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Abstract

Recent studies have demonstrated that the decisions of agents in society are shaped by their own

intrinsic motivation, and also by the compliance with the social norm. In other words, the decision

of acting in a particular manner will be affected by the opinion of society. This social comparison

mechanism can lead to imitation behavior, where an agent will try to mimic the behavior of her neighbors.

Using this observation, new policies have been designed, e.g., in the context of energy efficiency and

transportation choice, to leverage social networks in order to improve altruism and prosocial behavior.

One policy is to use targeting strategies. Indeed, by changing the behavior of influential actors in a

social network, it is possible to reshape the global behavior of agents towards more prosocial behavior.

However, discovering who are the influential agents requires a lot of information, such as the matrix of

interactions between agents. In this paper, we study how to shape opinions in social networks when the

matrix of interactions is unknown. We consider classical opinion dynamics with some stubborn agents

and the possibility of continuously influencing the opinions of a few selected agents, albeit under

resource constraints. We map the opinion dynamics to a value iteration scheme for policy evaluation for

a specific stochastic shortest path problem. This leads to a representation of the opinion vector as an
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approximate value function for a stochastic shortest path problem with some non-classical constraints.

We suggest two possible ways of influencing agents. One leads to a convex optimization problem and

the other to a non-convex one. Firstly, for both problems, we propose two different online two-time

scale reinforcement learning schemes that converge to the optimal solution of each problem. Secondly,

we suggest stochastic gradient descent schemes and compare these classes of algorithms with the two-

time scale reinforcement learning schemes. Thirdly, we also derive another algorithm designed to tackle

the curse of dimensionality one faces when all agents are observed. Numerical studies are provided to

illustrate the convergence and efficiency of our algorithms.

Index Terms

Social Networks; Opinion Shaping; Reinforcement Learning; Stochastic Shortest Path

I. INTRODUCTION

In recent times there has been increasing interest in non-price based mechanisms to improve

society’s behavior in the context of, e.g., energy efficiency or traffic behavior. These policies

are usually less expensive to implement and can be politically feasible as opposed to price

based policies. One example is the use of lottery with the distribution of coupons for energy

efficiency [24] or for promoting off-peak usage of cars [17]. Another example is of leveraging

social network for enhancing pro-social behavior. Indeed, social interactions can impact day to

day decisions of an agent. For instance, in transportation choice, several works ([10], [22]) have

demonstrated that the preferences of people in the decision maker’s peer group will impact her

choice of mode of transport to work (public transport, bicycle, car). Another practical application

concerns how to use social comparison to enhance energy efficiency [20]. One specific way of

leveraging social network for such purposes is to exploit the word-of-mouth/imitation process

in a network by using a targeted advertising campaign. Targeted advertising on a social network

amounts to finding which agents should be convinced in a social network to be pro-social in such

a way that by imitation, the maximum number of agents in the whole social network will also

be pro-social. Designing such a targeting strategy, however, can be challenging because of: (1)

computational issues, (2) unknown social network, (3) size or lack of convexity of the resulting

optimization problem, and so on. The goal of this paper is to propose different algorithms based

on reinforcement learning that address these issues.

Our initial model can be described as follows: The society is composed of a finite set of

agents and each agent has an opinion concerning a given pro-social action that she has to take.
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For instance, it could be the opinion concerning whether or not she should take the bus to work

or how much she cares about energy efficiency of her apartment. Whether an agent performs or

not the pro-social action, the rest of the society that is ”close” to her in the social network will

observe her and vice versa. Therefore each agent will have a tendency to imitate her neighbors

and vice versa. A planner (government, owner of the social network) is interested in choosing

which agents she will influence to shape the opinion in a given direction. The planner can

influence an agent through two controls which will be described later on. The society is divided

into three types of agents. The first set is composed of ’stubborn’ agents. In this set, we assume

that they have a given opinion and they will not be impacted by the social network. The second

set of agents is composed of ’uncontrolled’ agents. In this set, agents are influenced by the social

network and their opinion will be impacted by the opinion of the others. However, the planner

cannot directly influence them. The last set of agents is called the set of ‘controlled’ agents.

This set is composed of agents that care about the opinion of their neighbors and also can be

influenced by the planner. The goal of the planner is to shape the opinion of the social network

by targeting specific agents from the latter group. We call this problem the opinion shaping

problem. One of the major drawbacks of this initial model is that for shaping the opinion of the

society, the planner needs to know the influence matrix. Worse, even if the influence matrix is

known, the number of agents is so big that it is not feasible to decide optimally which agent

should be chosen. Finally, depending on how the planner can influence the users, the convexity

of the problem can be lost.

Our initial model is inspired by [4], [8]. In these papers, the influence matrix is assumed to be

known. Moreover the authors do not consider efficient and decentralized algorithms to solve the

opinion shaping problem. In this paper, we extend these works further in order to address these

issues. Throughout our paper, the main assumption is that the planner does not know the influence

matrix but he observes when the agents interact. Using these observations, we are able to derive

three reinforcement learning based algorithms that will address the aforementioned issues. The

proposed algorithms are decentralized. We also provide supporting simulations for the different

settings. From a mathematical point of view, we provide the equivalence of the opinion-shaping

problem with a stochastic shortest path problem and use this correspondence to motivate our

algorithms and their convergence. Additionally, we discuss several possible extensions and future

directions.
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A. Organization and Main Results

The remainder of this paper is organized into eight sections. In section II, we discuss related

works. Section III introduces the opinion-shaping problem after first describing the model for the

opinion adoption process. Section IV is the main section of this paper. We prove the equivalence

of the opinion adoption process with a stochastic shortest path problem. Using this equivalence,

we propose a decentralized algorithm accounting for the fact that the influence matrix is unknown.

