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Opinion Shaping in Social Networks Using
Reinforcement Learning

Vivek S. Borkar , Fellow, IEEE, and Alexandre Reiffers-Masson

Abstract—In this article, we consider a variant of the
classical DeGroot model of opinion propagation with ran-
dom interactions, in which a prescribed subset of agents
is amenable to a control parameter. There are also some
stubborn agents and some agents that are neither stubborn
nor amenable to control. We map the problem to a short-
est path problem, where the control parameter is coupled
across controlled nodes because of a common resource
constraint. Hence, the problem is not amenable to a pure
dynamic programming approach, and the classical rein-
forcement learning schemes for the latter cannot be ap-
plied here for maximizing average influence in the long run.
We view it instead as a parametric optimization problem
and not a control problem and use a nonclassical policy
gradient scheme. We analyze its performance theoretically
and through numerical experiments. We also consider a
situation when only certain interactions between agents are
observed.

Index Terms—Opinion shaping, reinforcement learning
(RL), social networks, stochastic shortest path.

I. INTRODUCTION

IN RECENT times, there has been increasing interest in
nonprice-based mechanisms to improve society’s behavior

in the context of, e.g., energy efficiency or traffic behavior.
These policies are usually less expensive to implement and can
be politically feasible as opposed to price-based policies. One
example is the use of lottery with the distribution of coupons
for energy efficiency [35] or for promoting off-peak usage of
cars [22]. These aim at leveraging the social network for enhanc-
ing prosocial behavior. Indeed, social interactions can impact
day-to-day decisions of an agent. For instance, in transportation
choice, several works (see [12] and [33]) have demonstrated that
the preferences of people in the decision maker’s peer group will
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impact her choice of mode of transport to work (public transport,
bicycle, and car). Another practical application concerns how to
use social comparison to enhance energy efficiency [28]. One
specific way of leveraging social network for such purposes is
to exploit the word-of-mouth/imitation process in a network by
using a targeted advertising campaign. Targeted advertising on
a social network amounts to finding which agents should be
convinced in a social network to be prosocial so that by imitation,
a large number of agents in the whole social network will also
become prosocial. Designing such a targeting strategy, however,
can be challenging because of computational issues, unknown
social network, size or lack of convexity of the resulting opti-
mization problem, and so on. The goal of this article is to propose
some algorithms that address these issues.

Our initial model can be described as follows: The society is
composed of a finite set of agents. Each agent has an opinion
concerning a given prosocial action. For instance, it could be
the opinion concerning whether or not she should take the bus
to work or how much she cares about energy efficiency of her
apartment. The rest of the society that is “close” to the agent
in the social network will observe whether she performs the
prosocial action or not and vice versa. Therefore, each agent
will have a tendency to imitate her neighbors and vice versa. A
planner (government, owner of the social network) is interested
in choosing which agents she should influence so as to shape
the opinion in a given direction. The planner can influence an
agent through two controls, which will be described later on.
The society is divided into three types of agents. The first set
is composed of “stubborn” agents. These have a fixed opinion,
and they will not be influenced by the social network or the
planner. The second set of agents is composed of “uncontrolled”
agents. These agents are influenced by the social network, i.e.,
their opinion will be influenced by the opinion of the others.
However, the planner cannot directly influence them. The last
set of agents is the set of “controlled” agents. These agents care
about the opinion of their neighbors and can also be influenced
by the planner. The goal of the planner is to shape the opinion
of the social network by targeting specific agents from the latter
group. We call this problem the opinion-shaping problem. One
of the major drawbacks of this initial model is that for shaping the
opinion of the society, the planner needs to know the influence
matrix. Worse, even if the influence matrix is known, the number
of agents may be so big that it is not feasible to decide optimally
which agent should be chosen. Finally, depending on how the
planner can influence the users, the convexity of the problem
can be lost.
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Our initial model is inspired by Bimpikis et al. [3] and Borkar
et al. [6]. In these papers, the influence matrix is assumed
to be known. Moreover, the authors do not consider efficient
decentralized algorithms to solve the opinion-shaping problem.
In this article, we extend these works further in order to address
these issues. Throughout our article, the main assumption is
that the planner does not know the influence matrix, but she
observes when the agents interact. Using these observations,
we are able to derive two reinforcement learning (RL)-based
algorithms that will address the aforementioned issues. We also
provide supporting simulations for different settings. From a
mathematical point of view, we establish the equivalence of the
resource-constrained opinion-shaping problem with a stochastic
shortest path problem, albeit one that amounts to parametric
optimization rather than control. We use this correspondence to
motivate our algorithms and their convergence. Additionally, we
discuss possible extensions and future directions.

The remainder of this article is organized into eight sections.
In Section II, we survey related works. Section III introduces the
opinion-shaping problem after first describing the model for the
opinion adoption process. Section IV is the main section of this
article. We prove the equivalence of the opinion adoption process
with a stochastic shortest path problem. Using this equivalence,
we propose a decentralized algorithm that accounts for the fact
that the influence matrix is unknown. This is followed by a
variant that is designed to reduce the complexity of the task
when all agents need to be observed. In Section V, we prove the
convergence of our algorithms. In Section VI, a new algorithm
is proposed, where the opinion-shaping problem is not convex.
Numerical experiments are discussed in Section VII. Here, we
compare the efficiency of the second algorithm, where all the
agents are not observed, with the one where all the agents
are observed. Finally, we study the efficiency of the annealing
scheme for the nonconvex opinion-shaping problem. Finally,
Section VIII concludes this article.

II. RELATED WORKS

The models for spread of opinions in social networks broadly
fall into three categories, and the influence maximization prob-
lem has been studied in the context of each of them. The first
category is cascade threshold models. In the last decade, initial
models in this framework for control of user activity focused
on maximization of influence alone [17], including the seminal
work of Kempe et al. [19]. One of the drawbacks of this line of
work is that the state of each user is assumed to be finite, often
even binary. Another key limitation is that it only focuses on the
maximization of influence, which reduces its possible scope for
applications. Indeed, one may also be interested in other objec-
tives such as minimum activity in a social network or diverse
activity and not just activity maximization. Because of this, a
second category of models was proposed, e.g., by Farajtabar
et al. [14], who define a new mathematical problem dubbed
the activity shaping problem. They use Hawkes processes to
model the activity of users in a social network. Undeniably,
these point processes have proved to be a very effective method

to capture users’ activity [39] in recent literature. These works
consider an activity shaping problem, wherein by controlling
the exogenous rate vectors of the Hawkes processes, a central
controller tries to minimize a convex function, which depends
on the expected overall instantaneous intensity of the processes.
Other extensions have been suggested since, e.g., [34] and [38].

