾 ,

where 𝜎 denotes the sigmoid function. The number of possible classifier
combinations is given by 2𝐾 − 1. This process is equivalent to training
2𝐾 − 1 classifiers in random order, which is expected to improve the
generality of 𝛱 . Model dropout is only used during training: the full en-
semble is used during inference. The expected benefit of logit averaging
(see Eq. (3)) is that the weight of poor classifiers in the ensemble can
be reduced automatically by decreasing the amplitude of their logits.
However, logit averaging may have drawbacks [61], so the traditional
strategy, namely probability averaging, was also investigated.

3.4.2. Data augmentation
Data augmentation is typically performed by randomly transforming

preprocessed images before feeding them to the neural network. For 2-
D image classifiers, random transformations traditionally imply random
affine transformations (random rotation, translation, and scaling) and
random horizontal/vertical flips. However, our input preprocessed im-
ages are heavy 3-D volumes. Applying such random transformations to
the 3-D volume takes a lot of time. Instead, we propose to apply them
after the 3-D→2-D projection: applied to 2-D data, they are much faster.
Besides, applying random spatial transformations before the projection
is of limited interest since the proposed projection operator 𝛱 does
not consider the context. Inserting random transformations inside the
neural architecture is made possible by differentiable implementations
of these transformations.1

Since these random transformations can be inserted inside the neu-
ral network, we are able to generate one transformed version of 𝛱(𝐼)
for each classifier 𝜸𝑘 in the ensemble. This leads to a new definition for
𝐶1 ◦𝛱 :

𝐶1 ◦𝛱(𝐼) = 𝜎

(

∑𝐾
𝑘=1 𝛿𝑘𝜸𝑘(𝑇 (𝛱(𝐼), 𝜀𝑘))

∑𝐾
𝑘=1 𝛿𝑘

)

(4)

1 https://pytorch.org/vision/main/transforms.html

https://pytorch.org/vision/main/transforms.html
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subject to: 𝛿𝑘 ∈ {0, 1}, 𝑘 = 1..𝐾 ,

1 ≤
∑𝐾

𝑘=1 𝛿𝑘 ≤ 𝐾 ,

where 𝑇 denotes the transformation operator and 𝜀𝑘 the random trans-
formation parameters drawn for 𝜸𝑘. As a way to generalize test-time
ata augmentation [62], random transformations are applied during
oth training and inference.

.5. Relevant B-scan selection

A first estimation 𝐩(1)(𝐼) = 𝐶1 ◦𝛱(𝐼) of the probabilistic prediction
𝐩(𝐼), based on the en-face 3-D→2-D projection 𝛱 , is now available. We
propose to investigate further those B-scans of 𝐼 which contribute the
most to 𝐩(1)(𝐼). The idea is to find additional evidence to increase or
decrease the confidence in this first estimation.

To detect the B-scans that contribute the most to 𝐩(1)(𝐼), we propose
to use attribution methods presented in Section 2.2. Note that attribu-
tions are computed for one particular output prediction 𝑝(1)𝑛 (𝐼), i.e., for
one DR severity cutoff. This aligns with our goal to collect additional
evidence for each prediction: we will select one B-scan per prediction.
As for the inputs, we can either:

• use the 3-D preprocessed acquisition 𝐼 and accumulate voxel-wise
attributions in the xy-plane.

• or use the 2-D projection 𝛱(𝐼) and accumulate pixel-wise attri-
bution along the 𝑥-axis (the fast scanning axis).

The second option was chosen for faster computations. Let 𝑎𝐼 (𝑥, 𝑧, 𝑐, 𝑛)
denote the attribution of pixel (𝑥, 𝑧), in the 𝑐th channel, for the 𝑛th
prediction. A normalized attribution 𝛼𝐼 (𝑧, 𝑛) is defined for the 𝑧th
B-scan, with respect to the 𝑛th prediction:

𝛼𝐼 (𝑧, 𝑛) =
∑

𝑥
∑

𝑐 |𝑎𝐼 (𝑥, 𝑧, 𝑐, 𝑛)|
∑

𝑧
∑

𝑥
∑

𝑐 |𝑎𝐼 (𝑥, 𝑧, 𝑐, 𝑛)|
. (5)

Let 𝑧𝑛 denote the index of the 𝑛th selected B-scan and let 𝐵𝑛(𝐼) denote
its content:

𝐵𝑛(𝐼) = 𝐼(𝑐, 𝑥, 𝑦, 𝑧𝑛),∀𝑐, 𝑥, 𝑦 . (6)

For inference, the B-scans maximizing 𝛼𝐼 (𝑧, 𝑛), 𝑛 = 1..𝑁 , are selected.
However, for data augmentation purposes and to favor exploration,
a random B-scan selection process is preferred during training: 𝑧𝑛 is
randomly drawn from the multinomial probability distribution defined
by 𝛼𝐼 (𝑧, 𝑛):

𝑧𝑛 = argmax
𝑧

𝛼𝐼 (𝑧, 𝑛) for inference , (7)

𝑧𝑛 ∼ 𝑀𝑍 (1; 𝛼𝐼 (1, 𝑛),… , 𝛼𝐼 (𝑍, 𝑛)) for training . (8)

It should be noted that B-scan selection is not impacted by random
transformations from Section 3.4.2, which are an integral part of the
𝐶1 classifier on which the attribution method operates (see Eq. (4)).

