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ABSTRACT

In this paper, we propose an iterative scheme for distributed

Byzantine- resilient estimation of a gradient associated with

a black-box model. Our algorithm is based on simultane-

ous perturbation, secure state estimation and two-timescale

stochastic approximations. We also show the performance

of our algorithm through numerical experiments.

1. INTRODUCTION

The main goal of this paper is to derive a decentralized

algorithm which can efficiently learn the gradient of a black-

box model, in a multi-agent context. In a black-box model

it is assumed that a function f is unknown but can be ac-

cessed through queries to a zero-th order oracle [5]. Being

able to compute the gradient can be used, for instance to

design efficient distributed optimization algorithms to find

the minimum of f . We assume that there is a finite number

of processors/servers (called nodes or agents in the rest of

the paper) which participate in the distributed computation

of the gradient.

We also assume that some agents can have Byzantine be-

haviors: that is, they will try to deviate from the suggested

protocol. Such behaviors are well known in the literature of

distributed algorithms (consensus and leader election algo-

rithms, for instance) and have also recently been studied in

the context of machine learning [10, 9]. In such contexts,

three major points need to be tackled: (1) The fact that

unidentifiable Byzantines nodes are present in the system

and that it is not possible to guarantee the safety of a given

node; (2) the algorithms should be decentralized and each

”good” node, should have a good estimation of the gradient

(3) the algorithms should be efficient (in terms of speed of

convergence and number of operations per iterations).

Our solution is based on a generalization of the gradient

estimator algorithm developed in [3], using two-timescale

stochastic approximations and secure estimation [6]. We

are also able to derive sufficient conditions to ensure that

our algorithm will be able to be robust to Byzantine nodes.

2. PROBLEM FORMULATION

This section is dedicated to the description of our frame-

work and to the problem formulation. Further discussion on

the model assumptions is provided in Subsection 2.1.
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Nodes’ model: Let I = {1, . . . , n} be the set of nodes.

We assume that the set of nodes can be partitioned into two

disjoint subsets of nodes IB and IG. The set IB (resp. IG)

is the set of Byzantine nodes (resp. non-Byzantine nodes).

At every instant k 2 N, each node i 2 I controls a variable

xi(k) 2 R. For every k 2 N, let x(k) := [xi(k)]1in be the

associated vector. A Byzantine node will try to disobey the

protocol. More precisely, we assume that: (1) a Byzantine

node can modify its own xi(k) (when it is allowed) without

following the prescribed protocol (2) it can report corrupted

values (3) it can have complete knowledge of the system

and the algorithm. Note that IB is constant for every k,
meaning that the set of Byzantine nodes does not change

over time (this assumption is similar to the one in [6]).

Asynchronous Updates: Let Y (k) ✓ I be the set

of active nodes at instant k 2 N+. We say that a node

i is active at instant k if it can modify xi at instant k.
Let YB(k) ✓ IB be the set of active Byzantine nodes and

YG(k) ✓ IG is the set of active non-Byzantine nodes, such

that Y (k) = YB(k) [ YG(k) and YB(k) \ YG(k) = ; . We

assume that Y (k) is an irreducible Markov chain where

the state space is a subset U of the power set P(I) of I.
This assumption ensures that we are in an asynchronous

set-up, where not all nodes are active at the same time.

This is crucial to ensure that Byzantine nodes do not have

too much power in the system. We use a vector notation

u(k) 2 {0, 1}|I|
to denote an element of P(I) at instant k.

If the i-th component of u(k) is equal to one, it means that

node i belongs to the set Y (k) (i.e. it is active). Otherwise,

node i is not in the set Y (k) (i.e. it is not active). Note that

for a given k, we have u(k) = [1i2Y (k)]1in. The subset of

U where each vector contains at least a Byzantine node is

denoted by UB := {u 2 U | 9i 2 IB , ui = 1}.
Challenge: We assume that for every k, the nodes are

interested in computing the gradient of f(x(k)) where f :

Rn ! R is a continuous twice di↵erentiable function. We as-

sume that for every x(k), f(x(k)) is available to every node.

