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Uncoordinated Spectrum Access for Massive
Connectivity in IoT Applications

Joseph Doumit, Marie-Josepha Youssef, Charbel Abdel Nour, Joumana Farah, Catherine Douillard

Abstract

Boosted by the Internet of Things (IoT), future cellular communication networks will be able to support new services with
high social impact. Corresponding applications are expected to span almost every domain, especially the most critical ones, such
as the medical field or smart factories. However, their adoption is conditioned by strict compliance with stringent quality of service
(QoS) requirements for the underlying network. In particular, the achieved throughput and latency are of utmost importance for
efficient monitoring with multiple sensors in a variety of application areas. In this paper, we propose an intelligent self-configurable
system structure, achieved through resource allocation techniques using machine learning, and capable of flexibly fulfilling such
requirements. In addition, special care was taken to minimize the transmit power of the IoT devices while efficiently supporting
different application-dependent traffic types, an essential prerequisite for any wide adoption of such systems with massive network
access.

INTRODUCTION

Internet of Things (IoT) devices are expected to account for
the largest part of mobile traffic in the fifth generation (5G)
and beyond 5G (B5G) networks [1]. Following a trend already
started with 5G, the sixth-generation (6G) is expected to go
beyond people-to-people communication to connect devices,
sensors, vehicles, computing resources, and robotic agents
[2]. Therefore, 6G will require technologies enabling the
support of a massive deployment of IoT devices with different
requirements in terms of data rate, latency, and reliability. To
do so, various techniques can be smartly combined to pave the
way for scalable and self-configurable massive IoT systems.

To increase system capacity for massive systems, the con-
cept of non-orthogonal multiple access (NOMA) has been
introduced to support more devices than the number of
available orthogonal resources in time and frequency. NOMA
allows multiple devices to share the same time and frequency
resources via power domain or code domain multiplexing [3].
Regardless of the adopted NOMA technique, it increases the
receiver complexity, required to recover the non-orthogonal
signals. In this paper, we focus on power-domain NOMA in
the uplink and will be denoted by NOMA in the following for
brevity.

In addition to NOMA, relaying can be useful in massive
communication settings. Indeed, it can reduce network con-
gestion at the base station (BS) level, extend cellular coverage
and increase achieved rates thanks to shorter point-to-point
transmissions. Mobile relays that can be deployed quickly and
efficiently, such as drones, can also restore communications
in damaged network infrastructures [4]. To achieve high data
rates, reduce latency and increase spectral efficiency, full-
duplex relays, simultaneously transmitting to the BS and
receiving from IoT devices on the same frequency resource,
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can be implemented. However, full-duplex relays suffer from
self-interference, which must be mitigated [4].

On a different note, the development of scalable networks
having variable numbers of devices and traffic types is essen-
tial for unleashing the potential of IoT. Uncoordinated or grant-
free spectrum access strategies can be suited to this context.
Indeed, since such strategies do not require any coordination at
the level of the nodes in the network, signaling overhead and
communication latency can be significantly reduced, compared
to conventional access schemes [5]. Moreover, to reduce plan-
ning and maintenance costs, such networks can be equipped
with self-organizing capabilities, enabling efficient resource
sharing through power and spectrum allocation in a distributed
manner. To that end, techniques such as reinforcement learning
(RL) [6] can be particularly appealing.

Hence, by using NOMA in a grant-free communication
setting with relays, systems supporting scalable and self-
configurable massive access can be efficiently devised. How-
ever, such complex systems need to be thoroughly designed
in order to meet the quality of service (QoS) requirements for
IoT applications. The design of such a system represents the
main focus of this work.

Prerequisites and System Components

1) NOMA: For an efficient uplink NOMA, the multiplexed
devices are allocated different power levels according to their
channel conditions and are directly superimposed after classic
channel coding and modulation [7]. Figure 1 illustrates the
principle of NOMA for the uplink. At the receiver, multi-
user detection algorithms such as successive interference
cancellation (SIC) are used to cancel multi-user interference
and separate the different signals. SIC exploits the signal-to-
interference-plus-noise ratio (SINR) difference between users
to recover the transmitted signals. To ensure successful SIC,
the signals of devices transmitting on the same channel must
be received with different power levels. Therefore, if two or
more devices transmitting on the same channel choose the
same power level, a collision occurs, leading to a failed signal
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Fig. 1: Illustration example of uplink NOMA principle
with four power levels per subband. The devices’ signals
are superimposed in the power domain on the frequency
resources at each time slot. Each device is associated with
a power level on one subband and the height of each box
represents the value of the received power.

decoding [8]. In the case of a collision, devices with signals
having weaker received power levels than the colliding signals
cannot be recovered either. These penalizing repercussions can
impact upper-level signals if their target SINR is not met.
Therefore, signal collisions should be minimized.