3.6. Final classification

3.6.1. Second classifier
Like classifier 𝐶1, the second classifier 𝐶2 also requires data aug-

mentation. Besides the random selection process described above, we
propose to apply the same random transformation 𝑇 as for classifier
𝐶1. More generally, we define 𝐶2 very similarly to 𝐶1: an ensemble of
classifiers 𝜸′𝑘, 𝑘 = 1..𝐾, with random transformations (parameters: 𝜀′𝑘,𝑛,
𝑘 = 1..𝐾, 𝑛 = 1..𝑁) and model dropout (parameters 𝛿′𝑘, 𝑘 = 1..𝐾).
Because their input images are of a different nature, no parameter
sharing was set up between 𝐶1 and 𝐶2.

By design, the 𝑛th selected B-scan 𝐵𝑛(𝐼) is meant to correct the
confidence in the 𝑛th prediction. Therefore, we only consider the 𝑛th
7

prediction 𝛾 ′𝑘,𝑛(𝐵𝑛(𝐼)) of classifier 𝜸′ for B-scan 𝐵𝑛(𝐼). This leads to the
following expression for the predictions 𝐩(2)(𝐼) of 𝐶2:

𝑝(2)𝑛 (𝐼) = 𝜎
⎛

⎜

⎜

⎝

∑𝐾
𝑘=1 𝛿

′
𝑘𝛾

′
𝑘,𝑛(𝑇 (𝐵𝑛(𝐼), 𝜀′𝑘,𝑛))
∑𝐾

𝑘=1 𝛿
′
𝑘

⎞

⎟

⎟

⎠

, 𝑛 = 1..𝑁 (9)

subject to: 𝛿′𝑘 ∈ {0, 1}, 𝑘 = 1..𝐾 ,

1 ≤
∑𝐾

𝑘=1 𝛿
′
𝑘 ≤ 𝐾 .

3.6.2. Final classifier
The second classifier 𝐶2 is supposed to increase or decrease the

confidence in the predictions of the first classifier 𝐶1. Therefore, the
logits from both classifiers are combined linearly to obtain the final
probabilistic prediction:

𝐩(𝐼) = 𝜎
(

𝜎−1(𝐩(1) (𝐼)) + 𝜎−1(𝐩(2) (𝐼))
)

, (10)

here 𝜎−1 is the logit function.

.6.3. Training
The multi-label classifier thus defined is trained to minimize the

inary cross-entropy  between network predictions 𝑝𝑛(𝐼) and ground
ruth labels 𝜆𝑛(𝐼), 𝑛 = 1..𝑁 :

 = − 1
𝑁
∑

𝐼
1

∑

𝐼

𝑁
∑

𝑛=1

[

𝜆𝑛(𝐼) log(𝑝𝑛(𝐼))+

(1 − 𝜆𝑛(𝐼)) log(1 − 𝑝𝑛(𝐼))
]

.

(11)

Thanks to this loss function, the ordered nature of DR severity grades
is taken into account (see Section 3.1). If a prediction is wrong by one
severity level, then only one binary classifier will have an incorrect
prediction. Whereas if a prediction is wrong by 𝑛 > 1 severity levels,
then 𝑛 binary classifiers will have an incorrect prediction, and will
herefore impact the global loss  more.

We hypothesize that B-scan selection is most relevant when the first
lassifier 𝐶1 is already well trained. Therefore, two training scenarios
re investigated:

wo-step training: 𝐶1 is trained alone until convergence. Then, its
parameters are frozen, and 𝐶2 is trained until convergence.

ne-step training: 𝐶1 and 𝐶2 are trained jointly until convergence.

This concludes the presentation of the proposed framework.

4. Experiments

This framework is now evaluated for the task of automated DR
severity assessment, according to the ICDR scale [5], using OCTA.

4.1. Dataset

In this study, we used OCTA images from the ‘‘Évaluation Intel-
ligente de la Rétinopathie diabétique’’ (EviRed) project,2 which com-
prises data collected between 2018 and 2022 from 14 hospitals and
recruitment centers in France.

The PLEX Elite 9000, with a scanning frequency of 200 kHz, was
employed to capture Swept-Source (SS) OCTA images. The ocular data
in the EviRed dataset typically include two acquisition types: high-
resolution 6 × 3 × 6 mm3 SS-OCTA (500 × 1536 × 500 voxels) centered
on the macula and lower-resolution 15 × 6 × 15 mm3 ultra-widefield
UWF-SS-OCTA (834 × 3072 × 834 voxels). Each OCTA volume contains
2-D en-face localizer, structural, and flow information. The EviRed
dataset encompasses 811 eyes from 477 patients and is divided into
training, validation, and test sets. It should be noted that, for a few eyes,

2 https://evired.org/

https://evired.org/
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Table 1
Dataset distribution among training, validation, and test sets for PLEX Elite 6 × 6 mm2

nd PLEX Elite 15 × 15 mm2.
PLEX Elite 6 × 6 mm2 PLEX Elite 15 × 15 mm2

Patients Eyes % Patients Eyes %

Train 333 625 70.0 318 584 70.2
Val 82 159 17.7 78 147 17.7
Test 57 110 12.3 57 100 12.1

we have only 6 × 6 mm2 or 15 × 15 mm2 acquisitions. The distribution
f patients and images in each set is presented in Table 1.

The partitioning of the EviRed dataset into training, validation, and
est sets followed a systematic approach to ensure a robust evaluation
f the models. The process was guided by the following criteria:

1. Patient independence: To minimize the risk of data leakage, each
patient’s data was assigned to only one of the sets (training,
validation, or test). This approach prevents the model from
learning any patient-specific characteristics that could lead to
overfitting or an inflated performance metric.

