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Abstract: Multi-energy systems (MESs) combining different energy carriers like electricity and heat
allow for more efficient and sustainable energy solutions. However, optimizing the design and
operation of MESs is challenging due to non-linearities in the mathematical models used, especially
the performance curves of technologies like combined heat and power units. Unlike similar work
from the literature, this paper proposes an improved piecewise linearization method to efficiently
handle the non-linearities, models an MES as a multi-objective mixed-integer linear program (MILP),
and solves the optimization problem over a year with hourly resolution to enable detailed operation
and faithful system design. The method uses fewer linear pieces to approximate non-linear functions
compared to a standard technique, resulting in lower complexity while preserving accuracy. The MES
design and operation problem maximizes cost reduction and the rate of renewable energy sources.
A case study on an MES with electricity and heat over one year with hourly resolution demonstrates
the effectiveness of the new method. It allows for solving a long-term MES optimization problem in
reasonable computation times.

Keywords: multi-energy systems; combined heat and power efficiency; multi-objective optimization;
piecewise linear approximation; mixed integer linear programming; maximization of cost reduction;
maximization of the renewable energy sources rate

MSC: 90C90

1. Introduction

Domestic consumers and industrial facilities require different kinds of energy, such
as heat, electricity, and natural gas. Different energy carriers have traditionally been used
and planned separately, but their combination can have an added value in terms of energy
efficiency, reliability, cost, and environmental impact [1,2]. Recently, multi-energy systems
(MES), e.g., combining heat, electricity and gas, have attracted increasing attention in energy
engineering as they are seen as good candidates to drastically reduce CO2 emissions [1,3].
Accordingly, the optimization of such systems has become a crucial research topic and
should help answer questions related to the efficient integration of renewable energy
sources (RES) or increased uses of energy storage solutions.

The optimization of an MES mainly relates to the optimization of the design and the
optimization of the operation of the system, which can be optimized independently or
jointly [4,5]. The latter aims at planning the use of the different production units, energy
storage systems, etc., installed in the MES, to meet the energy demand at each time step for
each energy carrier of the MES. Given a set of production or storage units, the optimization
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process determines which and when the units have to be switched on/off, generally in
order to minimize an objective function related to cost or emissions [6].

Optimizing the design of MESs independently of the operation consists of selecting
which production technologies to use in the system, their configuration in the energy
networks, their optimal installed capacities, etc. The design can be optimized using fixed
rules for the operation, such as a predefined merit order, as in [7]. However, works related
to the design optimization very often also study operation optimization. These studies are
interested in optimizing the design and the operation jointly as a single problem to find the
optimal configuration of the MES.

In the works that optimize the MES as a whole, [8–10] propose a mono-objective
approach that seeks to minimize the total cost of an MES, represented as an energy hub.
Other works address the problem through a multi-objective perspective, where they try to
minimize the costs of the system and maximize its environmental performance [7,11–14].
These objective functions can be expressed in different ways. For example, the optimization
of the environmental impact can be translated into a maximization of the rate of renewable
energy [7] or a minimization of the CO2 emission rate [11,12,14,15], or a minimization
of the environmental cost [13]. The optimization of the costs can be calculated as the
minimization of total costs [14,16], the minimization of the cost of power generation [13],
the maximization of profits [17,18], or the minimization of costs compared to a reference
system [7,19].

Two crucial points of these works are the time horizon and the temporal resolution
taken into account for optimizing the system. The temporal resolution has a big impact on
the accuracy of the model when there is a large share of renewable energy sources in the
system [16,20]. Most works generally optimize energy systems over short representative
time periods, for example a few days or a few weeks. Ref. [12] uses six representative
periods representing the average consumption during the day and during the night in
winter, summer, and at mid-season for an MES with electricity, heating, hot water, and
cooling. Ref. [15] uses twelve representative periods to represent the average consumption
over each month of the year for an MES with electricity and heat. Ref. [21] optimizes a
model with a shiftable load over a period of three years using sequential 24 h time horizons
for an MES with electricity, heat, and cooling. Ref. [22] optimize three representative days
per month with an hourly resolution for the twelve months of the year for an MES with
electricity and heat. Ref. [11] presents several methods using coupled design days to allow
for optimizing most of the system using representative design days while preserving a
continuity in the energy storage using a full-year optimization for an MES with electricity
and heat. Ref. [14] studies the effect of different scenarios for combined cooling, heating,
and power (CCHP) units using three representative days. However, there are always
errors due to the aggregation of time-series into representative days [23]. In a general way,
representative design day methods are less efficient when integrating energy storage in the
system due to the dynamic aspect of the storage.