2) RL: RL is a framework where one or multiple learning
agents interact with an environment in order to achieve a
certain goal, usually represented by the maximization of a nu-
merical reward. Knowing the environment status, the learning
agent chooses its action based on a given strategy. Depending
on the chosen action, it receives a reward and moves to a
new state. This cycle is then repeated. That said, actions
that achieve the highest rewards are not known beforehand.
This motivates a two-phase approach consisting of exploration
and exploitation phases [6]. The exploration phase intends to
progressively adapt and define a rewards mapping based on
the actions undertaken. This mapping depends on the average
of previous rewards obtained during a sliding window and
the strategy of the agent. Then, the exploitation phase is the
phase where the agent continuously chooses the action having
the highest reward for future plays. Many studies resort to
the multi-armed bandits (MAB), a RL framework applied in a
single-state environment [9], to solve the problem of channel
allocation in ad-hoc networks and treat the exploration and
exploitation phases separately to learn the channels [10] and
to manage the strategy for edge users [11].

3) Relaying and RL: One of the main drawbacks of the MAB
framework resides in the necessity to perform an exploration
phase for each variation of one of the essential system parame-
ters, e.g., the number of active devices at the relay level or the
transmission conditions including the channel model. To cir-
cumvent the need for an exploration phase when the number of
active devices varies, we propose to introduce relays equipped
with queuing capabilities to help prevent or at least reduce data
loss in case of system congestion, hence efficiently managing
sporadic traffic. This can be of particular interest since it

enables a higher level of flexibility and scalability for the MAB
framework in managing the underlying network congestion.
However, since it requires memory buffers, queuing tends to
increase the transmission link latency, which can considerably
hinder the performance of some IoT applications. To this
effect, we propose to introduce specific latency-related design
constraints for the scheduling algorithm deployed at the relays.
To evaluate the efficiency of the proposed algorithms, the age
of information (AoI) is investigated at the receivers. AoI is
a metric used to measure the information freshness when it
reaches the destination [12]. It is defined as the time elapsed
since the latest useful piece of information, that reached its
intended destination, has been generated at its source. AoI
is particularly relevant in applications in which information
is time-varying and where the timeliness of information is
crucial, such as vehicular monitoring systems or industrial
sensor networks [13]. The target framework accounts for the
AoI constraints, depending on the type of considered traffic.

Contributions

Previous research has not considered the utilization of full-
duplex relays in an uncoordinated uplink NOMA system
with transmit power limitations and AoI restrictions for de-
vices with heterogeneous traffic types. Thus, in this work,
we investigate such a system. The focus is on enabling
IoT devices to autonomously organize their communications
with available relays in an uncoordinated spectrum access
environment. The system includes a mixture of traffic types,
including continuous, sporadic, and periodic transmissions.
Furthermore, each IoT device operates under a limited power
budget. We propose a multi-step algorithm for uplink massive
IoT communication systems capable of supporting different
traffic types while leveraging new intelligent self-configurable
network architectures. The main contribution of this article
concerns the proposal of efficient methods to:

• enable a flexible and scalable communication network
that handles devices having multiple traffic types with
latency and power constraints while reducing the data
loss and the congestion at the level of the relays in a
distributed communication system,

• allocate the available spectrum and power resources to the
devices in an uncoordinated manner while maximizing
achieved rates and minimizing transmit power,

• reduce the AoI for the IoT devices having latency con-
straints by using the MAB framework.