This is followed by two other variants. The first one is using a unbiased estimator for the gradient

and the second one is designed to tackle the curse of dimensionality one faces when all agents

are observed. In section V, we prove the convergence of our algorithms. In section VI, a new

algorithm is proposed when the opinion-shaping problem is not convex. Numerical studies are

discussed in VII. Moreover, we compare the efficiency of the second algorithm, where all the

agents are not observed, with the one where all the agents are observed. Finally, we study the

efficiency of the annealing scheme for the non-convex opinion-shaping problem. Section VIII

concludes with pointers to some possible extensions of this work.

II. RELATED WORKS

The spread of opinions in social networks broadly falls into three families of mathematical

models and the influence maximization problem has been studied in the context of each of these.

The first category is cascade threshold models. In the last decade, initial models in this framework

for control of user activity were dedicated to maximization of influence [14], including the

seminal work of Kempe et al. [15]. One of the drawbacks of this line of work is that the state of

each user is assumed to be finite, often even binary. Another key limitation is that it only focuses

on the maximization of influence, which reduces its possible scope for applications. Indeed, one

may also be interested in other objectives such as minimum activity in a social network or

diverse activity and not just activity maximization. Based on these, a second category of models

has been proposed, e.g., by Zha et al. in [11], who define a new mathematical problem dubbed

the activity shaping problem. First, they use Hawkes processes to model the activity of users

in a social network. Undeniably, in recent literature these point processes have proved to be a

very effective method to capture users’ activity [27]. Secondly, the authors consider an activity

shaping problem wherein by controlling the exogenous rate vectors of the Hawkes processes,

a central controller tries to minimize a convex function which depends on the expected overall
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instantaneous intensity of the processes. Since then, other extensions have been suggested, e.g.,

[26], [23].

Our model of opinion propagation falls in the last category, viz., consensus models. For

several years, much effort has been devoted to the study of users’ activities in a social network

within this framework. The seminal work of Degroot [9] proposes a simple model to capture the

diffusion of opinion. In his paper, the author assumes that each agent at each instant will compute

the average opinion of her neighbors including possibly herself, and then replace her current

opinion by this average. Several extensions of the Degroot model have been considered recently,

especially the opinion shaping part [4], [8], [18]. In [4], the authors assume that a planner can

directly contaminate a user in the social network by sending him some messages. The user reads

the messages according to a certain probability and with the remaining probability, she will

sample from the messages sent by her friends. In [8], the authors consider a more drastic control

where they can freeze the opinion of a given user. Finally, in [18], the authors suggest a control

based on the reduction of the interaction between different agents of the social network.

Concerning the opinion shaping problem without the knowledge of the network, the authors

in [16] propose a data-driven model and a learning algorithm in case of a cascade with a linear

threshold model. In [25], the authors suggest a Partially Observed Markov Decision Process

(POMDP) framework in order to tackle the uncertainty over the topology of the network, again

for the case of a cascade with linear threshold model.

To the best of our knowledge, our paper is the first one that tries to shape the opinion under

resource constraints using a reinforcement learning approach, under the assumption that the

opinion propagation is captured by a consensus model, but without the full knowledge of the

topology.

III. PRELIMINARIES AND MODEL

We consider a social network given by a connected directed graph G = (S, E) where S is the

set of its agents and E the set of edges. To each edge (i, j) ∈ E we assign a probability weight

pij > 0 with
∑
{j:(i,j)∈E} pij = 1. We set pij = 0 if (i, j) /∈ E . The total number of agents is

equal to I .

With each agent i ∈ S, we also associate a process of valuations xi(k) ∈ [0, 1], n ≥ 0. Let

x(k) = [x1(k), . . . , xI(k)] be the associated vector for each k. We write S as a disjoint union

S = S ∪ S0 ∪ S1 of three sets. Each time instant k, an agent i (more generally, a set of agents)
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from S is selected and updates her valuation. The update mechanism will change depending on

which set an agent belongs to:

Set of ‘stubborn’ agents (S0): the agents that belong to this set have their valuation frozen

at some fixed value for good, i.e., i ∈ S0 =⇒ ∀k, xi(k) ≡ h(i) ∈ [0, 1].

Set of ‘uncontrolled’ agents (S1): This set stands for agents for which their valuations

evolves according to a gossip mechanism, but they are not amenable to external influence. In

this case the valuation update of an agent i ∈ S1 is captured by the following mechanism: agent

i polls a neighbor ` ∈ S with probability pi` and updates xi(k) to xi(k + 1) = x`(k).

Set of ‘controlled’ agents (S): The remaining agents that constitute the set S also evolve

according to a gossip mechanism, but are amenable to external influence or ‘control’. With

probability αi ∈ (0, 1), agent i will be influenced directly by the planner and with probability

1 − αi, agent i will be influenced by her peer group. When influenced by the planner, agent

i updates xi(k) to xi(k + 1) = wi(ui), with ui ∈ R+ without loss of generality and wi :

R+ 7→ [0, 1] are concave increasing and continuously differentiable maps. (Concavity captures

the ‘diminishing returns’ effect.) If agent i is influenced by her peer group, she polls a neighbor

` with probability pi` and updates xi(k + 1) = x`(k).