However, rf(x(k)) is not readily available, and therefore,

the nodes need to collaborate together to obtain a robust

estimation. We can easily generalize our approach to the

case when f : Rn ! Rp
, but for simplicity’s sake, we assume

p = 1.

2.1 Remarks

We believe that the assumption that Y (k) is an irreducible

Markov chain, resulting in mathematical simplicity in our

problem, is in line with acceptable models capturing asyn-

chronous updates of the nodes. This assumption is neces-

sary for the proof of the convergence of iterative scheme (see
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section 4) We justify below our assumption with a classical

example coming from the distributed systems literature. A

first classical communication scheme to ensure lightweight

communication costs is a simple token-passing implementa-

tion of a random walk. Di↵erent implementations of such

mechanism have been studied in distributed systems [1, 8]

and Byzantine versions of such communication scheme have

been studied in [11]. The performance of the di↵erent algo-

rithms has been studied using Markov chain models. An-

other example are wireless networks. In this context, comes

naturally the constraint that all links/nodes cannot be ac-

tivated simultaneously. A natural protocol in such case is

the CSMA protocol which has been modeled using Markov

chains [7, 4].

3. BYZANTINE-ROBUST GRADIENT ES-

TIMATION

We first describe a natural, not robust to Byzantine nodes,

way to approximate the gradient. Then, by adapting the

tools developed in [6], we present how to construct a robust

approximation of rf(x).

3.1 Simultaneous Perturbation

We now introduce the simultaneous perturbation scheme

to create an estimate of the gradient. We will also illustrate

the impact of having Byzantine nodes in such estimator.

In a simultaneous perturbation scheme, at every instant

k, for a given x(k), we assume that every node i 2 YG(k)
performs the following scheme: (1) Sample ∆i(k) 2 {−1, 1}
from a Bernoulli distribution of parameter 1/2, (2) Play

xi(k)+ δ∆i(k), where δ is positive constant, provided as in-

put. A Byzantine node will not respect such steps. Without

loss of generality, we assume that a Byzantine node, instead

of playing xi + δ∆i(k) plays xi + δe1i (k), with e1i (k) 2 R.
Therefore, the observation by all nodes at instant k is given

by:

zi,u(k)(k) =

8
<

:

f(x+ δ∆̃(k))− f(x)

δ∆̃i(k)
, if i 2 YG(k),

0, if i /2 Y (k),
(1)

where the i-th component of ∆̃(k) is equal to:

∆̃i(k) =

8
<

:

∆i(k), if i 2 YG(k),
e1i (k), if i 2 YB(k),
0, if i /2 Y (k).

(2)

In expectation, and using Taylor’s theorem (see chap. 10

p.120 in [2]), the gradient observation, zi,u(k)(x) := E[zi,u(k)(k)],
can be summarized as follows:

zi,u(k)(x) :=

8
>>>>>>><

>>>>>>>:

@f

@xi
(x) +O(δkr2f(x)k),
if i 2 YG(k) and YB(k) = ;,

@f

@xi
(x) + eu(k)(k) +O(δkr2f(x)k),
if i 2 YG(k) and YB(k) 6= ;,

0 if i /2 Y (k).

(3)

Note that we have summarized the impact of having i or
j being a Byzantine node by simply adding a perturbation

term e(k) 2 R to the observation. Indeed, without loss of

generality, because the Byzantine node is not constrained in

the choice of e(k), such additive term captures the impact of

the perturbation terms e1i (k) and e2i (k). From this remark,

we can also see that zi,u(k)(k) is not a robust estimate of the

gradient, due to the fact that the moment YB(k) 6= ;, the
observation zi,u(k)(k) can be any value in R.

3.2 Secure gradient estimation

We will now construct a robust estimate of the gradient,

in a distributed manner, using the theory developed in [6].

Let us first introduce the following assumption over f(x).
Assumption A: It exists a function v : Rn ! Rm

, such

that the function f : Rn ! R satisfies:

rf(x) = Av(x), 8x.