Depending on the complexity of the proposed models, the authors use either exact
methods or metaheuristics to solve the optimization problem. The former methods solve
the model to optimality, but are not able to solve large-sized problems. The latter do not
guarantee the optimality but render good (i.e., near-optimal) solutions with a small gap in a
reasonable computation time [24]. Metaheuristics are also practical when solving non-linear
optimization models; however, they become less efficient when dealing with optimization
problems with a huge number of integer decision variables [25]. Ref. [26] optimizes an MES
and its thermal network by decomposing the problem in two subproblems: a mixed-integer
linear programming formulation optimizes the MES without considering the thermal
network, and a quadratically constrained programming formulation optimizes the thermal
network. Ref. [10] use a Particle Swarm Optimization metaheuristic to optimize an MES
with heat and power storage, and [13] uses a Bee Colony metaheuristic to optimize an
MES with a CCHP unit over a single day. To cope with this issue and as a combination
of both exact and metaheuristics, matheuristics step in to benefit from the advantages of
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both methods. For instance, the heuristic component (i.e., could be a metaheuristic) of the
method is used to handle/determine binary decision variables, while the exact component
determines the remaining continuous/integer decision variables [27]. The two components
cooperate in an iterative manner to solve the problem, as in [12,15] for MES. However, they
do not guarantee optimality, and can still be hard to solve for longer time horizons. Next
to that, non-linearities are sometimes solved using linearization techniques. For example,
the work of [22] linearizes the non-linear part-load efficiency of combined heat and power
(CHP) units using binary variables in a mixed integer linear programming model. Ref. [26]
uses 1D and 2D piecewise linearization methods, including the triangle method proposed
by [28], to linearize the performance curves of technologies in an MES. Moreover, various
approximation methods of different complexities can be used to approximate these types
of part-load efficiencies [29]. Ref. [30] considers linear efficiencies with different efficiency
functions for different installed capacities. However, a linear efficiency function can greatly
overestimate or underestimate the real value. Once again, these types of problem are hard
to solve for large-size instances (e.g., long time horizons) because of the introduction of
integer decision variables.

To leverage the complexity of the optimization of MESs, different simplifications are
employed. The most straightforward simplification is the optimization of the system over a
short time horizon, e.g., 24 h instead of a full year [22]. This does not allow for a long-term
optimization, as the energy demands can vary significantly over the year, and it makes it
harder to integrate energy storage into the model. Some other studies use a large time step;
for instance, some consider an average value of energy demand over a certain period of
time that can range from half a day to a full month [31]. Using the latter simplification, the
optimization of the operation is less accurate since the variations in day-to-day demand
are canceled out by the averaged values. The use of design days—which are typical days
representative of a period of time—improves the accuracy of the optimization, but they
can also cancel out the extreme values, which must be taken into account to ensure a good
design of the MES when the time-series data intervene in the constraints [23]. Another
simplification is the decomposition of the main problem into sub-problems; for example,
optimizing a long period of time day by day.

In this paper, we address the three above-identified problems. First, we model an MES
in terms of a multi-objective non-linear programming model to optimize simultaneously the
design and the optimization of the MES. Second, we present different methods of linearizing
the non-linear parts of this mathematical model, and we propose an improved linearization
method, which generates less complex models than the classical one from the literature.
Third, we solve the problem with a time resolution of one hour, sufficient to optimize
the operation, and over a long period of time (one year) to allow faithful optimization
of the design. Finally, we do a comparative analysis to evaluate the performance of the
proposed method.

The aim of the research presented here is to optimize a multi-energy system over a full
year, with a time resolution of one hour. To achieve this, it is necessary to take into account
the non-linearities of the model, and we therefore propose a linearization method that
can approximate a non-linear function efficiently, i.e., with a better approximation of the
function and with a faster computation time than a standard method from the literature.

The remainder of this paper is organized as follows. In Section 2, we define the
problem we are dealing with and formulate it as a mathematical program. This model
contains non-linear elements, which is why in Section 3 we detail three different resolution
techniques, among which is an original proposal. To validate the proposed model and the
resolution techniques, we apply in Section 4 the model on a real-world problem. We study
the solutions obtained through the three resolution methods in Section 5.1 and discuss the
results in Section 5.2, before drawing some conclusions in Section 6.
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2. Problem Definition and Formulation

In this article, we study the MES system illustrated in Figure 1 involving three energy
carriers: electricity, heat, and gas (the latter being only used as fuel). The main goal is
to meet the energy demand of the system, which is a demand for heat and electricity
over a time horizon of one year with a resolution of one hour. For this purpose, different
technologies are used:

• a combined heat and power unit (CHP) which provides heat and electricity from gas;
• an electric boiler (EB) which provides heat;
• a gas boiler (GB), which also provides heat;
• photovoltaic (PV) panels which generate electricity;
• solar thermal (ST) panels which generate heat.

