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Online Multi-Agent Decentralized Byzantine-robust Gradient Estimation

In this paper, we propose an iterative scheme for distributed Byzantine-resilient estimation of a gradient associated with a black-box model. Our algorithm is based on simultaneous perturbation, secure state estimation and two-timescale stochastic approximations. We also show the performance of our algorithm through numerical experiments.

INTRODUCTION

The main goal of this paper is to derive a decentralized algorithm which can efficiently learn the gradient of a blackbox model, in a multi-agent context. In a black-box model it is assumed that a function f is unknown but can be accessed through queries to a zero-th order oracle [START_REF] Bubeck | Convex optimization: Algorithms and complexity[END_REF]. Being able to compute the gradient can be used, for instance to design efficient distributed optimization algorithms to find the minimum of f . We assume that there is a finite number of processors/servers (called nodes or agents in the rest of the paper) which participate in the distributed computation of the gradient.

We also assume that some agents can have Byzantine behaviors: that is, they will try to deviate from the suggested protocol. Such behaviors are well known in the literature of distributed algorithms (consensus and leader election algorithms, for instance) and have also recently been studied in the context of machine learning [START_REF] Yin | Byzantine-robust distributed learning: Towards optimal statistical rates[END_REF][START_REF] Wu | Federated variance-reduced stochastic gradient descent with robustness to byzantine attacks[END_REF]. In such contexts, three major points need to be tackled: [START_REF] Augustine | Storage and search in dynamic peer-to-peer networks[END_REF] The fact that unidentifiable Byzantines nodes are present in the system and that it is not possible to guarantee the safety of a given node; (2) the algorithms should be decentralized and each "good" node, should have a good estimation of the gradient (3) the algorithms should be efficient (in terms of speed of convergence and number of operations per iterations).

Our solution is based on a generalization of the gradient estimator algorithm developed in [START_REF] Borkar | Gradient estimation with simultaneous perturbation and compressive sensing[END_REF], using two-timescale stochastic approximations and secure estimation [START_REF] Fawzi | Secure state-estimation for dynamical systems under active adversaries[END_REF]. We are also able to derive sufficient conditions to ensure that our algorithm will be able to be robust to Byzantine nodes.

PROBLEM FORMULATION

This section is dedicated to the description of our framework and to the problem formulation. Further discussion on the model assumptions is provided in Subsection 2.1.
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Nodes' model: Let I = {1, . . . , n} be the set of nodes. We assume that the set of nodes can be partitioned into two disjoint subsets of nodes IB and IG. The set IB (resp. IG) is the set of Byzantine nodes (resp. non-Byzantine nodes). At every instant k 2 N, each node i 2 I controls a variable xi(k) 2 R. For every k 2 N, let x(k) := [xi(k)] 1in be the associated vector. A Byzantine node will try to disobey the protocol. More precisely, we assume that: (1) a Byzantine node can modify its own xi(k) (when it is allowed) without following the prescribed protocol (2) it can report corrupted values (3) it can have complete knowledge of the system and the algorithm. Note that IB is constant for every k, meaning that the set of Byzantine nodes does not change over time (this assumption is similar to the one in [START_REF] Fawzi | Secure state-estimation for dynamical systems under active adversaries[END_REF]).

Asynchronous Updates: Let Y (k) ✓ I be the set of active nodes at instant k 2 N+. We say that a node i is active at instant k if it can modify xi at instant k. Let YB(k) ✓ IB be the set of active Byzantine nodes and YG(k) ✓ IG is the set of active non-Byzantine nodes, such that Y (k) = YB(k) [ YG(k) and YB(k) \ YG(k) = ; . We assume that Y (k) is an irreducible Markov chain where the state space is a subset U of the power set P(I) of I. This assumption ensures that we are in an asynchronous set-up, where not all nodes are active at the same time. This is crucial to ensure that Byzantine nodes do not have too much power in the system. We use a vector notation u(k) 2 {0, 1} |I| to denote an element of P(I) at instant k. If the i-th component of u(k) is equal to one, it means that node i belongs to the set Y (k) (i.e. it is active). Otherwise, node i is not in the set Y (k) (i.e. it is not active). Note that for a given k, we have u(k) = [1 i2Y (k) ] 1in . The subset of U where each vector contains at least a Byzantine node is

denoted by UB := {u 2 U | 9i 2 IB, ui = 1}.
Challenge: We assume that for every k, the nodes are interested in computing the gradient of f (x(k)) where f : R n ! R is a continuous twice di↵erentiable function. We assume that for every x(k), f (x(k)) is available to every node. However, rf (x(k)) is not readily available, and therefore, the nodes need to collaborate together to obtain a robust estimation. We can easily generalize our approach to the case when f : R n ! R p , but for simplicity's sake, we assume p = 1.