SYSTEM MODEL

In the following, we consider an uplink communication
system with a BS, full-duplex relays uniformly deployed over
the cell and a certain number of IoT devices, as shown
in Fig. 2. Depending on the targeted application, the IoT
devices generate different traffic types: continuous, periodic
and sporadic. Devices with continuous traffic type transmit
their signals non-stop, such as cameras for video surveillance
applications. Devices with a non-continuous traffic type are
mainly sensors. A periodic traffic type is defined by the
periodicity and the duration of the signal transmissions while
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Fig. 2: Uplink communication system model with one BS and two relays, with a certain number of devices having different
traffic nature.

devices with sporadic traffic are assigned a probability of
access to the spectrum. Moreover, it is assumed that the totality
of a sporadic-type message can be transmitted during one
time slot. The relevance of these three types of traffic can be
illustrated with an application example in an e-health context:
the remote monitoring of a medical act. One can imagine that
the intervention is filmed by cameras that send a continuous
stream, whereas specific sensors send periodic information
about the patient (e.g., blood pressure) and vital sign changes
are remotely managed by sensors sending sporadic control
signals.

We also consider that, due to inconvenient radio conditions
between the BS and the IoT devices with respect to the
available transmit power, the devices cannot transmit their
signals directly to the BS. Hence relays are introduced to
forward the messages to the BS. A two-hop communication
network is, therefore, set up with two types of links: links from
IoT devices to relays (relay uplinks) and links from relays to
BS (backhaul links). We assume that all transmission links
undergo large-scale fading, due to path loss and shadowing,
and the corresponding channel gain is assumed to be perfectly
estimated for all links.

As mentioned earlier, spectrum access is fully uncoordi-
nated: IoT devices must therefore arrange communications
without exchanging information with each other and without
any coordination at the level of the BS or the relays. To do
so, each IoT device is allowed to communicate with one relay
over one frequency subband.

For relay uplinks, multiple access is provided through
NOMA. At the relay, a limited number of received power
levels is allowed and SIC decoding is performed in the
decreasing order of power levels. The transmitting devices
are assumed to have an exact knowledge of their channel
gains with the relays as well as the received power levels
at the relays in order to control their transmit power level.
The number of received power levels at the relays is the result
of a trade-off. On one hand, IoT devices are power-limited.
On the other hand, there is an interest in having as many
power levels as possible in order to satisfy the requirements
in terms of spectral efficiency and massive connectivity. Let L
be the number of received power levels available per channel
at the relay. We also consider that continuous traffic has
priority over periodic and sporadic traffic. For this purpose, the
L−1 highest power levels are dedicated to devices delivering
continuous traffic and the L-th weakest level is only available
for non-continuous (sporadic/periodic) traffic. This NOMA
model ensures that the minimum rate required for continuous-
traffic devices is guaranteed even if multiple collisions occur
on the lowest power level. The maximum number of handled
collisions depends on the average number of active devices
generating non-continuous traffic.

As already mentioned, each relay operates in full-duplex
mode. It receives the NOMA superimposed signals from the
IoT devices, decodes these signals using SIC, and stores them
in the relay memory buffer. The contents of the buffer are
then transmitted to the BS on the same frequency band over
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a number of time slots that depends on the QoS requirements
of the IoT devices, the number of correctly decoded signals
at the relay, the backhaul channel conditions and the power
budget of the relay.

For backhaul links, each relay is assigned a frequency
subband, and a conventional orthogonal multiple access is
implemented. Thereby, backhaul links do not suffer from inter-
relay interference. Moreover, since the relays operate in a full-
duplex mode, the same subbands are used in the uplink and
backhaul links.

With the proposed system model, the overall instantaneous
AoI of an IoT device is computed as the summation of the
AoIs for the relay uplinks and backhaul links that carry the
data sent by the device. For the relay uplink, the AoI depends
on the number of collisions the message undergoes before
being successfully decoded at the relay. It can be reduced by
optimizing the subband and power level allocations and by
minimizing the number of signal collisions. For the backhaul
link, AoI is directly related to the congestion level of the
buffer. It is measured as the time that a message has to be
stored in the buffer before being sent to the BS.

The main features of this system model are summarized in
Table I.