Our model of opinion propagation falls in the last category,
viz., consensus models. For several years, much effort has been
devoted to the study of users’ activities in a social network within
this framework. The seminal work of DeGroot [10] proposes a
simple model to capture the diffusion of opinion. He assumes
that each agent at each instant will compute the average opinion
of her neighbors, including possibly herself, and then replace
her current opinion by this average. Several extensions of the
DeGroot model have been considered recently, especially the
opinion-shaping part [3], [6], [26], [30]. In [3], Bimpikis et al.
assume that a planner can directly contaminate a user in the
social network by sending her some messages. The user reads
the messages according to a certain probability, and with the
remaining probability, she will sample from the messages sent by
her friends. In [37], Yildiz et al. study the impact of agents with
fixed opinions in a social network when the evolution of opinions
is captured by the classical voter model. They also investigate the
optimal placements of such stubborn agents. A similar model has
been studied in [6], again with the presence of stubborn agents.
However, in this article, the authors assume that an agent can
have opinion in [0,1], and the opinions are propagated according
to a DeGroot model. Again, the optimal placement of stubborn
agents is investigated. In [32], an associated inference problem
is also studied; see also [24], [25], and [31] for other works in
this spirit. In [6], Borkar et al. consider a more drastic control
where they can freeze the opinion of a given user. Finally, in [26],
Reiffers-Masson et al. suggest a control based on the reduction
of the interaction between different agents of the social network.

There are also works that do not exactly fit the above classi-
fication. For the opinion-shaping problem without knowledge
of the network, Lin et al. [21] propose a data-driven model
and a learning algorithm for a cascade with a linear threshold
model. In [36], Yadav et al. suggest a partially observed Markov
decision process framework in order to tackle the uncertainty
over the topology of the network, again for the case of a cascade
with a linear threshold model. To the best of our knowledge, our
article is the first that studies shaping opinions under resource
constraints using an RL approach, under the assumption that
the opinion propagation is captured by a consensus model, but
without the full knowledge of the topology.

III. PRELIMINARIES AND MODEL

We consider a social network given by a connected directed
graph G = (S, E), where S, |S| = s is the set of its agents and
E is the set of edges. To each edge (i, j) ∈ E , we assign a
probability weight pij > 0 with

∑
{j:(i,j)∈E} pij = 1. We set

pij = 0 if (i, j) /∈ E .
Set of “stubborn” agents (S0): The agents that belong to this

set have their valuation frozen at some fixed value for good, i.e.,
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i ∈ S0 =⇒ ∀k, xi(k) ≡ h(i) ∈ [0, 1].
Set of “uncontrolled” agents (S1): This set stands for agents

for which their valuations evolve according to a gossip mech-
anism, but they are not amenable to external influence. In this
case, the valuation update of an agent i ∈ S1 is captured by
the following mechanism: agent i polls a neighbor � ∈ S with
probability pi� and updates xi(k) to xi(k + 1) = x�(k).

Set of “controlled” agents (S2): The remaining agents that
constitute the set S2 also evolve according to a gossip mecha-
nism, but are amenable to external influence or “control.” With
probability αi ∈ (0, 1), agent i ∈ S2 will be influenced directly
by the planner, and with probability 1− αi, agent i will be
influenced by her peer group. When influenced by the planner,
agent i updates xi(k) to xi(k + 1) = wi(ui), with ui ∈ R+

(without loss of generality) denoting the control applied to
node i. Specifying a control as a function of node or “state”
in Markov decision processes would correspond to a “station-
ary Markov policy.” This will become relevant later when we
draw a parallel with a stochastic shortest path problem. The
maps wi : R+ �→ [0, 1] are strictly concave increasing and con-
tinuously differentiable. Concavity captures the “diminishing
returns” effect. If agent i is influenced by her peer group, she
polls a neighbor � with probability pi� and updates according to
xi(k + 1) = x�(k).

We assume that only one agent updates at a time. This could
be the case, e.g., if the updates are done in continuous time with
the conditional distribution of the next time instant when the
update is done given the past being nonatomic. It is, however,
not difficult to extend our results and analysis to the case where
multiple updates are done concurrently. For ease of exposition,
we stick to a single update at a time. We make the following
assumption.

(A0) The matrix P := [[pij ]] restricted to S2 ∪ S0, respec-
tively, S2 ∪ S1, is substochastic.

To summarize, the overall dynamics is then described as
follows. Suppose agent i ∈ S performs an update at time k.
Then, letting �i(k) denote the index of the node polled at time
k by node i, we have

xi(k + 1) =

{
wi(ui) w.p. αi

x�i(k)(k) w.p. 1− αi
i ∈ S2

xi(k + 1) = x�i(k)(k), i ∈ S1

xi(k + 1) = h(i), i ∈ S0

xj(k + 1) = xj(k) ∀j 	= i.

Then, the vector x̄(k) := E[x(k)] satisfies the iteration

x̄i(k + 1) = αiwi(ui) + (1− αi)
∑
�∈S

pi�x̄�(k), i ∈ S2 (1)

x̄i(k + 1) =
∑
�∈S

pi�x̄�(k), i ∈ S1 (2)

x̄i(k + 1) = h(i), i ∈ S0. (3)

Recall that for d := |S2 ∪ S1|, the d× d matrix [[pij ]] restricted
to S2 ∪ S1 is substochastic, and therefore, the above is a stable
affine iteration. Hence, for each i ∈ S , x∗

i = limk→+∞ x̄i(k)

exists, and the vector x∗ := [x∗
1, . . . , x

∗
s] is the solution of the

equations:

x∗
i = αiwi(ui) + (1− αi)

∑
�∈S

pi�x
∗
�, i ∈ S2 (4)

x∗
i =

∑
�∈S

pi�x
∗
�, i ∈ S1 (5)

x∗
i = h(i), i ∈ S0. (6)

For all u ∈ Rs
+, let W (u) ∈ [0, 1]d be a vector-valued function,

where the ith element, Wi(u), is equal to 1i∈S2
αiwi(ui) +

1i∈S0
h(i). Let A be the substochastic matrix whose ij entry

is equal to aij = (1− 1i∈S0
)(1− 1i∈S2

αi)pij . The solution
x∗ = [x∗

1, . . . , x
∗
s] of the fixed-point equation is given by

x∗ = (Id−A)−1W (u). (7)

Here and later, Id is the identity matrix with appropriate dimen-
sion depending on the context.