2. Balanced distribution of disease severity: The dataset was di-
vided in such a way that each set contained a similar proportion
of images representing various stages of DR. This balanced dis-
tribution ensures that the model is exposed to a wide range of
severity levels during the training process and provides a more
accurate assessment of its performance during validation and
testing.

3. Stratified sampling: To maintain consistency in the demographic
characteristics and other factors, stratified sampling was em-
ployed when dividing the dataset. This approach not only en-
sures that each set contains a representative sample of the
entire dataset but also respects the original class distribution
in each split. By mirroring the class distribution of the whole
dataset within each subset, we further reduce the risk of biased
performance evaluation. Hence, we achieve a balanced represen-
tation of demographic characteristics and other factors across all
subsets. This method gives us the confidence that the inferences
drawn from our study will be robust and reliable.

Because 6 × 6 mm2 and 15 × 15 mm2 acquisitions have different
izes and resolutions, distinct models were built for these two types of
cquisitions.

.2. Implementation

The proposed framework was implemented using PyTorch3 Ignite
or training and inference, MONAI4 for 3-D data handling, PyTorch
orchvision for differentiable data augmentation, PyTorch Image Mod-
ls (timm)5 for 2-D image classification and Captum6 for attribution
ethods. Experiments were performed using two NVIDIA V100 GPUs

with 32 Gb of RAM each). One of the GPUs was dedicated to 3-
→2-D projection (𝛱), and the other one was dedicated to 2-D image
lassification (𝐶1 and 𝐶2).

.3. Hyperparameter optimization

Various hyperparameters need to be set:

• Architecture parameters: the use of 𝐶1 alone or the joint use of
𝐶1 and 𝐶2 (see Section 3.1).

3 https://pytorch.org/
4 https://monai.io/
5 https://github.com/fastai/timmdocs/
6
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https://captum.ai/ o
• Preprocessing parameters: the depth 𝑌0 at which the ILM is
aligned and the depth 𝑌1 under which the volume is cropped (see
Section 3.2).

• 3-D→2-D projection parameters: the number 𝛷 of filters per
convolutional layer in the first block and the use, or not, of
skip-connections within blocks (see Section 3.3).

• Data augmentation parameters: the range of values for random
affine transformations 𝜀 and 𝜀′ (see Sections 3.4 and 3.6.1).

• Ensemble parameters: the list of 𝐾 classification backbones in
𝐶1 and 𝐶2, and the use of logit or probability averaging (see
Sections 3.4 and 3.6.1).

• B-scan selection parameters: the attribution method used (see
Section 3.5).

• Training parameters: the general training parameters (optimizer,
learning rate, etc.), training from scratch or the use of ImageNet
pre-trained weights, and the problem-specific training schedule
(one-step or two-steps — see Section 3.6.3).

The preprocessing and data augmentation parameters were set em-
pirically through visual inspection: 𝑌0 = 32 voxels, 𝑌1 = 224 voxels,
random rotation in the range [−10; +10] degrees, random translation
in the range [−10; +10] percent of 𝑋 and 𝑌1 or 𝑍, random scaling in
he range [90; 110] percent of 𝑋 and 𝑌1 or 𝑍. The following parameters
ere restricted due to GPU memory limitations and computation time

onsiderations:

• The number 𝛷 of filters was limited to 𝛷 ≤ 32 for 6 × 6 mm2

acquisitions, 𝛷 ≤ 16 for 15 × 15 mm2 acquisitions.
• Integrated Gradients and perturbation-based attribution meth-

ods could not be used during training. The following attribu-
tion methods were investigated: Saliency, Deconvolution, Guided
Backprop, and DeepLIFT.

he classifier backbones were chosen among CNNs: one advantage of
ost CNNs is that they can be applied to images of any size (in our case:
00 × 500 or 834 × 834 pixels) without adaptation. Two ensembles
f classifiers were considered, with the following pre-trained weights
unless training from scratch is experimented):

nsemble 1: The first set of classifiers was chosen from a single
family, namely EfficientNet [63]. This family is popular for its
good trade-off between complexity and performance. The 𝐾 = 4
simplest networks were selected: namely EfficientNet-{B0, B1,
B2, B3}, pre-trained on ImageNet-1K. This first ensemble was
intended for quick experiments, hyper-parameter optimization,
etc.

nsemble 2: The second set of classifiers was chosen among the
best-performing CNN families in ImageNet classification bench-
marks.7 The set includes ConvNeXt Base, pre-trained
on ImageNet-21K [64], ImageNet-V2 Small, pre-trained on
ImageNet-21K [65] and SE-ResNet-152D, pre-trained on
ImageNet-1K [66]. The set was limited to 𝐾 = 3 due to GPU
memory limitations.

The values of the other hyperparameters were then optimized using
ensemble 1 for 6 × 6 mm2 acquisitions. Optimization relied on a
Receiver Operating Characteristic (ROC) analysis in the validation set:
hyperparameter values maximizing the Area Under the ROC Curve
(AUC), averaged over the 𝑁 = 4 binary classification tasks, were
selected. The following hyperparameters were obtained:

• Full architecture (𝐶1 and 𝐶2).