To summarize, the overall dynamics is then described as follows. Suppose agent i ∈ S performs

an update at time k. Then

xi(k + 1) =

 wi(ui) w.p. αi

x`(k) w.p. 1− αi
i ∈ S,

xi(k + 1) = x`(k), i ∈ S1,

xi(k + 1) = h(i), i ∈ S0,

xj(k + 1) = xj(k) ∀ j 6= i.

Analogous scheme holds when more than one agent updates.

For each i ∈ S , when k → ∞, x∗i = limk→+∞E [xi(k)] is the solution of the following

fixed-point equation:

x∗i = αiwi(ui) + (1− αi)
∑
`∈S

pi`x
∗
` , i ∈ S,

x∗i =
∑
`∈S

pi`x
∗
` , i ∈ S1,

x∗i = h(i), i ∈ S0.
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For all u ∈ RI
+, let W (u) ∈ [0, 1]I be a vector-valued function where the i-th element, Wi(u)

is equal to 1i∈Sαiwi(ui) + 1i∈S0h(i). Let A be a I × I substochastic matrix where its ij-entry

is equal to aij = (1 − 1i∈S0)(1 − 1i∈Sαi)pij . The solution x∗ = [x∗1, . . . , x
∗
I ] of the fixed-point

equation, is given by:

x∗ = (Id− A)−1W (u), (1)

with Id being the identity matrix with appropriate dimension depending on the context.

Optimization problem: The goal of the planner is to maximize the sum of the valuations when

k goes to infinity, i.e.,
∑

i∈S x
∗
i , by controlling ui, under the resource constraint

∑
i∈S ui ≤M .

Here 0 < M < |S| is a prescribed bound. Equivalently, the objective of the planner is to find

u∗ = (u∗i )i∈S , the solution of the following optimization problem:

u∗ = arg maxui∈R+,∀i∈S1T (Id− A)−1W (u), (2)

subject to: ∑
i∈S

ui ≤M. (3)

To compute u∗, we can use the gradient descent algorithm:

ui(k + 1) = Γ
(
ui(k) +

1

k
1T (I − A)−1

∂

∂ui
W (u(k))

)
, (4)

with ∂
∂ui
W (u(k)) = [1j∈Sαj

∂wj

∂ui
(uj)]j∈S . Our object is to do so in a data-driven manner using

ideas from reinforcement learning and MCMC. In this paper we assume that the matrix P is

unknown. The known parameters are the set of agents S, the vectors α := [αi]i∈S, h := [hi]i∈S0 ,

the functional vector w = [wi]i∈S and the budget M . The matrix P is unknown. At each time

step k ∈ N+, the planner chooses a vector u(k) = [ui(k)]i∈S , then simultaneously, agent i is

activated w.p. qi, and polls agent j probabilistically as described earlier and observes her opinion.

The planner observes this communication between i and j. The objective of the planner is to

find an algorithm such that limk→+∞ u(k) = u∗.

IV. REINFORCEMENT LEARNING SCHEME

A. Equivalent controlled Markov chain

Consider an S-valued controlled Markov chain {Yn} with controlled transition probabilities

qij(u) := pij, i ∈ S1 ∪ S,

:= δij, i ∈ S0.
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8

Here δij is the Kronecker delta. Thus the states in S0 are absorbing states. Also note that the

transition probabilities are independent of the control choice, which affects only the running

reward. Let τ := min{n ≥ 0 : Yn ∈ S0} denote the first passage time to S0. We associate

with a state-control pair (i, ui) an instantaneous cost wi(u) and a state-dependent discount factor

(1 − αi). Note that αi = 0 and wi(u) = 0 for all i ∈ S0 ∪ S1. Suppose ui(k) = v(i) for some

v : S 7→ [0, 1], i.e., a ‘stationary Markov policy’ in Markov decision theoretic parlance [6]. Let

x̄i(k) := E[xi(k)] ∀ i, k. Then {x̄i(k)} satisfy the dynamics

x̄i(k + 1) = αiwi(ui(k)) + (1− αi)
∑
`

pi`x̄`(k)), i ∈ S,

x̄i(k + 1) =
∑
`

pi`x̄`(k)), i ∈ S1.

The matrix P := [[pij]]i,j∈S∪S0 is substochastic, hence the above linear system of equations is

stable. Then as k ↑ ∞,

x̄i(k)→ x̄i(∞),

where x̄(∞) satisfies the equation

x̄i(∞) = αiwi(ui(k)) + (1− αi)
∑
`∈S

pi`x̄`(∞), i ∈ S,

x̄i(∞) =
∑
`∈S

pi`x̄`(∞), i ∈ S1.

This equation can be rewritten as:

x̄i(∞) = αiwi(ui(k)) + (1− αi)
∑

`∈S∪S1

pi`x̄`(∞)

+
∑
`′∈S0

pi`′h(`′), i ∈ S,

x̄i(∞) =
∑

`∈S∪S1

pi`x̄`(∞) +
∑
`′∈S0

pi`′h(`′), i ∈ S1.

By standard ‘one step analysis’, one sees that x̄i(∞) has the representation

x̄i(∞) := Ei

[ τ−1∑
m=0

(
m−1∏
k=0

(1− αYk)

)
αYmwYm(u(m))

+

(
τ∏
k=0

(1− αYk)

)
h(Yτ )

]
.