Optimization problem: The goal of the planner is to maximize
the sum of the valuations when k goes to infinity, i.e.,

∑
i∈S x

∗
i ,

by controlling ui, under the resource constraint
∑

i∈S2
ui ≤ M .

Here, 0 < M < s is a prescribed bound. Equivalently, the ob-
jective of the planner is to find u∗ = (u∗

i )i∈S2
, the solution of

the following optimization problem:

u∗ = arg maxui∈R+ ∀i∈S2
1T (Id−A)−1W (u) (8)

subject to ∑
i∈S2

ui ≤ M. (9)

To compute u∗, we can use the projected gradient descent (GD)
algorithm. Let

Γ(·) : (R+)
s �→ Q :=

{
u ∈ (R+)

s :
∑
i∈S2

ui ≤ M

}
denote the projection map x �→ argminy∈Q‖x− y‖, uniquely
defined because of the convexity of Q. The algorithm is then

ui(k + 1) = Γ

(
ui(k) +

1

k
1T (Id−A)−1 ∂

∂ui
W (u(k))

)
(10)

with

∂

∂ui
W (u(k)) =

[
1j∈S2

αj
∂wj

∂ui
(uj)

]
j∈S

.

Our objective is to do so in a data-driven manner using
ideas from RL. We assume that the matrix P is unknown. The
known parameters are the set of agents S , the vectors α :=
[αi]i∈S2

, h := [hi]i∈S0
, the functional vector w = [wi]i∈S2

, and
the budgetM . At each stepk ∈ N+, the planner chooses a vector
u(k) = [ui(k)]i∈S . Then, simultaneously, agent i is activated
with a given probability ηi and polls agent j probabilistically as
described earlier and observes her opinion. The planner observes
this communication between i and j. The objective of the planner
is to find an algorithm such that limk→+∞ u(k) = u∗.

In the next section, we introduce a stochastic shortest path
problem, which leads to an identical set of equations as (4)–(6)
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and use this connection to propose a policy-gradient-based RL
scheme, which can be mapped back to the original problem.

IV. RL SCHEME

A. Equivalent Controlled Markov Chain

As mentioned above, we identify (4)–(6) with a stochastic
shortest path problem, albeit with a twist (viz., a resource con-
straint). For this purpose, consider an S-valued Markov chain
{Yn} with transition probabilities

qij := pij , i ∈ S1 ∪ S2

:= δij , i ∈ S0. (11)

Here, δij is the Kronecker delta. Thus, the states inS0 are absorb-
ing states. We associate with a state–control pair (i, ui) ∈ S2 an
instantaneous cost −αiwi(u) and a state-dependent discount
factor (1− αi). The transition probabilities are independent of
the control choice, which affects only the running cost. Let
τ := min{k ≥ 0 : Yk ∈ S0} denote the first passage time to S0.
Set αi = 0 and wi(u) = 0 for all i ∈ S0 ∪ S1. We consider the
problem of maximizing the total discounted reward till the first
hitting time of S0, given by

∑
i x

∗
i , where

x∗
i := Ei

[
τ−1∑
m=0

(
m−1∏
k=0

(1− αYk
)

)
αYm

wYm
(uYm

)

+

(
τ∏

k=0

(1− αYk
)

)
h(Yτ )

]
.

Here, Ei[·] denotes the expectation when Y0 = i and i �→ ui is a
fixed stationary policy that specifies the control as a function of
the current state alone. This makes it a stochastic shortest path
problem as mentioned above, albeit nonclassical, because we
also impose the constraint (9).

The reuse of notation x∗
i here is not accidental. We aim to

identify our opinion-shaping problem with this nonclassical
stochastic shortest path problem, so we are already using the
notation that will facilitate establishing this correspondence.
“One step analysis” applied to this problem leads to the standard
linear system

x∗
i = αiwi(ui(k)) + (1− αi)

∑
�∈S

pi�x
∗
�, i ∈ S2 (12)

x∗
i =

∑
�∈S

pi�x
∗
�, i ∈ S1 (13)

x∗
i = h(i), i ∈ S0. (14)

The objective is then to maximize
∑

i x
∗
i subject to the above

and (9), which is exactly the same problem as before.
The constraint (9) is hard to incorporate in a Markov decision

process as a constraint on controls, because it couples actions
across different states in a manner unrelated to the dynamics
(e.g., without regard to how often each state is visited). This puts
it beyond the reach of traditional dynamic-programming-based
computations such as value or policy iteration. Therefore, we

treat this as a parametric optimization problem over the pa-
rameters uis instead of as a control problem. This in particular
means that we cannot hope to use standard RL schemes such
as Q-learning, actor–critic, TD(λ), etc. But we can and do
use a policy gradient scheme, which can also treat parametric
optimization problems such as ours.

B. First Algorithm

Let k ∈ N+ be the kth time an agent polls another. A gradient-
based learning scheme for this problem is as follows. Let

I{Yk = i} =

{
1 if Yk = i,
0, if Yk 	= i,

ν(i, k) :=
k∑

m=0

I{Ym = i}.

for k ≥ 0. Then, ν(i, k), k ≥ 0, can be interpreted as a “local
clock” at agent i, counting its own number of updates till “time”
(i.e., the overall iterate count) k. We assume that

lim
k↑∞

ν(i, k)

k
≥ δ ∀i, a.s. (15)

for some δ > 0. This means that all i are sampled com-
parably often with probability 1. Pick step-size sequences
{a(k)}, {b(k)} ⊂ (0,∞) such that∑

k

a(k) =
∑
k

b(k) = ∞,
∑
k

(a(k)2 + b(k)2) < ∞

b(k)

a(k)
→ 0. (16)

We shall also make the following additional assumptions on
{a(k)}.

1) a(k + 1) ≤ a(k) from some k onwards.
2) ∃r ∈ (0, 1) such that

∑
k a(k)

1+q < ∞, q ≥ r.

3) For x ∈ (0, 1), supk
(

a([xk])
a(k)

)
< ∞, where [· · · ] stands

for the integer part of “· · · .”
4) For any x ∈ (0, 1) and A(k) :=

∑k
m=0 a(i), we have

limn↑∞
(

A([yk])
A(k)

)
= 1 uniformly in y ∈ [x, 1].