7 https://github.com/kentaroy47/timm_speed_benchmark — page accessed
n January 2023.

https://pytorch.org/
https://monai.io/
https://github.com/fastai/timmdocs/
https://captum.ai/
https://github.com/kentaroy47/timm_speed_benchmark
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Fig. 6. Examples of projections for 6 × 6 mm2 acquisitions from the test set. The projector has 𝛷 = 8 filters in the first block and the classifiers are EfficientNet-{B0, B1, B2, B3}
for ensemble 1 and {ConvNeXt-base, Efficient-v2, SEResNet-152} for ensemble 2. The first row represents an eye graded as moderate NPDR. The second row represents an eye
graded as moderate NPDR with macular edema. The third row represents an eye graded as proliferative DR.
• 𝛷 = 8 filters in the first block (and therefore 2𝛷 = 16 fil-
ters in the second and 22𝛷 = 32 filters in the third), without
skip-connections.

• Logit averaging.
• Guided Backprop attribution method.
• Adam optimizer with an initial learning rate of 10−3 and an

exponential learning rate scheduler (99% multiplicative decay at
every epoch), using pre-trained weights.

• Two-step training.

4.4. Analysis of 3-D→2-D projections

Examples of 3-D→2-D projections obtained for 6 × 6 mm2 acquisi-
tions using both ensembles of classifiers are presented in Fig. 6. They
are compared with projections obtained using the U-Net-like projection
(or U-Projection) proposed by Lachinov et al. [42] for 3-D→2-D seg-
mentation, and also with projections obtained without model dropout.
Examples of 3-D→2-D projections obtained for 15 × 15 mm2 acquisi-
tions of the same eyes are presented in Fig. 7. Next, we present in Fig. 9
examples of A-scan-level attributions (see Eq. (5)) obtained for 𝐶1 with
various attribution methods. Attributions were obtained for 6 × 6 mm2

acquisitions using ensemble 2. This figure illustrates that the Guided
Backprop, DeepLIFT, and Integrated Gradients methods produce rather
similar results. The Saliency and Deconvolution methods produce more
noisy results.

4.5. Performance evaluation

Classification performance achieved in the test set for 6 × 6 mm2

and 15 × 15 mm2 acquisitions is presented in Table 2 (a). Results are
reported for both ensembles and all 𝑁 = 4 classification tasks. For a
given ensemble and a given classification task, three AUC values are
reported: the one obtained for the full classifier (predictions 𝐩(𝐼)) and
the ones obtained for each branch 𝐶1 and 𝐶2 of the classifier separately
(predictions 𝐩(1)(𝐼) and 𝐩(2)(𝐼), respectively). ROC curves for the full
classifiers are reported in Fig. 10.

To show the relevance of the second branch (classifier 𝐶2), we
compared the AUC values obtained using (1) 𝐶1 alone, (2) 𝐶2 alone,
or (3) 𝐶 and 𝐶 jointly. For each of these 3 scenarios, a set of 16 AUC
9

1 2
values is available in Table 2 (a) (2 acquisitions × 2 CNN ensembles
× 4 decisions). Wilcoxon signed-rank tests were performed to compare
two scenarios by confronting the corresponding 16 pairs of AUC values:
results are reported in Table 2 (b).

4.6. Ablation study

Additional experiments were performed with 6 × 6 mm2 acquisi-
tions, using ensemble 1, to study the impact of the main hyperpa-
rameters. Results of experiments investigating the first classification
branch 𝐶1 only are reported in Table 3, and those investigating the
second branch are reported in Table 4. Please note that results are
reported on the test, not on the validation set (used for hyperparameter
optimization), so the ranking of solutions may contradict the optimal
hyperparameter values listed in Section 4.3 (associated with test results
reported in Table 2).

In this ablation study, we only considered one acquisition and one
CNN ensemble. With only four pairs of AUC values to compare, the
previous statistical test is no longer suitable. Instead of comparing AUC
values, we thus compared ROC curves directly: Delong tests were used
for that purpose. Delong tests are designed for comparing two curves,
not two sets of curves: each set of curves was thus micro-averaged [67]
prior to Delong testing.

4.7. Comparison with a 3-D baseline

The proposed DISCOVER framework was also compared to a 3-D
baseline model in terms of classification performance and inference
times. The baseline model is a 3-D CNN processing the 3-channel 3-
D preprocessed acquisition 𝐼 , obtained as presented in Section 3.2.
We ensured that the same splits were used for training, validation,
and testing. Various backbones and hyperparameters were evaluated.
The selection process, consistent with the one applied to our proposed
method, involved choosing the optimal model based on average AUCs
and the best checkpoint for each severity cut-off on the validation set.
The most favorable results for the baseline were achieved using a 3-D
ResNet50 [60,68] for both 6 × 6 mm2 and 15 × 15 mm2 acquisitions.
This baseline and the proposed framework are compared in Table 5;
For the proposed framework, ensemble 1 was used for 6 × 6 mm2



Artificial Intelligence In Medicine 149 (2024) 102803M. El Habib Daho et al.
Fig. 7. Examples of projections for 15 × 15 mm2 acquisitions using the same hyperparameters as in Fig. 6, for the same eyes (the models are retrained for the new acquisition
size). The squares indicate the zoomed areas, which were imaged in the 6 × 6 mm2 acquisitions.
Fig. 8. Retinal lesions highlighted in the 2-D projections (for the second eye of Figs. 6 and 7). The first row shows, from left to right, the flow MIP, the LSO, and the projection
(ensemble 1). The second row shows B-scans. Macular edemas (A and B) are visible in the first B-scan (horizontal red line). Large microaneurysms (C and D) are visible in the
following B-scans (horizontal green and blue lines, respectively).
acquisitions and ensemble 2 was used for 15 × 15 mm2 acquisitions,
as these are the best ensembles on the validation sets. Classification
performances are compared using both Delong tests and a Wilcoxon
signed-rank test.