TABLE I: System features

Feature Type or nature

Type of system Uplink with uncoordinated spec-
trum access and NOMA

Traffic Mixed: continuous, periodic and
sporadic

Links Relay uplink: IoT device → relay

Backhaul link: relay → BS

Relay mode Full duplex

Channel state infor-
mation

Perfectly estimated at the receiver

Optimization prob-
lem

Subband/power level pair allocation

Objective function Traffic type-dependent device satis-
faction with best possible spectral
efficiency

THE RESOURCE ALLOCATION PROBLEM

A major problem to be solved in uncoordinated access
systems is the allocation of communication resources to the
different devices of the system, especially frequency subbands
and power levels, taking the specificity of their traffic type
into account. The QoS requirements are different for devices
generating continuous traffic and those transmitting data in
periodic or sporadic mode. The proposed resource allocation
approach is formulated using the MAB framework, and solved
with one of the most common algorithms called the upper con-
fidence bound (UCB) algorithm [14]. In the MAB framework,
agents are called players and executing an action consists in

playing an arm. In the UCB algorithm, one has first to define
the set of players, the set of arms and the rewards. In our
system, the players are the IoT devices. Each device has to
transmit on one frequency subband/power level combination.
Hence, the set of arms is the set of available combinations of
frequency subbands/power levels or, equivalently, relays/power
levels. The nature of the rewards depends on the type of
devices. Since devices generating continuous traffic are mainly
dedicated to the more rate-hungry applications, their reward is
the rate assigned to the device. For non-continuous traffic, we
focus on applications requiring relatively low throughput but
strict latency. In this case, the reward also includes the AoI.
In addition, other constraints have to be taken into account,
such as the power budget of the devices and relays. Thus,
the algorithms are proposed in uncoordinated communication
systems to achieve system stability and minimize the AoI.
The allocation of the resources for continuous traffic-type de-
vices guarantees system stability with no continuous overflow,
whereas the allocation for non-continuous traffic-type devices
is designed to meet the AoI constraints.

CONTINUOUS TRAFFIC: SYSTEM STABILITY

The first objective is to set up a stable system, where the
relay buffers do not suffer from persistent overflows. To do so,
the rate requirements of devices generating continuous traffic
should not exceed the capacity of the backhaul link.

The proposed solution is based on the UCB approach, where
the IoT devices with continuous traffic form the set of
players. In practice, since each IoT device has a specific power
budget and because of possible bad radio conditions, some
power levels may not be available for all devices. Therefore,
each device forms its own set of available arms from the
L − 1 highest power levels according to its power budget
and the radio channel conditions to the relays. In our system,
the reward received by a device when it plays an arm is the
rate achieved by the device, given by Shannon’s formula as
developed in [8].

In case two or more devices play the same arm, a collision
occurs, resulting in a zero reward for devices with non-
decodable signals. The main challenge is then the choice of
the decision function that makes a device choose a frequency
subband/power level pair. Every IoT device with continuous
traffic aims to achieve a transmission rate at least equal to the
requested one while spending the least amount of transmit
power. Thus, two parameters should be considered in the
design of the decision function: the rate achieved by the device
and its transmit power which is the chosen received power
level inversely proportional to the square of the channel gain.
The minimum value of the transmit power is reached when
the device selects the radio channel with the highest gain, i.e.,
the best radio channel. However, if each device chooses its
best arm with respect to its channel gain, system convergence
cannot always be guaranteed. Hence, IoT devices should
choose their subband/power level pair to strike a compromise
between the transmit power and the achieved rate. In practice,
the trade-off is obtained via a weight β, whose value depends
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Fig. 3: Flowchart of the applied algorithms in coordinated
and uncoordinated settings.

on system requirements and which can be adjusted by the
system operator:

decision = (1− β)×Reward− β × Power. (1)

In addition, in order to prevent the overflow of buffers at
the relay level due to a mismatch between the aggregated
continuous traffic rate and the capacity of the backhaul link
and, therefore, to guarantee the stability of the system, a
specific procedure has been implemented. When buffering
occurs and the memory contents reach a specified threshold, a
certain number of IoT devices with continuous traffic type
are invited to transmit to a less congested relay to avoid
any overflow. However, since the system is uncoordinated, no
information is shared between the devices and the involved
relay. Therefore, the devices need to learn alone that they need
to choose another relay. To do so, when the relay has reached
its filling threshold, a zero reward (instead of the achieved
rate) is assigned to all the connected devices for a limited
period, called timeout period. Its duration is a function of
the system parameters and the number of connected devices.
During the timeout period, the IoT devices connected to the
relay are invited to run a new exploration phase and to discover
new suitable arms. By playing new arms associated with less
congested relays, the devices reach a new stable state of the
system able to satisfy the required constraints. Once reached,
a new exploitation phase can begin.