5) For N(k, x) := min{m ≥ k′ :
∑k

k=m a(k′) ≥ x}, the

limit limk↑∞
∑ν(i,N(k,x))

m=ν(i,k)
a(m)

∑ν(j,N(k,x))

m=ν(j,k)
a(m)

exists a.s. ∀i 	= j, x > 0.

These conditions are satisfied, e.g., by the popular step size
a(k) = 1

k+1 , k ≥ 0. They allow us to apply to our algorithm the
results of [5] for asynchronous stochastic approximation.

The algorithm is then as follows. Set αi ≡ 0 for i ∈ S1. For
k ≥ 0, i ∈ S, j ∈ S2, we have

Ψij(k + 1) = Ψij(k) + a(ν(i, k))I{Yk = i}
× [αiw

′
i(ui(k))δij + (1− αi)ΨYk+1j(k)

− Ψij(k)] , i /∈ S0 (17)

ui(k + 1) = Γ

⎛⎝ui(k) + b(k)
∑
j

Ψji(k)

⎞⎠ ,

i ∈ S2 (18)

Ψij(k) = 0, i ∈ S0. (19)
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Lemma 1: Iterations (17)–(19) constitute a projected stochas-
tic gradient ascent to solve the above stochastic shortest path
problem with constraints.

Proof: The argument is in two steps.
1) The iteration (17) estimates the partial derivatives ∂V (i)

∂uj

by Ψij(k), k ≥ 0. Consider the constant policy dynamic
programming equation

Ṽ (i) = αiwi(ui) + (1− αi)
∑
j

pi�Ṽ (�),

i ∈ S2 ∪ S1 (20)

Ṽ (i) = h(i), i ∈ S0. (21)

This is a well-posed linear system of equations in Ṽ
for given uis and, by Cramer’s rule, is a rational func-
tion of the continuously differentiable functions ui �→
wi(ui), i ∈ S2,with a nonvanishing denominator. Hence,
it is continuously differentiable in the uis. These equa-
tions are seen to be identical to (1)–(3). Thus, we can
identify Ṽ withx∗. Differentiating both sides of (20) w.r.t.

uj , we see that Φij :=
∂Ṽ (i)
∂uj

satisfy

Φij = αiw
′
i(ui)δij + (1− αi)

∑
�

pi�Φ�j (22)

for i ∈ S2, with Φij = 0 for i ∈ S0. The iteration (17)
is then the standard stochastic approximation scheme to
solve this equation. That is, it replaces the conditional
expectation w.r.t. the pi�s by an actual evaluation at a
random variable with conditional law pi· and then uses
the incremental nature of stochastic approximation to do
the averaging over successive iterations.

2) Having identified Ṽ with x∗, iteration (18), operating
on a slower time scale [in view of (16)], constitutes a
stochastic gradient ascent to maximize the reward

∑
i x

∗
i .

That is, (18) is a stochastic gradient ascent over the control
variables, which takes the outputs {Ψij(k)} of (17) as
estimates of the relevant partial derivatives and, summing
them up over the first index, generates an estimate of the
corresponding partial derivative of the reward itself. The
application of the projection Γ(·) makes it a projected
stochastic gradient scheme that imposes the constraint
(9).

�
Let Zk be the index of the agent that updated its valuation at

time k, i.e., it is the Zkth component xZk
(k) that got updated

at time k; the rest were left unperturbed. Also, suppose that this
was done by the Zkth agent by polling a neighbor Z̃k according
to the transition probabilities qzk · defined in (11). The algorithm
for our original problem is as follows.

Algorithm 1:

Ψij(k + 1) = Ψij(k) + a(ν(i, k))I{Zk = i}

×
[
(αiw

′
i(ui(k))δij + (1− αi)ΨZ̃kj

(k)

− Ψij(k)
]
, i ∈ S2 ∪ S1 (23)

ui(k + 1) = Γ

⎛⎝ui(k) + b(k)
∑
j

Ψji(k)

⎞⎠ , i ∈ S2 (24)

Ψij(k) = 0, i ∈ S0. (25)

Theorem 1: The algorithm (23)–(25) is a valid algorithm
for the proposed problem for {Zk} independent identically
distributed (i.i.d.) η.

Proof: This is precisely the scheme (17)–(19) applied to
our original problem after identifying it with the shortest path
problem described above, as follows. We identify Yk with Zk

and Yk+1 with Z̃k. Note that the algorithm needs only the
pairs (Yk, Yk+1) with the correct conditional probability of the
latter given the former. As we observe later in course of the
convergence proof, the distribution of Yk in this pair can be
ignored as long as the basic requirement (15) is satisfied. This
is indeed satisfied by {Yk} because of its irreducibility. On the
other hand, it is also satisfied by {Zk}, which are i.i.d. η. So,
we can replace (Yk, Yk+1) by (Zk, Z̃k) without affecting its
convergence analysis. Thus, iterations (17)–(19) above reduce
to Algorithm 1 for our problem. �

C. Alternative Learning Scheme

The problem with the above scheme is that it involves all
agents in S . Worse, it requires all communications between
agents to be observed. A more realistic assumption is that only a
few agents can be monitored. These should include in particular
those in S0 ∪ S2. Without loss of generality, we assume that
only the updates of agents in S2 are observed. The algorithm we
propose next and its analysis extend easily to the case when
a few uncontrolled agents are also observed (by using, e.g.,
the trivial device of setting αi ≡ 0 for such agents). Then, it
also makes sense that we should treat S∗ := S2 ∪ S0 as our
effective state space for the algorithm. But the situation is much
more difficult here. Recall Zk, Z̃k defined in the preceding
section. There, we had considerable freedom in choosing how
Zk is generated; the key requirement was that Z̃k should have
the prescribed conditional law given Zk. This is because the
algorithm at each step calls for a single transition executed
according to the given transition matrix. That is, one has to
generate a pair of random variables with the conditional law of
the latter given the former completely specified; the (stationary
marginal) law of the former only needs to have full support at
each step. Now, we require a path from one state inS∗ to another,
passing through a possibly nonempty set of unobserved states
in S\S∗. Generating pairs (Zk, Z̃k) as before does not provide
that. We now need a probing mechanism. We use one suggested
by respondent-driven sampling [18]. That is, we define Zk as
before, but when node Zk = i ∈ S∗ polls a neighbor i1 ∈ S , it
passes to i1 a time-stamped token tagged with i. The node i1,
if not in S∗, does likewise, but retaining the original tag and
time stamp. This continues till the token reaches some j ∈ S∗.
Then, set Z̃k = j. By analogy to the above stochastic shortest
path formulation, we consider an S-valued Markov chain {Yk}
with transition probabilities {qij}, but observed only at the
successive return times Tk, k ≥ 0, of {Yk} to S∗. These are
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defined recursively by

T0 := min{m ≥ 0 : Ym ∈ S∗}
Tk+1 := min{m > Tk : Ym ∈ S∗}, k ≥ 0.