This suggests that we can view the opinion dynamics as the value iteration for evaluating a

fixed stationary Markov policy v(·) for the controlled Markov chain {Yn}, the objective being
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∑
i∈S∪S1

x̄i(∞). This will be recognized as a discounted reward for the stochastic shortest path

problem (‘Longest path problem’, to be precise, since we are maximizing a reward rather than

minimizing a cost. The equivalent stochastic shortest path problem corresponds to viewing −wi(·)

as a running cost function and −h(·) as the terminal cost.)

We do, however, have an additional constraint (3). This is hard to incorporate in a Markov

decision process as a constraint on controls, because it couples actions across different states in

a manner unrelated to the dynamics (i.e., without regard to, e.g., how often they are visited).

This puts it beyond the reach of traditional dynamic programming based computations such as

value or policy iteration, or linear programming version of the dynamic program. Therefore we

treat this as a parametric optimization problem over the parameters ui’s instead of as a control

problem - this will become apparent from the algorithms we propose. The ‘uncontrolled’ but

parameter-dependent ‘dynamic programming’1 equation is given by standard arguments, as the

linear system

V (i) = αiwi(ui) + (1− αi)
∑
j

pijV (j), i ∈ S, (5)

V (i) =
∑
j

pijV (j), i ∈ S1, V (i) = h(j), i ∈ S0. (6)

B. First algorithm

Let k ∈ N+ be kth time an agent polls another. A gradient based learning scheme for this

problem is as follows. Let

I{Yn = i} =

 = 1 if Yn = i,

= 0, if Yn 6= i,
ν(i, n) :=

n∑
m=0

I{Ym = i}.

for n ≥ 0. Then ν(i, n), n ≥ 0, can be interpreted as a ‘local clock’ at agent i, counting its

own number of updates till ‘time’ (i.e., the overall iterate count) n. Pick stepsize sequences

{a(k)}, {b(k)} ⊂ (0,∞) such that∑
k

a(k) =
∑
k

b(k) =∞,
∑
k

(a(k)2 + b(k)2) <∞,

b(k)

a(k)
→ 0. (7)

We shall also make the following additional assumptions on {a(k)}:

1‘one step analysis’, to be precise
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1) a(n+ 1) ≤ a(n) from some n onwards;

2) there exists r ∈ (0, 1) such that
∑

n a(n)1+q <∞, q ≥ r;

3) for x ∈ (0, 1), supn

(
a([xn])
a(n)

)
<∞, where [· · · ] stands for the integer part of ‘· · · ’;

4) for x ∈ (0, 1) and A(n) :=
∑n

m=0 a(i), limn↑∞

(
A([yn])
A(n)

)
= 1 uniformly in y ∈ [x, 1].

These conditions are satisfied, e.g., by the popular stepsize a(n) = 1
n+1

, n ≥ 0.

The algorithm then is as follows. For k ≥ 0, i, j ∈ S, do: for a prescribed state i0,

Ψij(k + 1) = Ψij(k) + a(ν(i, k))I{Yk = i} ×[
αiw

′
i(ui(k))δij + (1− αi)ΨYk+1j(k)

− Ψi(k)
]
, (8)

ui(k + 1) = Γ(ui(k) + b(k)
∑
j

Ψji(k)), (9)

Ψij(k) = 0, i ∈ S0. (10)

Here Γ(·) is the projection onto the simplex

{x = [x1, · · · , x|S|]T : xi ≥ 0 ∀i,
∑
i

xi ≤M}.

This is a gradient-based reinforcement learning scheme which is better suited for our purposes

than, e.g., the classical Q-learning scheme of [1]. This is because it allows us to treat the

optimization over control parameters as parametric optimization which can handle the constraint

(3). The explanation of this scheme is as follows:

• The iteration (8) estimates the partial derivatives ∂V (i)
∂uj

by Ψij(k), k ≥ 0. This is arrived at

by considering the constant policy dynamic programming equation

Ṽ (i) = αiwi(ui) + (1− αi)
∑
j

pi`Ṽ (`), (11)

for i ∈ S. Differentiating both sides w.r.t. uj , we see that Φij := ∂V (i)
∂uj

satisfy

Φij = αiw
′
i(ui)δij + (1− αi)

∑
`

pi`Φ`j, (12)

for i ∈ S, with Φij = 0 for i ∈ S0. The iteration (8) then is the stochastic approximation

scheme to solve this equation.

• Iteration (9) operating on a slower time scale (in view of (7)), constitutes a stochastic

gradient ascent. That is, (9) is a stochastic gradient ascent over the control variables which

takes the outputs {Ψij(k)} of (8) as estimates of the relevant partial derivatives and summing
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them over the first index, generates an estimate of the corresponding partial derivative of the

reward itself. In turn, the application of the projection Γ(·) makes it a projected stochastic

gradient scheme which also imposes the constraint (3).

The chain {Yn}, however, is an imaginary object. To map this scheme back to our original

framework, let Zn be the index of the agent that updated its valuation at time n. In other words,

it is the Zn-th component xZn(n) that got updated at time n, the rest were left unperturbed.

Also suppose that this was done by the Zn-th agent by polling a neighbor Z̃n according to the

transition probabilities qzn· defined above.