5. Discussion

We have presented a general 3-D image classification framework,
which combines a trainable 3-D→2-D en-face projection step, followed
by a 2-D en-face image classification step. It is further complemented by
10
an auxiliary branch that extracts key 2-D cross-sectional slices (B-scans)
and classifies them. The main purpose is to summarize 3-D infor-
mation by complementary 2-D images (en-face and cross-sectional),
for improved interpretability. This novel framework was applied to
automated DR severity assessment using 3-D Optical Coherence To-
mography Angiography (OCTA) acquisitions. This work aligns with
our previous works on interpretable or explainable DR severity assess-
ment [7,69]. But unlike these previous works, which operated on 2-D
Color Fundus Photographs (CFP), this work is applied to 3-D OCTA
acquisitions. The additional dimension complicates visual feedback to
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Table 2
Performance of the proposed framework in terms of area under the ROC curve (AUC) in the test set (a). Impact of the classification branches on performance.

(a) Performance

Acquisition Backbones Classification ≥ mild ≥ moderate ≥ severe ≥ PDR
branches NPDR NPDR NPDR

6 × 6 mm2

EfficientNet- 𝐶1 0.946 0.913 0.809 0.815
{B0, B1, B2, B3} 𝐶2 0.798 0.764 0.675 0.589

{𝐶1 , 𝐶2} 0.958 0.920 0.808 0.821

{ConvNeXt-base, 𝐶1 0.935 0.849 0.768 0.749
Efficient-v2, 𝐶2 0.824 0.737 0.734 0.816
SEResNet-152} {𝐶1 , 𝐶2} 0.951 0.862 0.812 0.796

15 × 15 mm2

EfficientNet- 𝐶1 0.918 0.815 0.767 0.948
{B0, B1, B2, B3} 𝐶2 0.766 0.726 0.725 0.848

{𝐶1 , 𝐶2} 0.925 0.822 0.782 0.952

{ConvNeXt-base, 𝐶1 0.912 0.800 0.880 0.947
Efficient-v2, 𝐶2 0.867 0.774 0.658 0.676
SEResNet-152} {𝐶1 , 𝐶2} 0.941 0.822 0.876 0.957

(b) Comparison

Classification Wilcoxon
Branches test (𝑝)

𝐶1 𝐶2 0.00031*

𝐶1 {𝐶1 , 𝐶2} 0.00015*

* Significant difference, according to a Wilcoxon signed-rank test on the paired AUC values (𝑝 < 0.05).
Table 3
Influence of various hyperparameters on the area under the ROC curve (AUC) in the test set — analysis of the first classification branch 𝐶1 only
(no B-scan selection). Experiments were performed for 6 × 6 mm2 acquisitions and the EfficientNet-{B0, B1, B2, B3} backbones (ensemble 1).
The first line corresponds to the optimal values (based on experiments on the validation set). Investigated parameters are in bold. U-Projection
denotes the U-Net-like projection proposed by Lachinov et al. [42].
𝛷 Number U- Model From Probability ≥ mild ≥ moderate ≥ severe ≥ PDR Delong

of filters Projection? dropout? scratch? averaging? NPDR NPDR NPDR test (𝑝)

8 {8,16,32} no yes no no 0.946 0.913 0.809 0.815

4 {4,8,16} no yes no no 0.865 0.799 0.755 0.860 0.0401*
16 {16,32,64} no yes no no 0.942 0.893 0.798 0.770 0.1416
32 {32,64,128} no yes no no 0.937 0.913 0.836 0.839 0.9100

8 {8,16,32} yes yes no no 0.851 0.774 0.754 0.769 0.0266*

8 {8,16,32} no no no no 0.856 0.834 0.718 0.731 0.0004*

8 {8,16,32} no yes yes no 0.804 0.752 0.725 0.854 < 0.0001*

8 {8,16,32} no yes no yes 0.921 0.867 0.836 0.817 0.0072*

* Significant difference with the reference (first line), according to a Delong test on the micro-averaged ROC curves (𝑝 < 0.05).
Table 4
Influence of various hyperparameters on the AUC in the test set — analysis of the second classification branch 𝐶2 (jointly with 𝐶1). Experiments
were performed for 6 × 6 mm2 acquisitions and the EfficientNet-{B0, B1, B2, B3} backbones (ensemble 1). The first line corresponds to the
optimal values (based on experiments on the validation set). Investigated parameters are in bold. Argmax B-scan selection refers to a deterministic
selection of B-scans during training, like during inference (see Eq. (7)).

One-step? B-scan Attribution ≥ mild ≥ moderate ≥ severe ≥ PDR Delong
selection method NPDR NPDR NPDR test (𝑝)

no random Guided backprop 0.958 0.920 0.808 0.821

yes random Guided backprop 0.930 0.855 0.809 0.846 0.0004*

no argmax Guided backprop 0.945 0.914 0.813 0.813 0.2411

no random Saliency 0.954 0.920 0.808 0.815 0.8705
no random Deconvolution 0.953 0.918 0.810 0.816 0.8541
no random DeepLIFT 0.955 0.918 0.811 0.825 0.9723

* Significant difference with the reference (first line), according to a Delong test on the micro-averaged ROC curves (𝑝 < 0.05).
human readers: the relevant information needs to be summarized so
that it can be displayed on a 2-D screen or printed in a report. The
proposed framework mimics and generalizes how ophthalmologists
analyze OCTA acquisitions: en-face projections are often used to inspect
the blood flow; cross-sectional views are often used to inspect structural
anomalies.