The sampled chain {Y ∗
k := YTk

} eventually gets absorbed into
S0 as before. Strictly speaking, if we keep track of the Tks as
well, it is a semi-Markov process. Exercising control only when
the chain is in S∗ leads to a supervisory control problem as
in [15], albeit with a different reward structure compared to
theirs. Nevertheless, we do not need to view it in this manner.
This is because our controlled Markov chain is an imaginary
object, the actual process is the simple averaging or “gossip”
dynamics. Thus, the only thing that matters is that the conditional
law of Y ∗

k+1 given Y ∗
k is the same as the conditional law of Z̃k

givenZk above. The actual values ofTks are irrelevant for us. Let
ϕ(j|�) := P (Yζ = j|Y0 = �), for ζ := min{k > 0 : Yk ∈ S∗}.
In particular, ϕ(·|·) is independent of the control choice u. This
is because once the chain {Yk} leaves state i, it does not hit
any other controlled state before hitting another state (j above)
in S∗. For the same reason, the running cost associated with
this transition is −αiwi(u) as before. We now consider the
restricted reward

∑
i∈S x∗

i , which is not the same as the original,
so this is an approximation. The advantage of this reward is that
it is expected to be positively correlated with the full reward,
i.e., increase in the former should lead to increase in the latter.
More importantly, it depends only on observed quantities. This
passage is purely heuristic and avoids in particular having to
contend with the full complications of the “partial observations”
framework. The associated (constant policy) dynamic program-
ming equation is then given by

V (i) = αiwi(ui)+(1−αi)

⎛⎝pij+ ∑
j∈S∗, �/∈S∗

pi�ϕ(j|�)
⎞⎠V (j)

(26)

V (i) = h(i), i ∈ S0. (27)

By exactly the same reasoning as before, this leads to our second
algorithm.

Algorithm 2: For i ∈ S, j ∈ S2,

Ψij(k + 1) = Ψij(k) + a(ν(i, k))I{i ∈ Zk}

×
[
(αiw

′
i(ui(k))δij + (1− αi)ΨZ̃i

kj
(k)

− Ψi(k)
]
, i /∈ S0 (28)

ui(k + 1) = Γ

⎛⎝ui(k) + b(k)
∑
j

Ψji(k)

⎞⎠ , i ∈ S2 (29)

Ψij(k) = 0, i ∈ S0. (30)

V. CONVERGENCE ANALYSIS

The convergence analyses of both schemes are similar and
use known facts from the theory of two time scales and dis-
tributed asynchronous stochastic approximation. With this in
mind, we sketch it in outline only for the first scheme and write
a more detailed proof in Appendix A. To begin with, note that
condition (16) implies that the iterates (24) move on a slower,
in fact asymptotically negligible, time scale compared to (23).
Hence, they can be viewed as quasi-static, i.e., ui(k) ≈ ui ∀i,
for purposes of analyzing (23) (see[4, Sec. 6.1]). Then, (23)
constitutes a stochastic approximation scheme to estimate the
partial derivatives of V ∗ w.r.t. the uis by solving the linear
system (22), which has a unique solution. Its convergence to
this solution follows from the theory of asynchronous stochastic
approximation developed in [5], wherein the conditions we
imposed on {a(n)} play a crucial role.

But this is under the assumption that ui(k) ≈ ui ∀i, whereas
the ui(k)s are changing on a slower time scale. Thus, what the
foregoing entails in reality is that

Ψij(k)− ∂x∗
i

∂uj

∣∣∣
u·=u·(k)

→ 0

a.s. ∀ i, j, i.e., Ψijs track the corresponding partial derivatives
of x∗

i with an asymptotically negligible error, as desired. Then,
(24) is a legitimate stochastic gradient ascent scheme. We need
the following lemma.

Lemma 2: The solution V (·) of the constant policy dynamic
programming equation (26), (27) is componentwise concave and
continuous in the variables {ui}.

Proof: (Sketch) This follows by considering the associated
constant policy value iteration and using induction, along with
the fact that pointwise limits of concave functions are concave
and uniform limits of continuous functions are continuous. The
details are routine; see, e.g., [1]. �

Our main result is then the following.
Theorem 2: Algorithms 1 and 2 are a.s. asymptotically opti-

mal for their respective optimality criteria.
A detailed proof is given for Algorithm 1 in Appendix A.

That for Algorithm 2 is similar. Since both are two time-scale
stochastic approximations, standard results concerning conver-
gence rates of such algorithms apply; see, e.g., [7], [11], and
[23] for results in this vein.

VI. MORE GENERAL MODEL

We can also consider the situation where the αis depend on
the control choice ui at i ∈ S2. We shall illustrate the changes
for the second scheme above, the situation for the first scheme
being completely analogous. Thus, the “dynamic programming
equations” become

V (i) = αi(ui)wi(ui)

+ (1− αi(ui))

(
pij +

∑
�∈S′

pi�ϕ(j|�)
)
V (j), i /∈ S0

V (i) = h(i), i ∈ S0

and the corresponding RL scheme is as follows.
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Fig. 1. Evolution of u(k) for each algorithm. (a) Comparison of the
evolution of the Algorithm 1 with the classical gradient scheme. The
simulation is performed over the Karate network. (b) Comparison of the
evolution of the stochastic gradient schemes (see the Appendixes) with
the classical stochastic gradient scheme. The simulation is performed
over the Karate network.

Fig. 2. Boxplot for the time (in second) to perform one iteration of
each algorithm. [SAS = Algorithm 1, SG1 = (42), SG2 = (43).] The
simulations are performed on the Karate network.