The iteration (8) of the above scheme can then be written for our original framework as

Ψij(k + 1) = Ψij(k) + a(ν(i, k))I{Zk = i}×[
(αiw

′
i(ui(k))δij + (1− αi)ΨZ̃kj

(k)−Ψij(k)
]
. (13)

The third iteration, i.e., (9), remains unaltered, as do the boundary conditions for the Ψi’s.

Now that we no longer have to think of Zk, Z̃k as realizations of a single trajectory of a

Markov chain, we can generalize this further and let Zk be a subset of S. For each i ∈ Zk, we

generate a random variable Z̃i
k according to the probability distribution qi· above. The iteration

(14) then gets replaced by

Ψij(k + 1) = Ψij(k) + a(ν(i, k))I{i ∈ Zk}×[
(αiw

′
i(ui(k))δij + (1− αi)ΨZ̃i

kj
(k)−Ψi(k)

]
. (14)

In particular when Zn = S, it is a completely synchronous iteration. Note that ν(i, n) has to be

defined now as ν(i, n) :=
∑n

m=0 I{i ∈ Zm}.

C. Stochastic gradient scheme

Along the line of the previous algorithm, we define a new algorithm, where instead of having

a biased but consistent estimator of the gradient, we can derive a sampling scheme that will

provide, at each iteration, a unbiased estimator of the gradient. Recall the Zn, Z̃n defined in the

preceding section. There we had considerable freedom in choosing how Zn is generated, the key

requirement was that Z̃n should have the prescribed conditional law given Zn. This is because

the algorithm at each step calls for a single transition executed according to the given transition

matrix. That is, one has to generate a pair of random variables with the conditional law of the

latter given the former completely specified and the (marginal) law of the former having full
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support at each step. In the algorithm we propose below (with its natural extension), however,

we require at each step a path of random duration in S. Generating pairs (Zn, Z̃n) as before

does not provide that. Hence unlike the previous scheme with full observations, we now need a

probing mechanism. Thus we define Zn as before and do (for each fixed n): Let δ·· denote the

Kronecker delta.

1) For each i ∈ S, set m = 0 and set Yj0 = Zn = j (say). Here j ∈ S\S0 can be picked

uniformly at random. Initialize ξji(n) = 0.

2) With probability αYj0 = αj (αj = 0 if j ∈ S1), stop and set ξji(n)→ ξji(n) + δji. If not,

3) with probability (1− αYj0)pYj0k, continue by setting Yj1 = k, ξji(n)→ ξji(n).

4) At step m, stop if Yjm ∈ S0. If not, stop with probability αYjm and set ξji(n)→ ξji(n) +

δYjmi, or else continue with probability (1−αYjm) by setting Yj(m+1) = ` with probability

(1− αYjm)pYjm`.

5) Repeat 4) above for m ≥ 1 till stopping.

6) Perform the following gradient descent step:

ui(n+ 1) = Γ

(
ui(n) + a(n)w′i(ui(n))

∑
i

ξij(n)

)
. (15)

An alternative scheme is:

1) For each i ∈ S , and for each j ∈ S, set m = 0 and Yi0 = i, kept fixed for this run.

Initialize ζi = 1. Set

ξij → ξij + ζiδYi0jαYi0 .

Continue by setting Yi1 = k with probability pYi0k.

2) At step m, stop if Yim ∈ S0. If not, set

ζi → ζi(1− αYi(m−1)
), ξij → ξij + ζiδYimjαYim ,

and continue by setting Yi(m+1) = ` with probability pYim`.

3) Repeat 2) above for m ≥ 1 till stopping. Freeze ξij on stopping and label it ξij(n).

4) Perform the following gradient descent step:

ui(n+ 1) = Γ

(
ui(n) + a(n)w′i(ui(n))

∑
j

ξji(n)

)
. (16)

By construction, for the two sampling schemes, w′i(ui(n))E [
∑

` ξi`(n)], is the solution of the

linear system (12). Therefore, the previous scheme will converge to the optimal u∗ as long as
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the variance of ξij(n) is bounded for all k [7]. For the stochastic gradient iterate (16), a good

step-size in this context is a(n) = A/(d n
M
e) for some A > 0 and M ≥ 1.

D. An alternative learning scheme

The problem with the above scheme is that it involves all agents in S, which may lead to a

curse of dimensionality. Worse, it requires that all communications between agents be observed.

It makes sense to assume that only a few agents can be monitored. These should include in

particular those in S. Without any loss of generality, we assume that only the updates of agents

in S are observed. The algorithm we propose next and its analysis extend easily to the case when

a few uncontrolled agents are also observed (by using, e.g., the trivial device of setting αi ≡ 0

for such agents). Then it also makes sense that we should treat S∗ := S∪S0 as our effective state

space for the algorithm. By analogy to the above stochastic shortest path formulation, consider

an S-valued Markov chain {Yn} with transition probabilities {pij}. If we restrict {Yn} to S∗, it

means that we observe only {YTn} where Tn, n ≥ 0, are the successive return times of {Yn} to

S∗ define recursively by

T0 := min{m ≥ 0 : Ym ∈ S∗},

Tn+1 := min{m > Tn : Ym ∈ S∗}, n ≥ 0.

The chain eventually gets absorbed into S0 as before. Strictly speaking, if we keep track of the

Tn’s as well, it is a semi-Markov process. Exercising control only when the chain is in S∗ leads

to a supervisory control problem as in [12], albeit with a different reward structure compared to

theirs. Nevertheless, we do not need to view it in this manner. This is because our controlled

Markov chain is an artifact, the actual process is the simple averaging or ‘gossip’ dynamics. Thus

the actual values of Tn’s are irrelevant for us and we can work with the chain Y ∗n := YTn , n ≥ 0.