Besides improved interpretability, by design, we show that this
framework guarantees improved classification performance, compared
to direct 3-D image classification. This can be explained by the large
volume of information in OCTA acquisitions, which complex 3-D neu-
ral architectures cannot process efficiently with limited dataset sizes
and limited GPU memory capacities. Summarizing also helps for this
11
purpose. In particular, it allows access to a large collection of highly
efficient 2-D neural architectures, with ImageNet pre-trained weights.

5.1. Analysis of 2-D projections

Two types of OCTA acquisitions were analyzed in this study: high-
resolution acquisitions centered on the macula (6 × 6 mm2) and lower-
resolution ultra-widefield acquisitions (15 × 15 mm2). Fig. 6 shows
that normal and pathological retinal features are highly visible in en-
face projections for 6 × 6 mm2 acquisitions (columns 3 and 4). This
figure highlights the benefit of processing each A-scan independently
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Table 5
Comparison between the proposed DISCOVER framework and a 3-D CNN baseline in terms of classification performance in the test set (AUC) and
in terms of inference times. Inference times are given in seconds per volume, excluding preprocessing (see Section 3.2), which is common for both
frameworks. For information, inference times are 0.130 seconds/volume for ensemble 2 on 6 × 6 mm2 acquisitions and 0.187 seconds/volume
for ensemble 1 on 15 × 15 mm2 acquisitions.

Acquisition Framework Criterion AUC Delong Wilcoxon Inference times
test (𝑝) test (𝑝) (seconds/volume)

6 × 6 mm2

≥ mild NPDR 0.865

0.1164

0.0078*

2.038Baseline ≥ moderate NPDR 0.809
(3-D CNN) ≥ severe NPDR 0.764

≥ PDR 0.753

≥ mild NPDR 0.958

0.095Proposed ≥ moderate NPDR 0.920
(ensemble 1) ≥ severe NPDR 0.808

≥ PDR 0.821

15 × 15 mm2

≥ mild NPDR 0.820

0.0473*

2.876Baseline ≥ moderate NPDR 0.786
(3-D CNN) ≥ severe NPDR 0.765

≥ PDR 0.886

≥ mild NPDR 0.941

0.251Proposed ≥ moderate NPDR 0.822
(ensemble 2) ≥ severe NPDR 0.876

≥ PDR 0.957

* Significant difference between the baseline and the proposed approach, according to a Delong test on the micro-averaged ROC curves or
according to a Wilcoxon signed-rank test on the paired AUC values (𝑝 < 0.05).
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ig. 9. Comparison of a few attribution methods described in Section 2.2, computed for
6 × 6 mm2 acquisition (𝛷 = 8, ensemble 2: {ConvNeXt-base, Efficient-v2, SEResNet-

52}). Each pixel intensity represents the sum of attributions computed for the 𝑁 = 4
odel outputs (one output per DR severity cutoff), see Eq. (5). The ‘jet’ color map,

anging from blue (0) to red (255), is used.
12

p

hrough 1-D convolutions: all details are lost through U-Net-like pro-
ections (U-Projection in column 5). The last column also advocates the
oint training of multiple 2-D classifiers through the proposed ‘‘model
ropout’’ mechanism: by training a single classifier (or static ensemble
f classifiers), relevant details may be lost, as the unique classifier may
ocus on a subset of discriminant features and let the 3-D→2-D projector
gnore the others, while still obtaining good classification performance
see Table 3).

Through comparison of Figs. 6 and 7, it appears that 15 × 15 mm2

n-face projections offer a reduced level of details. This makes sense,
iven the reduced resolution of input images (along all three axes). It is
lso possible that the 3-D→2-D projector was not able to capture details
qually well: the problem is not just a reduced resolution of normal
nd pathological retinal features, but also a reduced contrast between
hese features and the background. However, Fig. 7 suggests that large
nd peripheral pathological features are well captured in 15 × 15 mm2

cquisitions, explaining that advanced DR stages are detected well in
hose acquisitions (see Table 2).

By design, the proposed 3-D→2-D projection operator 𝛱 , which
rocesses each A-scan independently, does not take the context of
hese A-scans into account. However, the classification branch 𝐶1 does:
y training 𝐶1 ◦𝛱 jointly, 𝛱 can be trained to extract information
llowing localization. For instance, we can see that color in 𝛱 varies
ith the retinal thickness (see Figs. 6 and 7): this could be useful to

apture pathological features (like macular edemas), but certainly also
o localize them relatively to the normal retinal features. Indeed, the
linicians collaborating in this study affirm that this method markedly
nhances the visibility of retinal lesions, as shown in Fig. 8. As it
s apparent, pathological features are well preserved and highlighted,
hile additional details from the B-scans complement the classifier,

einforcing the need for automated B-scan selection.
To validate the usefulness of proposed 3-D→2-D projections for