Algorithm 3: For i ∈ S∗, j ∈ S2,

Vi(k + 1) = Vi(k) + a(ν(i, k))I{i ∈ Zk}

×
[
αi(ui(k))wi(ui(k)) +

(1− αi(ui(k)))VZ̃i
k
(k)− Vi(k)

]
,

i /∈ S0 (31)

TABLE I
DESCRIPTION OF THE NETWORKS

Ψij(k + 1) = Ψij(k) + a(ν(i, k))I{i ∈ Zk} (32)

×
[
(αi(ui(k))w

′
i(ui(k))

+ α′
i(ui(k))wi(ui(k)))δij

− α′
i(ui(k))δijVZ̃i

k
(k)

+ (1− α(ui(k)))ΨZ̃i
kj
(k)−Ψij(k)

]
,

i /∈ S0 (33)

ui(k + 1) = Γ

⎛⎝ui(k) + b(k)
∑
j

Ψji(k)

⎞⎠ ,

i ∈ S2

Vk(i) = h(i), Ψij(k) = 0, i ∈ S0. (34)

The difference with the previous scheme is that (20) gets
replaced by

Ṽ (i) = αi(ui)wi(ui) + (1− αi(ui))
∑
j

pi�Ṽ (�). (35)

Differentiating through with respect to ui in (22) after replacing
αi by α(ui), we have the additional term α′

i(ui)(wi(ui)−∑
� pi�Ṽ (�)) on the right-hand side. The second and third

terms inside the square brackets on the right-hand side of (33)
correspond to these additional terms. This involves Ṽ (·) as
well, unlike the previous scheme, which did not. Therefore, one
needs the additional iteration (31) to estimate it, this being the
stochastic approximation scheme to solve (20).

The convergence analysis applies as before except for the fact
that we can no longer claim concavity. Hence, only convergence
to a local maximum can be guaranteed. This could be improved,
e.g., by resorting to simulated annealing for the slow time-scale
iterates, i.e., replacing them by

ui(k + 1) = Γ

⎛⎝ui(k) +
B

k

∑
j

Ψji(k)

+
C√

k log log k
Wk+1

⎞⎠ (36)

where {Wk} are i.i.d.N(0, 1) andB,C > 0 are suitably chosen
constants as in [16].

VII. NUMERICAL EXPERIMENTS

We select three real-world networks for our evaluation. The
three networks are Karate, Macaque, and Rfid (see Table I)
and have 34–75 nodes and 78–2278 links. Each network was
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Fig. 3. Table in this figure summarizes the system time (in second) taken by each algorithm before meeting the following convergence criterion
1

I 100

∑k

k′=k−99

∑I

i=1
|ui(k

′)− ui(k
′ − 1)| ≤ CC, with CC ∈ {0.1, 0.01, 0.001, 0.0001}. When NA is appearing in one cell of the table, it means

that after 30 000 iterations, the associated algorithm was not able to meet the convergence criterion.

Fig. 4. Boxplot of the relative difference between the payoff obtained
at k and the optimum over ten simulations for Algorithm 1 and the SGD
(42). The simulations are performed over three networks. (a) Algorithm
1. (b) SGD first scheme (42).

retrieved from the R package igraphdata [27]. The numerical
experiments reported here are for the synchronous case, i.e.,
all components are updated at each iteration. The results are
compared with, first, the exact solution computed offline using a
classical gradient ascent (10) and, second, the stochastic gradient
ascent schemes described in Appendix B.

Inputs: The matrixP , the number of agents in each set (S2,S1,
S0), the upper bound in the resource constraint M , the number
of iterations, the function w(·), and finally the parameters A, B,
and C of our step-size functions

a(k) =
A

�(1 + klog(1 + k))/C�

and

b(k) =
B

�k/C�
.

Construction of P : Given an adjacency matrix A, which can
be weighted or not, we transform this matrix into a stochastic
matrix by dividing each row by the sum of its elements. This
matrix is our communication matrix P .

Initial setting: First, we specify the number of agents in each
set (S2, S1, and S0) and then randomly allocate an agent to
a given set. We assume that αi = α for each i ∈ S0 ∪ S2 and
αi = 0 for all i ∈ S1. For each i ∈ S0, h(i) is sampled from a
uniform distribution. In our simulations, α = 0.6, M = 5, A =
0.6, B = 0.6, C = 100, and w(x) = x

x+0.1 .
Study of Algorithm 1 for the Karate network. In the first numer-

ical study, we are interested in understanding the convergence of
the stochastic approximation scheme and the stochastic gradient
to the optimal strategy. We restrict this study to the Karate
network. Later on, we shall extend it to the other networks.
In Fig. 1(a), the x-axis denotes the number of iterations and
the y-axis captures the evolution of u(k) for the stochastic
approximation (see Algorithm 1) (17)–(19) (SAS for short). In
Fig. 1(b), the x-axis denotes the number of iterations and the
y-axis captures the evolution of u(k) for the stochastic gradient
descent (SGD) with the two sampling schemes (42) and (43) de-
scribed in the Appendixes. The red curve captures the evolution
of u(k) using the gradient ascent (GD) [see (10)]. The number of
controlled agents is equal to 3. Twenty-eight agents belong toS1

and three agents are in S0. In Fig. 1(a), before 7500 iterations,
we can observe that the GD algorithm already converges and
the RL scheme did not. In fact, the SGD seems to converge
faster (see Fig. 1(b) after 2500 iterations). However, we observe
that the variance over the iterates of SGD is higher than the
SAS. The tradeoff is, therefore, between speed and fluctuations.
Moreover, we can observe in Fig. 2 that one iteration of the
SAS is much faster than the two SGD algorithms. Therefore,
there is a clear tradeoff between the complexity of a single
iteration and the number of iterations, so the latter cannot be the
sole basis for comparison. This finding is confirmed by Fig. 3,
where we observe that the stochastic approximation scheme
is converging much faster in terms of system time compared
to the two stochastic gradient schemes. Study of Algorithm 1
for other networks: The second numerical study applies the
same schemes to the other datasets and observes whether or
not the same conclusions apply. We do not present the SGD
with the second sampling scheme because the conclusions are

Authorized licensed use limited to: IMT ATLANTIQUE. Downloaded on December 06,2023 at 09:07:37 UTC from IEEE Xplore.  Restrictions apply. 



BORKAR AND REIFFERS-MASSON: OPINION SHAPING IN SOCIAL NETWORKS USING RL 1313

Fig. 5. Simulations for Algorithm 2. (a) Evolution of u(k). In this figure, we compare the evolution of the classical GD scheme with Algorithm 2. (b)
Evolution of the relative difference between the current payoff generated by Algorithm 2 and the optimal payoff. (c) Boxplots of the relative difference
between the current payoff generated by Algorithm 2 and the optimal payoff. The relative difference is studied after Algorithm 2 has performed 100,
500, and 1000 iterations. The simulations are performed over three different networks.