NON-CONTINUOUS TRAFFIC: AOI MINIMIZATION

The proposed solution is also based on the UCB approach,
where the IoT devices with non-continuous traffic types
form the set of players.

The set of arms is different from that of devices with
continuous traffic because only the L-th and weakest power

level of each subband is available for IoT devices with
non-continuous traffic. However, some subbands may not
be available for some devices since periodic and sporadic
transmissions need to efficiently share the available resources.
In fact, collision management, channel quality and available
device power budget may introduce restrictions related to
subband access.

As a major shift from the case of continuous traffic devices,
the reward for non-continuous traffic devices also accounts
for the AoI. In practice, we have implemented a reward
function proportional to the achieved rate and inversely
proportional to the AoI. Hence, if a relay is congested, the
AoI of connected devices tends to increase over successive
time slots. Then, the corresponding reward decreases during
these time slots and the device is encouraged to play new arms
associated with less congested relays.

Significant improvement can still be achieved by devising
a reward dependent upon a predicted AoI for the next time
slot instead of the measured current value. In fact, with a
deterministic access periodicity for continuous and periodic
traffic devices, this prediction aims at estimating the access
probability of devices with sporadic traffic. When coupled with
the filling status of the relay, estimating the number of non-
continuous devices connected in the next time slot allows the
relay to predict whether it can avoid congestion or whether it
should encourage the connected devices with sporadic traffic
to connect to other relays. This incentive is achieved by
controlling the value of the reward. The algorithms developed
throughout the article are summarized in Fig. 3.

RESOURCE ALLOCATION USING COORDINATED MATCHING

In order to assess the efficiency of the proposed uncoor-
dinated access approach, a coordinated allocation technique
based on matching theory is introduced to benchmark the
performance of the proposed algorithm. While lacking the
self-configuration capability of the proposed approach, this
reference technique is feasible in practice at the cost of
comparatively high signaling overhead.

Matching theory is a mathematical framework in economics
[15] that describes the formation of mutually beneficial re-
lationships. In particular, it is commonly used to solve as-
signment problems between two disjoint sets of players. The
matching problem consists in assigning resources from one set
to the players of the other set. To do so, each player uses a
preference relation based on a computed metric to rank the
players of the other set from the viewpoint of a target utility
function. By maximizing its utility, each player maximizes its
objective function.

In the context of this paper, the resource allocation problem
consists in assigning the network resources, i.e., frequency
subband/power level pairs, to the IoT devices given a set of
constraints from both the devices and the resources. It can
therefore be modeled as a one-to-one matching game, meaning
that each device can connect to one resource and each resource
can be matched to one IoT device. We consider that the
system is fully coordinated by the BS and that the BS knows
all devices and relay power budgets, relay buffers status and
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device traffic types. With this information and the centralized
ability to devise a suitable resource allocation, this coordinated
matching-based approach is expected to provide the best
results in terms of QoS requirements. Being power limited,
the IoT devices rank the subband/power level pairs according
to their channel gain with the relay. In fact, the subband/power
level pair requiring the least amount of transmit power is
preferred by the device. In contrast, resource ranking mainly
depends on the status of the corresponding relay buffer and the
conditions between the relay and the BS. The fuller the relay
buffer, the less likely it is to accept devices. The same applies
to the channel gain between relay and BS: the better the radio
conditions, the more likely the relay will accept devices.

NUMERICAL RESULTS

We consider an uplink communication system with one
BS, one relay and 60 IoT devices divided into 36 devices
generating continuous traffic, 12 devices having a sporadic
traffic type with a spectrum access probability equal to 0.3
and 12 devices with a periodic traffic type. The periodic traffic
devices are, in turn, divided into 4 groups of 3 devices and a
time offset is applied for network access of the devices in the
different groups to avoid mutual repeated collisions.

The target data rate is 0.75 Mb/s for the continuous traffic
devices and 0.3 Mb/s for the ones with non-continuous traffic.
The number of available subbands is 9. Five power levels are
available at each subband, hence the total number of available
resources is 45. This allows us to address the problem of
congestion on a small scale, first. The objective is to prove the
superiority of the proposal in supporting more linked devices
than a conventional system while using the same finite number
of resources. Then, by adding network nodes, the proposal can
be scaled up to enable massive connectivity. Signals undergo a
distance-dependent path-loss with a decay factor of 3.76, and
a zero-mean log-normal shadowing with an 8 dB variance.
The noise power spectral density is equal to 4×10−21 W/Hz.
The power budget of the IoT devices is equal to 0.2 W and
the one of the relays is 5 W. The congestion threshold of the
relays is set to 50 percent of their whole buffer capacity (300
packets) and the duration of the timeout period is taken equal
to 50 time slots.