Let q∗(j|i), i, j ∈ S∗, denote the probability that Y ∗n+1 = j given Y ∗n = i. It is of the form

q∗(j|i) = pij +
∑
j 6=`∈S′

pi`ϕ(j|`)

where ϕ(j|`) := P (Y ∗ζ = j|Y ∗0 = `), for ζ := min{n ≥ 0 : Y ∗n ∈ S}. In particular, ϕ(·|·) is

independent of the control choice u. After the chain leaves state i, it does not hit any other

controlled state before hitting another state (j above) in S∗, so the associated running cost is

αiwi(u) as before. We now consider the restricted reward
∑

i∈S xi(∞) which is not the same as

the original, so this is an approximation. The advantage of this reward is that it is expected to
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be positively correlated with the full reward, i.e., increase in the former should lead to increase

in the latter. More importantly, it depends only on observed quantities. This passage is purely

heuristic and avoids in particular having to contend with the full complications of the ‘partial

observations’ framework. The associated (constant policy) dynamic programming equation is

then given by

V (i) = αiwi(ui) + (1− αi)
(
pij +∑

j,`∈S′:j 6=`

pi`ϕ(j|`)
)
V (j), (17)

V (i) = h(i), i ∈ S0. (18)

One could write down a reinforcement learning scheme for approximate solution of (17)-(18)

along the lines of the preceding subsections, but the situation is much more difficult here. The

problem is similar to the one faced in the stochastic gradient scheme above. We require a path

from one state in S∗ to another, passing through a possibly nonempty set of unobserved states in

S\S∗. Again, generating pairs (Zn, Z̃n) as before does not provide that. We now need a probing

mechanism. Thus we define Zn as before, but when node Zn = i ∈ S∗ polls a neighbor i1 ∈ S,

it passes to i1 a time-stamped token tagged with i. The node i1, if not in S∗, does likewise, but

retaining the original tag and time stamp. This continues till the token reaches some j ∈ S∗.

Then set Z̃n = j. The corresponding reinforcement learning scheme now becomes

Ψi(k + 1) = Ψi(k) + a(ν(i, k))I{i ∈ Zk} ×[
(αiw

′
i(ui(k)) + (1− αi)ΨZ̃i

k
(k)

− Ψij(k)
]
, (19)

ui(k + 1) = Γ
(
ui(k) + b(k)Ψi(k)

)
, (20)

Ψi(k) = 0, i ∈ S0. (21)

V. CONVERGENCE ANALYSIS

The convergence analysis of the first scheme goes along standard lines, essentially piecing

together known facts from the theory of two time scale and distributed asynchronous stochastic

approximation. With this in mind, we only sketch it in outline. To begin with, note that condition

(7) implies that the iterates (20) move on a slower, in fact asymptotically negligible, time scale

compared to (14). Hence they can be viewed as quasi-static, i.e., ui(k) ≈ ui ∀i, for purposes
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of analyzing (14) ([7], Section 6.1). Then (14) constitutes a stochastic approximation scheme

to estimate the partial derivatives of V ∗ w.r.t. the ui’s by solving (12), which has a unique

solution. Its convergence to this solution follows from the theory of asynchronous stochastic

approximation developed in [5], wherein the conditions we have imposed on {a(n)} play a

crucial role.

But this is under the assumption that ui(k) ≈ ui ∀i, whereas in reality the ui(k)’s are changing

on a slower time scale. Thus what the foregoing entails in reality is that

Ψij(k)− ∂V ∗(i)

∂uj

∣∣∣
u·=u·(k)

→ 0

a.s. ∀ i, j, i.e., Ψij’s track the corresponding partial derivatives of V ∗ with an asymptotically

negligible error, as desired. Thus (20) is a legitimate stochastic gradient ascent scheme. We need

the following lemma.

Lemma 1 The solution V (·) of the constant policy dynamic programming equation (17)-(18) is

componentwise concave and continuous in the variables {ui}.
Proof (Sketch) This follows by considering the associated constant policy value iteration and

using induction, along with the fact that pointwise limits of concave functions are concave and

uniform limits of continuous functions are continuous. The details are routine, see, e.g., [2]. 2

Our main result then is the following:

Theorem 1 The above learning policy is asymptotically optimal, a.s.

Proof This is immediate from the fact that the projected stochastic gradient ascent for a concave

function on a compact interval converges to the set of its global maxima a.s. (see, e.g., [7],

Chapter 10). 2

The stochastic gradient scheme above, by virtue of (12), is already of the form

ui(n+ 1) = ui(n)+

a(n)I{Zn = i}
[
∂V (i)

∂ui
(u(n)) +Mi(n+ 1)

]
,

where M(n) := [M1(n),M2(n), · · · ]T is a martingale difference sequence. That is, it is a classical

asynchronous stochastic gradient scheme with a.s. convergence to a local miaximum, which is

also a global miaximum by concavity of V (i), under reasonable conditions on {M(n)} – see

Chapter 10 of [5].