Fig. 6. Convergence of Algorithm 3 with/without the gradient knowl-
edge. The simulation are performed over the Karate network. (a) C =
1000. (b) C = 5000.

similar. In Fig. 4(a) and (b), we perform ten simulations of
the stochastic approximation scheme (see Algorithm 1) and
stochastic gradient for each network. The performance measure
on the y-axis is the relative difference between the optimal
payoff and the current payoff generated by u(k) at iteration
k. For the SAS, we observe that for each network, even if

we stop the stochastic approximation after 100 iterations, the
third quantile will have a relative difference lower than 1%. For
each network, when we use the stochastic gradient, we note
that the relative difference is much lower that for the SAS. The
last observation highlights the fact that when the number of
iterations is low (under 1000 in this case), the SAS uses a biased
estimator of the gradient compared to the stochastic gradient
and therefore has lower performance. Study of Algorithm 2: In
the third numerical study, we are interested in understanding
how the second learning scheme (see Algorithm 2) compares
with the first. The main difference between the two algorithms
is that in the first one, you have to observe the communication
between all the agents, and in the second one, you can only
observe a part thereof. In order to be able to compare with
the previous simulations, we assume the following: the set of
controlled agents S is the same. Only 50% of the agents in S0

and S1 are observed. The results are depicted in Fig. 5(a)–(c).
In Fig. 5(a), we note that Algorithm 2 already converges after a
number of iterations less than 3000. The convergence is not to
the optimal one, but in this case, we can observe that in Fig. 5(b),
the relative difference of the current payoff and the optimal is
below 0.1%, therefore nearly optimal. We can conclude that even
if the improved stochastic approximation does not converge to
the optimal u∗, the strategy reached is already quite good. We
can observe a similar conclusion in Fig. 5(c) for other networks.
These preliminary simulations encourage the use of algorithm
2.

Study of Algorithm 3: The final numerical study is dedicated
to the last scheme based on the annealing method for nonconvex
optimization. We restrict this study to the Karate network. The
noisy term of (36) is parameterized by c(k) := �k/C� and
C = 10. We study two schemes. The first one is described
by (31), (33), and (36) (see Algorithm 3). The second one is
Algorithm 3 with the direct computation of the gradient [see
(36)]. We are interested in understanding how the first scheme
tracks the behavior of the second scheme. In Fig. 6(a) [respec-
tively, Fig. 6(b)], we observe that Algorithm 3 begins to track
the trajectory of (36) after 2000 iterations (15 000 iterations).
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Moreover, we observe that in both cases, the two schemes are
converging to the same values.

Take-away from the numerical section: The different numer-
ical experiments lead to the following conclusions.

1) We observed that Algorithm 1 converges much faster
(in terms of system time) in comparison with the two
stochastic gradient schemes. This is a consequence of the
fact that computing a biased estimate of the gradient (as
in Algorithm 1) is faster than computing an unbiased esti-
mate of it. Therefore, Algorithm 1 outperforms classical
stochastic gradients.

2) Algorithm 1 still requires a lot of iterations to converge
to the optimal solution. Algorithm 2, which uses partial
information of the network, will converge faster than
Algorithm 1. Also, even when it does not converge to the
optimal strategy, we have demonstrated by examples that
it is still performing well. Therefore, for large networks,
we recommend using Algorithm 2.

3) Finally, when the problem is not convex, we have
shown that Algorithm 1 can be adapted suitably as
Algorithm 3 and will still be able to converge to the
optimal solution.

VIII. CONCLUSION AND FUTURE DIRECTIONS

In this article, we have proposed a dynamic model for opinion
shaping in a social network by a social planner, where only some
agents are amenable to influence by the central planner, and in
addition, there is a resource constraint that couples the decisions
across the nodes. We separately introduced a stochastic shortest
path problem, which leads to an identical optimization problem
mathematically. Because of the coupling resource constraint,
this problem cannot be solved by dynamic programming and,
therefore, is not amenable to classical RL schemes for approxi-
mate dynamic programming. It is, however, amenable to a policy
gradient scheme with the difference that its gradient ascent
component gets modified to a projected gradient ascent in order
to accommodate this constraint. There is also a problem specific
gradient estimation component. In addition to the vanilla variant,
we also introduce another variant based on a reward that only
approximates the original one, but requires fewer interactions
to be observed. Empirically, this is seen to be a faster scheme
with very small loss of optimality. Both schemes perform better
than some natural Markov-chain-Monte-Carlo-based gradient
schemes for larger problems. They cannot, however, be com-
pared with the standard RL schemes such as Q-learning for
reasons already stated. We also introduce a harder problem,
where, in addition to influencing the reward, the planner can
directly influence the probabilities with which the controlled
agents poll their neighbors. This leads to loss of convexity, and
we can claim only local optimality.

Some potential future directions are as follows.
Incorporating subjective risk measures: Since we are model-

ing social networks, it is desirable that we incorporate behavioral
aspects into our model explicitly, such as the risk measures
suggested by behavioral economics. This makes the problem

a lot harder; see, e.g., [29] for some initial efforts toward the
dynamic programming aspects.

Selection of the initial set of agents: One of the results of
this article is the fact that by observing a smaller number of
agents, we can increase drastically the speed of convergence
of the algorithm. Even if the solution obtained is suboptimal,
the relative difference observed between the optimal payoff
and the suboptimal one in simulations was low (about 0.01%).
Therefore, one interesting question is to find an algorithm to
choose the initial set of agents. This question can be related to
the problem of selecting k sensors among n potential sensors.
In future work, we plan to adapt this well-known problem to
our setting. A closely related formulation and its resolution by
a message passing algorithm appears in [30]. See also [6] for a
greedy scheme for agent selection with performance guarantees.

APPENDIX A
PROOF OF THEOREM 2

Theorem 2: The proposed learning policy (23)–(25) is asymp-
totically optimal, a.s.

Proof: Let Fk := σ(Φ(k′), u(k′),M(k′), k′ ≤ k). We can
rewrite (17)–(19) as

Ψij(k + 1) = Ψij(k) + a(k)

[
αiw

′
i(ui(k))δij

+ (1− αi)
∑
l

pilΨlj(k)− Ψij(k)

+Mij(k + 1)

]
, i /∈ S0 (37)

u(k + 1) = Γ(u(k) + b(k)1TΨ(k)), i ∈ S2 (38)

Ψij(k) = 0, i ∈ S0 (39)

where Mij(k + 1) = (1− αi)[ΨZ̃i
k
(k)−∑l pilΨlj(k)] for all

i. We denote byM(k) := [Mij(k)]1≤i,j≤I the associated matrix.
Define the Gateaux derivative

γ(x; y) := lim
δ→0

Γ(x+ δy)− x

δ
.