We assume that v : Rn ! Rm
is a continuous function and

A is a n⇥m real matrix. We also assume that A is known

by every node.

To recast our problem in the form described in [6], we

rewrite the observations as the output of a linear system.

For a given x the vector z(x) := [[zi,u(x)]1iI ]u2U , gives

the gradient observation for the di↵erent u. The vector

v(x) := [vm0(x)]1m0m is the vector that we are inter-

ested in learning for every x. Note that the relationship

between z(x) and v(x) is captured by the following linear

system z(x) = A1v(x) + e, where the matrix A1 is equal to

A1 :=

"
A(u1)A(u2)

.

.

.A(u|U|)

#T

, with A(u) = u ⌦ A where

⌦ denotes entrywise product. Using the entrywise product

will ensure that the i-th line of A(u) is equal to the null

line vector if ui = 0, meaning that node i is not active in

this case. (2) The vector e := [eu1
T
]u2U captures the errors

injected by the Byzantine nodes, where eu 6= 0 if and only

if YB = ; and where 1 is the all-ones vector of dimension n.
Let us adapt the main result (proposition 6 of [6]), for

the secure estimation of v(x). Note that the next theorem

is based on the mean of the observations and not the real

observations. We then design an algorithm based on the

observations which leverages the next theorem and ensures

a safe estimation of the gradient.

Theorem 1. For a given x, let us define solution v⇤(x) to

be the solution of the following optimization problem:

min
v2Rm

J(v) :=
X

u2U

nX

i=1

|zi,u(x)−Ai(u)v|, (4)

where Ai(u) is the i-th row of A(u), zi(x) = [zi,u(x)]u2U .

If, for all K ⇢ {1, . . . , |U|n}, such that |K| = q, with
X

k2K

|Ak−nbk/nc+1(ubk/nc+1)z| 
X

k2Kc

|Ak−nbk/nc(ubk/nc+1)z|,

(5)

for all z 2 Rm − {0}, then, when δ ! 0, v⇤(x) = v(x) when

|UB | = bq/nc.

Proof. Directly adapted from proposition 6 in [6].

The previous theorem indicates us that as long as (5) is

satisfied, we can use solution (4) to retrieve the gradient.

Simpler sufficient conditions have been mentioned in [6].

4. ALGORITHM AND NUMERICAL STUDY

We now describe the algorithm for the non-Byzantine

nodes. It can be summarized as follows: At every instant k,
a subset of nodes perturbate the black-box model, obtaining
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an estimator of their respective partial derivative. Once the

active nodes observe the perturbated function, they broad-

cast it to all the nodes. Using these observations, each node

estimates the gradient based on (4).

Decentralized Byzantine Gradient Estimation
Initialization: Input, x, the working point.

For each round k = 1, 2, . . .:

• Perturbation Step: For every node i 2 YG(k): (1)

Sample ∆i(k) 2 {−1, 1} from a Bernoulli distribution

of parameter 1/2, (2) Play xi + δ∆i(k). (3) Observe

zi,u(k) and u(k) and broadcast zi,u(k) to every node.

• Decoding step: Update

ẑk+1
i,u = ẑki,u + b(k)1u,u(k)(zi,u(k) − ẑki,u), 8i,8u,

vk+1
= vk + a(k)

X

u,i

Ai(u)
T
sign(ẑi,u(k)−Ai(u)v

k
),

where vk := [vkm0 ]1m0m, a(k) and b(k) are such thatP
k a(k) =

P
k b(k) = 1,

P
k(a(k)

2
+ b(k)2) < 1 and

lim
a(k)
b(k)

! 0.

• Gradient estimator: UseA1v
k
as an estimator ofrf(x).

The convergence of the algorithm towards v⇤(x) comes

from the fact that it can be seen as an asynchronous two-

time scale stochastic approximation, where on the fast time-

scale every node runs a moving average on ẑi,u(k) for every
k and every i and on the slow time-scale, a gradient descent

is used to solve, in an online fashion (4). Convergence can be

proved by using the ordinary di↵erential equation approach

(see Ch. 6 and 7 in [2]).