Gas
Boiler

Electric
Boiler

CHP PV ST

Neighbourhood

Grid Electricity
Heat

Figure 1. Technologies in the multi-energy system.

The latter two technologies are considered as RES. Electricity can also be bought from
the grid, and the surplus electricity produced by the PV panels can be sold to the grid. We
also consider here that each technology must be installed with a minimal capacity, even if
they are not used throughout the year.

The energy demand must be met by the system while optimizing two objectives:
minimizing the cost of the system and maximizing the rate of renewable energy sources.

We formulate the above problem as a mathematical program model. Table 1 summa-
rizes the notation used in this work.

Table 1. Notation.

Notation Description

N = {e, h, g} Set of energy carriers, e (electricity), h (heat), g (gas, only
used as fuel)

M = {CHP, GB, EB, PV, ST} Set of technologies
T = {1, 2, ..., 8760} Set of hours of the year

Pi,j,t Energy of type i ∈ N generated by technology j ∈ M at
time t ∈ T

Fi,j,t Energy of type i ∈ N absorbed by technology j ∈ M (as
fuel) at time t ∈ T

Ui,t Energy of type i ∈ N imported at time t ∈ T
Vi,t Energy of type i ∈ N exported at time t ∈ T
Li,t Demand of energy of type i ∈ N at time t ∈ T

The mathematical formulation of the optimization problem and its resolution lead
to the determination of optimal values for a certain number of decision variables. These
decision variables are of two types here, namely design and operation variables. The design
variables (Table 2) are used to determine the size of the units (the rated power of the
generators or the area of solar panels), and a minimum value for each of these variables
ensures that the related technologies are used, as the goal here is not to decide which
technology is present in the system. The operation variables (Table 3) are used to optimize
the operation of the system at each time step t ∈ T , deciding how much energy is produced
by each unit and how much is bought or sold. In this work, the decision variables of
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the mathematical model are highlighted in bold and blue (e.g., PCHP,nom in Table 2), and
mathematical terms depending on these variables are in bold, e.g., Fg,GB,t.

Table 2. Design decision variables.

Variable Description

PCHP,nom Electrical rated power of the CHP (kWe, [Pmin
CHP,nom, Pmax

CHP,nom])
PGB,nom Thermal rated power of the GB (kWth, [Pmin

GB,nom, Pmax
GB,nom])

PEB,nom Thermal rated power of the EB (kWth, [Pmin
EB,nom, Pmax

EB,nom])
APV Area of PV (m2, [Amin

PV , Amax
PV ])

AST Area of ST (m2, [Amin
ST , Amax

ST ])

Table 3. Operation decision variables at time t ∈ T .

Variable Description

Pe,CHP,t Electricity generated by the CHP, ∀t ∈ T
Ph,CHP,t Heat generated and used by CHP (extra heat is lost), ∀t ∈ T
Fg,CHP,t Gas used as fuel by the CHP, ∀t ∈ T
Ph,GB,t Heat generated by the GB, ∀t ∈ T
Ph,EB,t Heat generated by EB
Pe,PV ,t Power usage of PV at time t (extra power is sold to the grid)
Ph,ST ,t Power usage of ST at time t (extra heat is lost)

Ue,t Electricity bought from the grid at time t
Ve,t Electricity sold to the grid at time t

The system is also characterized by a certain number of parameters that define its
intrinsic functioning (i.e., efficiency coefficients, costs, etc.). These parameters are presented
in Table 4.

Table 4. Parameters.

Parameter Description

Pmin
CHP,nom, Pmax

CHP,nom Minimum and maximum nominal power of the CHP
Pmin

GB,nom, Pmax
GB,nom Minimum and maximum nominal power of the GB

Pmin
EB,nom, Pmax

EB,nom Minimum and maximum nominal power of the EB
Amin

PV , Amax
PV Minimum and maximum area of the PV panels

Amin
ST , Amax

ST Minimum and maximum area of the ST panels
Le,t Electricity demand of the system at time t ∈ T
Lh,t Heat demand of the system at time t ∈ T

a, b, c Electrical efficiency coefficients of the CHP
ηth,CHP Thermal efficiency of the heat recuperation system of the CHP

ηGB Efficiency of the GB
ηEB Efficiency of the EB

ηDC/AC PV inverters’ efficiency
ηre f Reference efficiency for PV
Gβ,t Global solar radiation at time t ∈ T

α Temperature coefficient of PV
Tre f Reference temperature
Ta,t Outdoor temperature at time t ∈ T

Ppanel,nom Nominal power of a PV panel
Apanel Area of a PV panel

η0 Optical efficiency of ST
Uloss Thermal loss coefficient of ST
Tw,m Mean water temperature in the ST collector
Atotal Total area available for solar panels
γinv,j Investment cost for technology j ∈ M