Finally, the ‘alternative scheme’ above based on observing few nodes is of the same form as

the reinforcement learning scheme above and is analyzed exactly the same way.
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VI. A MORE GENERAL MODEL

We can also consider the situation where αi’s depend on the control choice ui at i ∈ S. We

shall illustrate the changes for the second, i.e., the improved learning scheme above, the situation

for the first scheme being completely analogous. Thus the ‘dynamic programming equations’

become

V (i) = αi(ui)wi(ui) +

(1− αi(ui))
(
pij +

∑
`∈S′

pi`ϕ(j|`)
)
V (j),

V (i) = h(i), i ∈ S0,

and the corresponding reinforcement learning scheme is

Vi(k + 1) = Vi(k) + a(ν(i, k))I{i ∈ Zk} ×[
αi(ui(k))wi(ui(k)) +

(1− αi(ui(k)))VZ̃i
k
(k)− Vi(k)

]
, (22)

Ψij(k + 1) = Ψij(k) + a(ν(i, k))I{i ∈ Zk} ×[
(αi(ui(k))w′i(ui(k)) + α′i(ui(k))wi(ui(k)))δij

− α′i(ui(k)))δijVZ̃i
k
(k) (23)

+ (1− α(ui(k)))ΨZ̃i
kj

(k)−Ψij(k)
]
, (24)

ui(k + 1) = Γ
(
ui(k) + b(k)

∑
j

Ψji(k)
)
, (25)

Vk(i) = h(i), i ∈ S0, Ψij(k) = 0, i ∈ S0.

The convergence analysis applies as before except for the fact that we can no longer claim

concavity and convergence only to a local minimum can be guaranteed. This could be improved,

e.g., by resorting to simulated annealing for the slow time scale iterates, i.e., replacing them by

ui(k + 1) = Γ
(
ui(k) + b(k)

∑
j

Ψji(k)

+
C√

1/b(k) log log(c(k))
Wk+1

)
, (26)

where {Wk} are IID N(0,1), C > 0 is a suitably chosen constant as in [13].The difference with

the previous scheme is that (11) gets replaced by

Ṽ (i) = αi(ui)wi(ui) + (1− αi(ui))
∑
j

pi`Ṽ (`). (27)
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Differentiating through with respect to ui in (12) and after replacing αi by α(ui), we have the

additional term α′i(ui)(wi(ui)−
∑

` pi`Ṽ (`)) on the right hand side. The second and third term

on the right had side of (24) correspond to these additional terms. As this involves Ṽ (·) as well

unlike the previous scheme which did not, one needs the additional iteration (22) to estimate it,

this being the stochastic approximation scheme to solve (11).

For comparison purposes later on in the numerical section, we also state the iterations in the

case where we know the matrix P explicitly. Then the only difference would be in the update

of Vi(k) and Ψij(k) which will follow the following scheme:

Vi(k + 1) = Vi(k) + a(k)×[
αi(ui(k))wi(ui(k)) +

(1− αi(ui(k)))
∑
l∈S

pilVl(k)− Vi(k)
]
,

Ψij(k + 1) = Ψij(k) + a(k)×[
(αi(ui(k))w′i(ui(k))δij +[
(α′i(ui(k))wi(ui(k))− α′i(ui(k)))δij ×∑
l∈S

pilVl(k), (28)

Vk(i) = h(i), i ∈ S0, Ψij(k) = 0, i ∈ S0.

VII. NUMERICAL EXPERIMENTS

We select three real-world networks for our evaluation. The three networks are Karate, Macaque,

Rfid (see Table I) and have from 34 to 75 nodes and from 78 to 2278 links. Each network was

retrieved from the R package igraphdata [19]. The numerical experiments reported here are for

the synchronous case, i.e., all components are updated each time. The results are compared with

the exact solution computed off-line using gradient descent described in (4).

Inputs: the matrix P , the number of agents in each set (S, S1, S0), the upper bound in the

resource constraint M , the number of iterations, the function w(·) and finally the parameters A,

B and denom of our step-size functions a(k) = A
d(1+klog(1+k))/denome and b(k) = B

dk/denome .

Construction of P : Given an adjacency matrix A, which can be weighted or not, we transform

this matrix in a stochastic matrix by dividing each row by the sum of its elements. This matrix

is our communication matrix P .
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Fig. 1. Simulations for the improved learning scheme.

Initial setting: First we specify the number of agents in each set (S, S1, and S0) and then

randomly allocate an agent to a given set. We assume that αi = α for each i ∈ S0 ∪ S and

αi = 0 for all i ∈ S1. For each i ∈ S0, h(i) is sampled from a uniform distribution. In our

simulations, α = 0.6, M = 5, A = 0.6, B = 0.6, denom = 100 and w(x) = x
x+0.1

.

Network Karate macaque rfid

Number of nodes 34 45 75

Number of edges 78 463 2278
TABLE I

DESCRIPTION OF THE NETWORKS

Convergence for the Karate network. In the first numerical study, we are interested in under-

standing the convergence of the stochastic approximation scheme and the stochastic gradient to

the optimal strategy. We restrict this study to the Karate network. Later on, we shall extend it to

the remaining networks. In Figure 2(a), the x-axis denotes the number of iterations and the y-

axis captures the evolution of u(k) for the stochastic approximation/reinforcement based scheme

(8)-(10). We will abbreviate the name of this scheme by SAS (for stochastic approximation

scheme). In Figure 2(b), the x-axis denotes the number of iterations and the y-axis captures the

evolution of u(k) for the stochastic gradient (SGD) with the two sampling schemes (15) and