Remarks

We believe that the assumption that Y (k) is an irreducible Markov chain, resulting in mathematical simplicity in our problem, is in line with acceptable models capturing asynchronous updates of the nodes. This assumption is necessary for the proof of the convergence of iterative scheme (see
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Performance Evaluation Review, Vol. 50, No. 4, March 2023 section 4) We justify below our assumption with a classical example coming from the distributed systems literature. A first classical communication scheme to ensure lightweight communication costs is a simple token-passing implementation of a random walk. Di↵erent implementations of such mechanism have been studied in distributed systems [START_REF] Augustine | Storage and search in dynamic peer-to-peer networks[END_REF][START_REF] Ramiro | Temporal random walk as a lightweight communication infrastructure for opportunistic networks[END_REF] and Byzantine versions of such communication scheme have been studied in [START_REF] Yuan | Fast fault-tolerant sampling via random walk in dynamic networks[END_REF]. The performance of the di↵erent algorithms has been studied using Markov chain models. Another example are wireless networks. In this context, comes naturally the constraint that all links/nodes cannot be activated simultaneously. A natural protocol in such case is the CSMA protocol which has been modeled using Markov chains [START_REF] Jiang | A distributed csma algorithm for throughput and utility maximization in wireless networks[END_REF][START_REF] Borkar | Asynchronous gossip for averaging and spectral ranking[END_REF].

BYZANTINE-ROBUST GRADIENT ES-TIMATION

We first describe a natural, not robust to Byzantine nodes, way to approximate the gradient. Then, by adapting the tools developed in [START_REF] Fawzi | Secure state-estimation for dynamical systems under active adversaries[END_REF], we present how to construct a robust approximation of rf (x).

Simultaneous Perturbation

We now introduce the simultaneous perturbation scheme to create an estimate of the gradient. We will also illustrate the impact of having Byzantine nodes in such estimator.

In a simultaneous perturbation scheme, at every instant k, for a given x(k), we assume that every node i 2 YG(k) performs the following scheme: (1) Sample ∆i(k) 2 {-1, 1} from a Bernoulli distribution of parameter 1/2, (2) Play xi(k) + δ∆i(k), where δ is positive constant, provided as input. A Byzantine node will not respect such steps. Without loss of generality, we assume that a Byzantine node, instead of playing xi + δ∆i(k) plays xi + δe 1 i (k), with e 1 i (k) 2 R. Therefore, the observation by all nodes at instant k is given by:

z i,u(k) (k) = 8 < : f (x + δ ∆(k)) -f (x) δ ∆i(k) , if i 2 YG(k), 0, if i / 2 Y (k), (1) 
where the i-th component of ∆(k) is equal to:

∆i(k) = 8 < : ∆i(k), if i 2 YG(k), e 1 i (k), if i 2 YB(k), 0, if i / 2 Y (k). (2) 
In expectation, and using Taylor's theorem (see chap. 10 p.120 in [START_REF] Borkar | Stochastic approximation: a dynamical systems viewpoint[END_REF]), the gradient observation,

z i,u(k) (x) := E[z i,u(k) (k)],
can be summarized as follows:

z i,u(k) (x) := 8 > > > > > > > < > > > > > > > : @f @xi (x) + O(δkr 2 f (x)k), if i 2 YG(k) and YB(k) = ;, @f @xi (x) + e u(k) (k) + O(δkr 2 f (x)k), if i 2 YG(k) and YB(k) 6 = ;, 0 if i / 2 Y (k). (3) 
Note that we have summarized the impact of having i or j being a Byzantine node by simply adding a perturbation term e(k) 2 R to the observation. Indeed, without loss of generality, because the Byzantine node is not constrained in the choice of e(k), such additive term captures the impact of the perturbation terms e 1 i (k) and e 2 i (k). From this remark, we can also see that z i,u(k) (k) is not a robust estimate of the gradient, due to the fact that the moment YB(k) 6 = ;, the observation z i,u(k) (k) can be any value in R.

Secure gradient estimation

We will now construct a robust estimate of the gradient, in a distributed manner, using the theory developed in [START_REF] Fawzi | Secure state-estimation for dynamical systems under active adversaries[END_REF]. Let us first introduce the following assumption over f (x).

Assumption A: It exists a function v : R n ! R m , such that the function f : R n ! R satisfies:

rf (x) = Av(x), 8x.
We assume that v : R n ! R m is a continuous function and A is a n ⇥ m real matrix. We also assume that A is known by every node.