Using a first-order Taylor expansion, we can rewrite (38) as

u(k + 1) = u(k) + b(k)[γ(u(k); 1TΨ(k)) + ε1(k + 1)] (40)

where ε1(k + 1) is the error term from the Taylor expansion,
which is o(b(k)).

Step I (Convergence of the fast-time scale):
We can rewrite (37) and (40) as: for j ∈ S2,

Ψij(k + 1) = Ψij(k) + a(k)

[
αiw

′
i(ui(k))δij

+ (1− αi)
∑
l

pilΨlj(k)− Ψij(k)

+Mij(k + 1)

]
, i /∈ S0
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u(k + 1) = u(k) + a(k)[ε2(k) + ε3(k + 1)], i ∈ S2

Ψij(k) = 0, i ∈ S0

with

ε2(k) = a(k)−1b(k)γ(u(k); 1TΨ(k))

ε3(k + 1) = a(k)−1b(k)ε1(k + 1).

Both {ε2(k)} and {ε3(k + 1)} are bounded random sequences
that are o(1) because a(k)−1b(k) →

k→+∞
0. The martingale noise

Mij(k + 1) satisfies

E[(Mij(k + 1))2 | Fk] = K1(1 + ‖Ψ(k)‖2) ∀ i, j.

Therefore, in the fast-time scale regime corresponding to step
sizes {b(k)}, it follows from [4, Th. 7, p. 74] that the limiting
ordinary differential equation (o.d.e.) for the first iteration above
is

Ψ̇ij(t) = η(i) [αiw
′
i(ui)δij

+ (1− αi)
∑
l

pilΨil(t)−Ψi(t)

]
,

∀ i /∈ S0, j ∈ S2

Ψij(t) = 0, i ∈ S0 ∀t ≥ 0.

Since A is a substochastic matrix, this o.d.e. has a globally
asymptotically stable equilibrium Φij(u), which is the unique
solution of the fixed-point equation: for i /∈ S0, j ∈ S2,

Φij(u) = αiw
′
i(ui)δij + (1− αi)

∑
�

pi�Φ�j(u)

with Φij = 0 for i ∈ S0. Define the matrix Φ(u) :=
[Φij(u)]1≤i,j≤I . By standard arguments of two time-scale
stochastic approximation (see [4, Sec. 6.1]), it follows that

Ψij(k)− Φij(u(k)) → 0 a.s. ∀ i, j.

Step II (Convergence of the slow-time scale):
In the slow-time scale regime, we analyze

u(k + 1) = u(k) + b(k)
[
γ(u(k); 1TΦ(u(k)))

+ε1(k + 1) + ε4(k + 1)]

where ε4(k + 1) = γ(u(k); 1TΨ(k))− γ(u(k); 1TΦ(u)). The
sequence {ε4(k)} is bounded and, by the results of Step I above,
is o(1). Recall thatΓ(·) is the projection to the simplexQ. Define
the normal cone

NQ(x) := {z ∈ Rs : 〈z, x− y〉 ≥ 0 ∀ y ∈ Q}.
Then, the above iterates track the so-called “projected dynamical
system” [20], which is equivalent to the differential inclusion
(see [13, Lemma 4.6])

u̇(t) ∈ 1TΦ(u(t))−NQ(u(t)). (41)

Since Q is convex, (41) has a unique solution (see [8, Corol-
lary 2] and [9, Ths. 3.1 and 3.2]). Thus, (41) is simply a
projected gradient ascent for the strictly concave function u �→
1T (Id−A)−1W (u) and, therefore, must converge to its global

maximizer u∗. By the theory of stochastic approximation with
differential inclusion limits (see[2, Prop. 3.27]), it follows that
the iterates (4) converge to u∗ a.s.

APPENDIX B
STOCHASTIC GRADIENT SCHEMES

For comparison purposes, we propose two algorithms, where,
instead of having a biased but consistent estimator of the gra-
dient, we have a sampling scheme that will provide, at each
iteration, an unbiased estimator of the gradient. Let {Zn} be as
before. Let δ·· denote the Kronecker delta.

1) For each i ∈ S, set m = 0 and set Yj0 = Zk = j (say).
Here, j ∈ S\S0 can be picked uniformly at random.
Initialize ξji(k) = 0.

2) With probability αYj0
= αj (αj = 0 if j ∈ S1), stop and

set ξji(k) → ξji(k) + δji.
3) If not, with probability (1− αYj0

)pYj0j′ , continue by
setting Yj1 = j,′ ξji(k) → ξji(k).

4) At step m, stop if Yjm ∈ S0. If not, stop with probability
αYjm

and set ξji(k) → ξji(k) + δYjmi, or else continue
with probability (1− αYjm

) by setting Yj(m+1) = � with
probability (1− αYjm

)pYjm�.
5) Repeat step 4 above for m ≥ 1 till stopping.
6) Perform the following GD step:

ui(k + 1) = Γ

(
ui(k) + a(k)w′

i(ui(k))
∑
i

ξij(k)

)
.

(42)
An alternative scheme is the following.
1) For each i ∈ S , and for each j ∈ S, set m = 0 and Yi0 =

i, kept fixed for this run. Initialize ζi = 1. Set

ξij → ξij + ζiδYi0jαYi0
.

Continue by setting Yi1 = k with probability pYi0k.
2) At step m, stop if Yim ∈ S0. If not, set

ζi → ζi(1− αYi(m−1)
), ξij → ξij + ζiδYimjαYim

and continue by setting Yi(m+1) = � with probability
pYim�.

3) Repeat 2) above for m ≥ 1 till stopping. Freeze ξij on
stopping and label it ξij(k).

4) Perform the following GD step:

ui(k + 1) = Γ

⎛⎝ui(k) + a(k)w′
i(ui(k))

∑
j

ξji(k)

⎞⎠ .

(43)
By construction, for both sampling schemes,

w′
i(ui(k))E[

∑
� ξi�(k)] is the solution of the linear system

(22). Therefore, the schemes will converge to the optimal u∗

as long as the variance of ξij(k) is bounded for all k [4].
For the stochastic gradient iterate (43), a good step size is
a(k) = A/(� k

M �) for some A > 0 and M ≥ 1.
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