(16). In the two figures, the red curve captures the evolution of u(k) using the gradient descent
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(GD). The number of controlled agents is equal to 3. Twenty-eight agents belong to S1 and

three agents are in S0. In Figure 2(a), before 7500 iterations, we can observe that the gradient

descent algorithm already converges and the reinforcement learning scheme did not. In fact the

SGD seems to converge faster (see Figure 2(b) after 2500 iterations). However, we observe that

the variance over the iterates of SGD is higher than the SAS. The tradeoff therefore is between

speed and fluctuations. Moreover we can observe in Figure 2 that one iteration of the SAS is

much faster than the ones of the two SGD algorithms. Therefore there is a clear tradeoff between

the complexity of a single iteration and the number of iterations, so the latter cannot be the sole

basis for comparison.
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Fig. 2. Evolution of u(k) for each algorithm.
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Fig. 3. Boxplot for the time (in seconds) to perform one iteration of each algorithm.

Extension to other networks: The second numerical study applies the same schemes to the

other datasets and observes whether or not the same conclusions apply. We do not present the
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SGD with the second sampling scheme because the conclusion are similar. In Figure 4(a) and in

Figure 4(b), we perform 10 simulations of the stochastic approximation scheme and stochastic

gradient for each network. The performance measure on y-axis is the relative difference between

the optimal payoff and the current payoff generated by u(k) at iteration k. For the SAS, we

observe that for each network, even if we stop the stochastic approximation after 100 iterations,

the third quantile will have a relative difference lower than 1%. For each network, when we use

the stochastic gradient, we note that relative difference is much lower that for the SAS. The last

observation highlights the fact that when the number of iterations is low (under 1000 in this

case), the SAS uses a biased estimator of the gradient compared to the stochastic gradient and

therefore has lower performance.
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Fig. 4. Box-plot of the relative difference between the payoff obtained at k and the optimum over 10 simulations for the

stochastic approximation scheme and the stochastic gradient descent.

Study of the improved learning scheme: In the third numerical study, we are interested in

understanding how the second learning scheme compares with the first. The main difference

between the two algorithms is that in the first one you have to observe the communication

between all the agents and in the improved one, you can only observe a part of it. In order to be

able to compare with the previous simulations, we assume the following: The set of controlled

agents is the same (S is the same). Only 50% of the agents in S0 and S1 are observed. The

results are depicted in Figures 1(a), 1(b) and 1(c). In Figure 1(a), we note that the improved

stochastic approximation scheme already converges after a number of iterations less than 3000.

The convergence is not to the optimal one but in this case, we can observe that in Figure 1(b), the

relative difference of the current payoff and the optimal is below 0.1%, therefore nearly optimal.
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We can conclude that even if the improved stochastic approximation does not converge to the

optimal u∗, the strategy reached is already quite good. We can observe a similar conclusion in

Figure 1(c) for the remaining networks. These preliminary simulations encourage the use of the

improved stochastic approximation scheme.

Study of the more general problem: The final numerical study is dedicated to the last

reinforcement scheme based on annealing method for non-convex optimization. We restrict this

study to the Karate network. We assume that wi(ui) = h(i) for all i ∈ S and ui ∈ [0,M ].

Also in this simulation study for i ∈ S, αi(ui) = ui
ui+0.1

with #S = 3. The noisy term of (26)

is parametrized by c(k) := dk/denome and C = 10. We study two schemes. The first one is

reinforcement learning ((22), (24) and (26)). The second one is without the approximation of

the reinforcement scheme for the computation of the gradient ((28) and (26)). We are interested

in understanding how the first scheme tracks the behavior of the second scheme. In Figure 5(a)

(resp. Figure 5(b)) , we observe the first algorithm starts to track the trajectory of the second

trajectory after 2000 iterations (15000 iterations). Moreover, we observe that in both cases, the

two schemes are converging to the same values.
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Fig. 5. Convergence of the annealing scheme with/without the reinforcement learning scheme.

VIII. FURTHER DIRECTIONS

Incorporating subjective risk measures: Since we are modeling social networks, it is desirable that

we incorporate behavioral aspects into our model explicitly, such as the risk-measures suggested

by behavioral economics. This makes the problem a lot harder, see, e.g., [21] for some initial

efforts towards the dynamic programming aspects.
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How to select the initial set of agents: One of the results of this paper is the fact that by

observing a small number of agents, we can increase drastically the speed of convergence of the

algorithm. Even if the obtained solution is suboptimal, the relative difference observed between

the optimal payoff and the suboptimal one, in the simulation, was low (about 0.01%). Therefore,

one interesting question would be to find a possible algorithm to choose the initial set of agents?

This question can be related to the problem of selecting sensors k, among n potential sensors.

In future work, we will try to adapt this well-known problem to our setting. See also a greedy

scheme for agent selection with performance guarantees proposed in [8].

Other learning schemes: In our current scheme, we observe communications between a set of

particular agents. In [3], the authors prove that agents in a social network can easily guess

who is central in a diffusion process. Therefore a potential scheme would be to ask a small

number of agents who they think is central in the network and factor this information into the

opinion-shaping optimization problem.

Pricing scheme for accessing communication data: Accessing the data in the age of information

is getting more and more important. Agents start to realize the value of their data. The question

that we should ask in our setting is the following: how much should a planner pay an agent to

access her information in order to be able to perform opinion shaping, i.e., design an incentive-

compatible pricing mechanism for data acquisition.
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