ecision support, the next step will be to compare the classification
erformance of clinicians when they use these projections for decision
upport versus when they do not. Although it is clear that the relevant
bnormal structures stand out well in these images, the color-coding
f retinal features derived from these projections may be disturbing
or some clinicians. For instance, Fig. 6 leads to unusual nebula-like
mages using ensemble 2 (column 4). For such a validation study,
t may be useful to reorder color channels before human inspection,
or instance, to produce more conventional-looking images. However,
hese considerations are out of the scope of an artificial intelligence
aper.
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Fig. 10. Receiver Operating Characteristic of the proposed system in the test set using EfficientNet-{B0, B1, B2, B3} (ensemble 1) or {ConvNeXt-base, Efficient-v2, SEResNet-152}
(ensemble 2) for 6 × 6 mm2 and 15 × 15 mm2 acquisitions.
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One important property illustrated in Figs. 6 and 7 is that the same
eatures (normal anatomical features like blood vessels, or pathological
eatures like DR lesions) have consistent appearances in 2-D projec-
ions across patients (i.e., across lines of these figures). However, the
ppearance of these features clearly depends on the architecture of
he projection operator (i.e., their appearance varies across columns
f these figures). Similarly, their appearance depends on the weights
rained for the projection operator. If one decides to retrain or fine-
une the proposed framework on a larger dataset, it may be beneficial
o freeze the projection weights and only retrain the classification
nsembles. This will ensure that the proposed 2-D visualization remains
tandardized.

.2. Detailed analysis of the framework

Table 2 demonstrates that the first classification branch (𝐶1), which
nalyzes the 3-D→2-D projection, contributes the most to the final
lassification. This suggests that the proposed 3-D→2-D projections
ontain most of the discriminant information contained in 3-D OCTA
cquisitions for the target classification task, which is good news for
nterpretability purposes: one single 2-D image conveys most of the
elevant information. However, we have shown that combining the two
ranches leads to a significant increase in classification performance
13

l

𝑝 = 0.00015, see Table 2). The superiority of branch 1 is particularly
true in the two-step training schedule, which was adopted: at first,
branch 1 is trained independently, to maximize classification perfor-
mance; branch 2 (𝐶2), which analyzes selected B-scans, is only trained
fterward, to be complementary to the frozen branch 1. In other words,
ranch 2 was not trained to be discriminant on its own.

An ablation study was performed to analyze the benefits of most
ethodological choices in the proposed design. Table 3 suggests that

lassification performance is impacted by the complexity of the pro-
ector, driven by parameter 𝛷, but no significant difference was found
ith more than 𝛷 = 8. Next, the U-Net-like projector and the absence of
odel dropout, which clearly affect the quality of en-face projections,

lso decrease classification performance significantly. The use of Ima-
eNet pre-trained weights and logit averaging also proved beneficial.
able 4 suggests that the performance of the second classification
ranch is little dependent on the attribution method used. As for the
andom selection of B-scans during training, it seems beneficial, but
o significant difference was observed. The most influential parameter
n Table 4 is the choice between one-step and two-step training (p

0.0004). The two-step approach has the advantage of more stable
raining; in particular, one instance of training divergence was ob-
erved with the one-step approach. This may explain the increased
erformance with two steps. On the downside, two-step training implies
onger training times (by a factor of two, approximately). Therefore,
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Table 6
Comparison of DR severity assessment methods using OCTA. The following abbreviations are used: rDR = referable DR; vtDR = vision-threatening
DR; PDR = proliferative DR; NPDR = non-proliferative DR; acc = accuracy; AUC = area under the ROC curve.

Reference Dataset Acquisition Method Criterion Performance

Heisler et al. [30] 380 eyes (463 scans) 3 × 3 mm2 2-D CNN ≥ rDR acc = 0.92

Le et al. [27] 177 eyes (177 scans) 6 × 6 mm2 2-D CNN ≥ mild NPDR AUC = 0.97

Andreeva et al. [28] 113 patients (320 scans) 3 × 3 mm2 2-D CNN ≥ mild NPDR AUC = 0.83

Lo et al. [20] 700 eyes (700 scans) 3 × 3 mm2 2-D CNN ≥ rDR AUC = 0.954-0.960

Ryu et al. [29] 360 scans
3 × 3 mm2

2-D CNN

≥ mild NPDR AUC = 0.928-0.960
≥ rDR AUC = 0.940

6 × 6 mm2 ≥ mild NPDR AUC = 0.926-0.967
≥ rDR AUC = 0.938-0.976

Ryu et al. [26]
918 eyes 3 × 3 mm2 radiomics

DR staging

acc = 0.574
2-D CNN acc = 0.684

917 eyes 6 × 6 mm2 radiomics acc = 0.531
2-D CNN acc = 0.728

Yasser et al. [31] 91 patients 3 × 3 mm2 2-D CNNa ≥ mild NPDR acc = 0.944

Zang et al. [32] 355 patients (355 scans) 3 × 3 mm2 3-D CNN ≥ rDR AUC = 0.96
≥ vtDR AUC = 0.92

Li et al. [23] 300 scans 3 × 3 mm2 or 2-D CNNa ≥ mild NPDR AUC = 0.926 × 6 mm2

Li et al. [33] 64 patients (151 scans) 6 × 6 mm2 3-D CNN ≥ PDR AUC = 0.911

Khalili Pour et al. [21] 78 patients/148 eyes 6 × 6 mm2 radiomics PDR v.s. NPDR acc = 0.85

Li et al. [34] 432 patients/801 eyes 3-D CNN

≥ mild NPDR AUC = 0.912
6 × 6 mm2 and ≥ moderate NPDR AUC = 0.829
15 × 15 mm2 ≥ severe NPDR AUC = 0.812

≥ PDR AUC = 0.900

Proposed

472 patients/894 eyes 6 × 6 mm2

≥ mild NPDR AUC = 0.958
≥ moderate NPDR AUC = 0.920

3-D→2-D ≥ severe NPDR AUC = 0.808
projection ≥ PDR AUC = 0.821

453 patients/831 eyes 15 × 15 mm2

& ≥ mild NPDR AUC = 0.941
2-D CNN ≥ moderate NPDR AUC = 0.822

≥ severe NPDR AUC = 0.876
≥ PDR AUC = 0.957

a Feature segmentations are used as inputs.
o
i
R
1

e recommend investigating both approaches when replicating these
esults.