To recast our problem in the form described in [START_REF] Fawzi | Secure state-estimation for dynamical systems under active adversaries[END_REF], we rewrite the observations as the output of a linear system. For a given x the vector z(x) := [[zi,u(x)] 1iI ]u2U , gives the gradient observation for the di↵erent u. The vector v(x) := [v m 0 (x)] 1m 0 m is the vector that we are interested in learning for every x. Note that the relationship between z(x) and v(x) is captured by the following linear system z(x) = A1v(x) + e, where the matrix A1 is equal to

A1 := " A(u1)A(u2) . . .A(u |U | ) # T , with A(u) = u ⌦ A where
⌦ denotes entrywise product. Using the entrywise product will ensure that the i-th line of A(u) is equal to the null line vector if ui = 0, meaning that node i is not active in this case. [START_REF] Borkar | Stochastic approximation: a dynamical systems viewpoint[END_REF] The vector e := [eu1 T ]u2U captures the errors injected by the Byzantine nodes, where eu 6 = 0 if and only if YB = ; and where 1 is the all-ones vector of dimension n.

Let us adapt the main result (proposition 6 of [START_REF] Fawzi | Secure state-estimation for dynamical systems under active adversaries[END_REF]), for the secure estimation of v(x). Note that the next theorem is based on the mean of the observations and not the real observations. We then design an algorithm based on the observations which leverages the next theorem and ensures a safe estimation of the gradient.

Theorem 1. For a given x, let us define solution v ⇤ (x) to be the solution of the following optimization problem:

min v2R m J(v) := X u2U n X i=1 |zi,u(x) -Ai(u)v|, ( 4 
)
where

A i(u) is the i-th row of A(u), zi(x) = [zi,u(x)]u2U . If, for all K ⇢ {1, . . . , |U|n}, such that |K| = q, with X k2K |A k-nbk/nc+1 (u bk/nc+1 )z|  X k2K c |A k-nbk/nc (u bk/nc+1 )z|, ( 5 
) for all z 2 R m -{0}, then, when δ ! 0, v ⇤ (x) = v(x) when |UB| = bq/nc.
Proof. Directly adapted from proposition 6 in [START_REF] Fawzi | Secure state-estimation for dynamical systems under active adversaries[END_REF].

The previous theorem indicates us that as long as ( 5) is satisfied, we can use solution (4) to retrieve the gradient. Simpler sufficient conditions have been mentioned in [START_REF] Fawzi | Secure state-estimation for dynamical systems under active adversaries[END_REF]. 

ALGORITHM AND NUMERICAL STUDY

= ẑk i,u + b(k)1 u,u(k) (z i,u(k) -ẑk i,u ), 8i, 8u, v k+1 = v k + a(k) X u,i Ai(u) T sign(ẑi,u(k) -Ai(u)v k ),
where

v k := [v k m 0 ] 1m 0 m , a(k) and b(k) are such that P k a(k) = P k b(k) = 1, P k (a(k) 2 + b(k) 2 ) < 1 and lim a(k) b(k) ! 0.
• Gradient estimator: Use A1v k as an estimator of rf (x).

The convergence of the algorithm towards v ⇤ (x) comes from the fact that it can be seen as an asynchronous twotime scale stochastic approximation, where on the fast timescale every node runs a moving average on ẑi,u(k) for every k and every i and on the slow time-scale, a gradient descent is used to solve, in an online fashion (4). Convergence can be proved by using the ordinary di↵erential equation approach (see Ch. 6 and 7 in [START_REF] Borkar | Stochastic approximation: a dynamical systems viewpoint[END_REF]).

For our illustrative numerical study, we assume f (x) = 1 C-P n i x i , where C is a given constant modelling, for instance, node's capacity. We consider 6 nodes, and di↵erent scenarios for nodes' activation and the presence of Byzantine nodes. Fig. 1 (top) illustrates the convergence of the perturbation scheme to rf (x) when no Byzantine nodes are present, (left) when one node perturbates the network at a time (a.k.a. single perturbation), and (right) when all possible partitions of I are considered for nodes' activation (a.k.a. simultaneous perturbation). Fig. 1 (bottom) shows the results for same 6 nodes, but among which 2 are Byzantine, for the single-perturbation case (left) and simultaneous perturbation (right). The results over 10 simulations and the average are shown. The algorithm approaches the theoretical value of the gradient, while activation scheme and presence of Byzantine nodes have an incidence in the results.

  We now describe the algorithm for the non-Byzantine nodes. It can be summarized as follows: At every instant k, a subset of nodes perturbate the black-box model, obtaining Performance Evaluation Review, Vol. 50, No. 4, March 2023 an estimator of their respective partial derivative. Once the active nodes observe the perturbated function, they broadcast it to all the nodes. Using these observations, each node estimates the gradient based on (4).
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CONCLUSION

We have proposed a decentralized algorithm to estimate the gradient of a function describing a black-box model. Such algorithm is robust to the presence of Byzantine nodes and takes into account their asynchronous behaviour. Future work will analyse convergence speed and optimize nodes activation.