Benchmarks

The performance of the proposed algorithm with and with-
out AoI prediction is evaluated for 1000 time slots using Mat-
lab and compared with the fully coordinated approach based
on matching theory and with two more basic uncoordinated
solutions:

• random access NOMA (RA-NOMA) method, where de-
vices choose the frequency subband/power level pair
randomly,

• an allocation technique (No-AoI) where the devices solely
allocate their arms using UCB without taking the AoI
effect into consideration.

Evaluation

The efficiency of the arm assignment process is evaluated
in Fig. (4a), where the instantaneous successful transmission
percentage, i.e., the proportion of devices having their signals
correctly decoded by the relay, is plotted as a function of time.
We can observe that the basic RA-NOMA approach cannot
achieve a success rate above 40 percent with an average of
less than 30 percent. In contrast, since the matching technique
is fully coordinated by the BS, convergence towards the
full satisfaction state is reached in the very first time slots.
Similarly, the proposed UCB-based technique also reaches
convergence with a 100 percent satisfaction rate for all IoT
devices after an exploration phase of 80 time slots.

The average transmit power per device as a function of the
requested rate is evaluated in Fig. (4b). Simulations showed
that a balanced scheme with β = 0.5 is the best choice
for minimizing power consumption. Moreover, for the same
average transmit power, the proposed UCB-based method with
β = 0.5 is the only solution within 0.15 Mb/s of the fully
coordinated benchmark solution for the same average transmit
power.

Figures (4c) and (4d) show the average AoI value when
varying the total number of sporadic players or the access
probability. In Fig. (4d), the number of sporadic devices
is 9. The proposed approach significantly outperforms basic
random access approaches.

REMAINING CHALLENGES

The next step prior to any wide adoption resides in a
thorough investigation of system robustness to imperfect or
partial channel state information (CSI). Following this step,
it would be possible to evaluate the benefits of the reduced
signaling overhead. Additional impactful fine-tuning includes
the trade-off between exploration and exploitation phases and
higher-level auto-configuration capabilities. The latter involves
devising adaptive methods for unsupervised traffic rerouting
to avoid relay failures, or even, intelligent automated alloca-
tions to improve system spectral and/or power efficiencies.
Intelligent reflective surfaces and on-demand mobile relays
can represent appealing complementary means to these same
effects and may be considered for future developments. On a
different note, some physical layer techniques, such as wave-
form design, are considered essential enablers for uncoordi-
nated spectrum access and should be thoroughly investigated.
Indeed, robustness to impairments including carrier frequency
offsets, timing offsets and efficient multi-user management
are key for unleashing the potentials of such decentralized
intelligent allocation methods.

CONCLUSION

In this article, the uncoordinated decentralized joint channel
and power allocation problem was addressed and formulated
using the MAB framework. A solution based on the UCB
algorithm was then proposed. In addition to increased spec-
tral efficiency, the proposed solutions minimize AoI for IoT
devices in a two-hop mixed-traffic NOMA uplink communi-
cation system with relays. Thanks to their self-configuration
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Fig. 4: Algorithm evaluation in terms of success rate, transmit power and AoI in function of time slots.
(4a) Instantaneous percentage of successfully connected devices.
(4b) Average transmit power for a varying requested rate.
(4c) Average AoI for a varying number of sporadic traffic devices.
(4d) Average AoI for a varying access probability of sporadic traffic devices.

capabilities, they are able to address relay-level congestion,
provide the scalability for mixed traffic support and manage
AoI for the coexistence of multiple services and applications.
This was achieved through the UCB algorithm augmented
by both the introduction of buffering and an AoI-controlling
scheduler at the level of the relays. AoI prediction for spo-
radic traffic was shown to further improve performance for
delay-sensitive applications. The resulting self-configurable
and scalable proposal was shown to outperform competing
uncoordinated techniques while approaching the performance
of a centralized solution with perfect knowledge of all system
parameters. Future work should focus on key enablers for such
a system including imperfect or partial CSI and physical layer
support.
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