.3. Comparison with previous algorithms

Although DR severity assessment using OCTA is a recent topic, a
ew classification results have already been published, using a variety
f DR severity cutoffs; those results are reported in Table 6. It should
e noted that they were generally obtained on small datasets and that
ata collection often included a data selection process based on image
uality. For instance, Ryu et al. [29] imaged 496 eyes, but only 360
cans were retained for further analysis, indicating a rejection rate of
7% (or more, if some patients were imaged more than once). The
umber of images rejected for quality reasons is not always mentioned:
or instance, Le et al. [27] only indicated a quality threshold. These
actors make comparisons between algorithms challenging. However,
t appears that the proposed framework allows similar or better clas-
ification results than previously published algorithms, regardless of
he type of analysis (2-D CNN, 3-D CNN, or radiomics). Two tasks are
articularly well addressed by our framework: ≥ mild NPDR detection
AUC = 0.958) and ≥ PDR detection (AUC = 0.957). It should be
oted that, besides results from our team [34], on a subset of the
resented dataset, this is the first publication about ultra-widefield
CTA acquisitions (15 × 15 mm2) on the topic. This type of acquisition

eems promising for detecting advanced DR stages.
In order to thoroughly assess the performance of our proposed

ethod, we have also conducted a direct comparison with a baseline
-D CNN model, on the same test set (see Section 4.7). We have
14

emonstrated the superiority of the proposed DISCOVER framework
ver that baseline, both in terms of classification performance and
n terms of inference times (see Table 5). In detail, when comparing
OC curves using Delong tests, a significant difference was found for
5 × 15 mm2 acquisitions, but not for 6 × 6 mm2 acquisitions (p =

0.1164). However, when looking solely at the AUC, using a Wilcoxon
signed-rank test, a significant difference was found overall in favor of
DISCOVER. As for inference times, they are up to 20 times faster using
DISCOVER. We believe that our proposed pipeline, which employs
a 3-D→2-D summarization in conjunction with a 2-D classification,
surpasses the performance of direct 3-D classification models, such as
the baseline, for several reasons:

1. By incorporating the strengths of both en-face projections and
cross-sectional slices, our method captures more pertinent infor-
mation from the OCTA volumes.

2. Our method features a lighter architecture compared to 3-D
neural networks, resulting in a reduced propensity for overfitting
and increased adaptability to smaller datasets. The utilization of
pretrained 2-D backbones further bolsters this advantage.

3. The end-to-end training approach allows our pipeline to acquire
more discriminative features, thereby enhancing DR severity
assessment.

5.4. Limitations and future works

This study has a few limitations. First, due to long training times
and high resource consumption, no cross-validation or advanced hy-
perparameter optimization strategy (like Bayesian optimization) was
adopted, so chances are that hyperparameter optimization is subopti-

mal. Thus, in the test set, we observe a better performance with 𝛷 = 32
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initial filters for two classification labels (≥ severe NPDR and ≥ PDR),
compared to the hyperparameter value 𝛷 = 8 selected in the validation
set (see Table 3). A second limitation is that the dataset is limited
in size, which impacts both training and performance evaluation. A
third limitation is the use, for training and evaluation, of a DR severity
scale known to be suboptimal for DR management due to its limited
predictive power.

Addressing the latter two points is the purpose of the Evired
project8: we are collecting longitudinal data from thousands of diabetic
patients to define a more predictive DR severity scale. The end goal
will be to predict the advent of two DR complications in the following
year: proliferative DR and DME. Therefore, ultimately, the proposed
framework will be trained to solve a novel 2-label prognosis task (𝑁 =
). The interpretability of the proposed framework will be particularly
seful in discovering which features are found to be predictive.

The use of Transformers could also be investigated in future works.
NNs were used in this paper for convenience: they can generally be
pplied to images of any size without adaptation. Besides, Transformers
ften require larger datasets, adding to their computational demands.
iven our dataset and computational constraints, the use of CNNs thus
roved to be a more practical choice, but this may change in the future.

. Conclusion

This work presents a novel framework for 3-D image classification,
ith improved interpretability and classification performance. This

ramework is particularly suited to the analysis of OCT/OCTA images
n ophthalmology: its usefulness was demonstrated for DR severity
ssessment. We expect it to be useful for other 3-D medical image
lassification tasks in the future.

Moving forward, the prospective validation of this framework
hrough a clinical study is an essential next step. Such a study would
valuate whether the selected 2-D projections and B-scans that form
he core of our approach indeed provide meaningful and actionable in-
ormation for clinicians. This validation would support our contention
hat the methodology not only aids in image classification but also
ontributes significantly to the interpretability of the results, an aspect
hat is of high importance for doctors involved in diagnostic processes.

Moreover, while the proposed approach has demonstrated promis-
ng results, the generalizability of our method will need further as-
essment. Before our framework can be integrated into routine clinical
ractice, it is vital to evaluate its performance on an independent
opulation. This evaluation would ensure that the framework is robust
nd reliable across different populations and clinical contexts and is
ot limited to the specific cases and data sets upon which it has been
eveloped and tested.
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