For our illustrative numerical study, we assume f(x) =
1

C−
Pn

i xi
, where C is a given constant modelling, for in-

stance, node’s capacity. We consider 6 nodes, and di↵erent

scenarios for nodes’ activation and the presence of Byzan-

tine nodes. Fig. 1 (top) illustrates the convergence of the

perturbation scheme to rf(x) when no Byzantine nodes

are present, (left) when one node perturbates the network

at a time (a.k.a. single perturbation), and (right) when all

possible partitions of I are considered for nodes’ activation

(a.k.a. simultaneous perturbation). Fig. 1 (bottom) shows

the results for same 6 nodes, but among which 2 are Byzan-

tine, for the single-perturbation case (left) and simultaneous

perturbation (right). The results over 10 simulations and

the average are shown. The algorithm approaches the the-

oretical value of the gradient, while activation scheme and

presence of Byzantine nodes have an incidence in the results.

5. CONCLUSION

We have proposed a decentralized algorithm to estimate

the gradient of a function describing a black-box model.

Such algorithm is robust to the presence of Byzantine nodes

and takes into account their asynchronous behaviour. Fu-

ture work will analyse convergence speed and optimize nodes

activation.

6. REFERENCES

[1] Augustine, J., Molla, A.R., Morsy, E., Pandurangan,

G., Robinson, P., Upfal, E.: Storage and search in

dynamic peer-to-peer networks. In: Proceedings of the

twenty-fifth annual ACM symposium on Parallelism in

algorithms and architectures. pp. 53–62 (2013)

Figure 1: Gradient estimation for 6 nodes. No
Byzantine nodes (top) and 2 Byzantine nodes (bot-
tom), with single (left) and simultaneous activation
(right).

[2] Borkar, V.S.: Stochastic approximation: a dynamical

systems viewpoint, vol. 48. Springer (2009)

[3] Borkar, V.S., Dwaracherla, V.R., Sahasrabudhe, N.:

Gradient estimation with simultaneous perturbation

and compressive sensing. J. Mach. Learn. Res. 18,
161–1 (2017)

[4] Borkar, V.S., Makhijani, R., Sundaresan, R.:

Asynchronous gossip for averaging and spectral

ranking. IEEE Journal of Selected Topics in Signal

Processing 8(4), 703–716 (2014)

[5] Bubeck, S., et al.: Convex optimization: Algorithms

and complexity. Foundations and Trends® in

Machine Learning 8(3-4), 231–357 (2015)

[6] Fawzi, H., Tabuada, P., Diggavi, S.: Secure

state-estimation for dynamical systems under active

adversaries. In: 2011 49th Annual Allerton Conference

on Communication, Control, and Computing

(Allerton). pp. 337–344. IEEE (2011)

[7] Jiang, L., Walrand, J.: A distributed csma algorithm

for throughput and utility maximization in wireless

networks. IEEE/ACM Trans. on Ntw. 18(3), 960–972
(2009)

[8] Ramiro, V., Lochin, E., Sénac, P., Rakotoarivelo, T.:

Temporal random walk as a lightweight

communication infrastructure for opportunistic

networks. In: Proceeding of IEEE International

Symposium on a World of Wireless, Mobile and

Multimedia Networks 2014. pp. 1–6. IEEE (2014)

[9] Wu, Z., Ling, Q., Chen, T., Giannakis, G.B.:

Federated variance-reduced stochastic gradient

descent with robustness to byzantine attacks. IEEE

Transactions on Signal Processing 68, 4583–4596
(2020)

[10] Yin, D., Chen, Y., Kannan, R., Bartlett, P.:

Byzantine-robust distributed learning: Towards

optimal statistical rates. In: International Conference

on Machine Learning. pp. 5650–5659. PMLR (2018)

[11] Yuan, Y.e.a.: Fast fault-tolerant sampling via random

walk in dynamic networks. In: 2019 IEEE ICDCS. pp.

536–544. IEEE (2019)

40 Performance Evaluation Review, Vol. 50, No. 4, March 2023