γO&M,j, f Fixed part of the operation cost for technology j ∈ M
γO&M,j,v Variable part of the operation cost for technology j ∈ M

Cgr,t Cost of electricity bought from the grid at time t ∈ T
Cg Cost of gas bought
Igr Price of electricity sold to the grid
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Determining the cost of the system requires the calculation of various investment and
operation costs for each of the technologies. Table 5 details the calculation of the investment
costs Cinv,j and the operation and maintenance costs CO&M,j of different technologies j ∈ M.
The investment costs are proportional to the installed capacities, i.e., the power rate of the
production units and the area of RES. The operation and maintenance costs depend on a
fixed part proportional to the installed capacity, and a variable part proportional to the
output power.

Table 5. Investment and operation costs of the technologies.

Technology j Cinv,j CO&M,j

CHP γinv,CHPPCHP,nom γO&M,CHP,v ∑t∈T Pe,CHP,t
GB γinv,GBPGB,nom γO&M,GB, f PGB,nom
EB γinv,EBPEB,nom γO&M,EB, f PEB,nom + γO&M,EB,v ∑t∈T Ph,EB,t
PV γinv,PV Ppanel,nom APV /Apanel γO&M,PV, f Ppanel,nom APV /Apanel
ST γinv,ST AST γO&M,ST, f AST

We recall that one of the objectives of this work is to minimize the total cost of the
system. This goal can be translated as the maximization of a cost reduction with respect to a
reference system. We therefore consider a particular reference state of the system, in which
only the GB is used to generate the heat and where electricity is bought from the grid.

The annual cost of the reference system, ATCre f , is computed as:

ATCre f = Cre f
O&M,GB + crf ∗ Cre f

inv,GB + ∑t∈T (Cgr,tU
re f
e,t + CgFre f

g,GB,t). (1)

Moreover, the annual cost of the MES, ATCMES, is given by:

ATCMES = ∑j∈M(CO&M,j + crf ∗ Cinv,j)−∑t∈T IgrVe,t

+ ∑t∈T (Cgr,tUe,t + Cg(Fg,CHP,t + Fg,GB,t))
(2)

crf in those two equations is the capital recovery factor and represents the present
value of an annuity based on a number of annuities n and a discount factor i. It is expressed
as crf = i(1 + i)n/((1 + i)n − 1).

Consequently, the annual cost reduction of the MES compared to the reference system
can be calculated as:

ATCR = 100 ∗ (1− ATCMES

ATCre f
) (3)

The second objective stated above concerns the RES rate, which is to be maximized.
The percentage of the energy demand covered by RES, namely PV panels for the electricity
demand and ST for the heat demand, is calculated as follows:

τRES = 100 ∗ ∑t∈T (Pe,PV ,t + Ph,ST ,t)

∑t∈T (Le,t + Lh,t)
(4)

The various components and the decision variables of the MES under study are subject
to a number of constraints. The total area of solar panels must be less than Atotal (total
available area for solar panels), which can be written as follows:

APV + AST ≤ Atotal (5)

The production of the technologies is limited by their installed capacity. More formally,
this is expressed as:

Pe,CHP,t ≤ PCHP,nom ∀t ∈ T (6)

Ph,GB,t ≤ PGB,nom ∀t ∈ T (7)
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Ph,EB,t ≤ PEB,nom ∀t ∈ T (8)

The CHP generates both heat and electricity. Its electrical efficiency ηe,CHP depends
on the ratio of the electric load to the nominal capacity, which is called the part–load ratio
(PLR). This can be written as:

Pe,CHP,t = ηe,CHP,t Fg,CHP,t ∀t ∈ T , (9)

where the electrical efficiency of the CHP is given by:

ηe,CHP,t = a + b(
Pe,CHP,t

PCHP,nom
) + c(

Pe,CHP,t

PCHP,nom
)2, (10)

and a, b, and c are efficiency coefficients, depending on the type of CHP used. The heat
usage of the CHP is less than or equal to the heat generated by the CHP. The extra heat
is lost.

Ph,CHP,t ≤ ηth,CHP(1− ηe,CHP,t)Fg,CHP,t ∀t ∈ T , (11)

which is written as the following linear constraint:

Ph,CHP,t ≤ ηth,CHP(Fg,CHP,t − Pe,CHP,t) ∀t ∈ T , (12)

where ηth,CHP is the thermal efficiency of the heat recuperation system of the CHP.
The PV panels produce electricity, which is used by the system (Pe,PV ,t), and the

surplus electricity is sold to the grid (Ve,t). The electricity produced is proportional to the
area of the PV panels:

Ve,t + Pe,PV ,t = APV ηDC/ACηPV,tGβ,t ∀t ∈ T , (13)

with
ηPV,t = ηre f (1− α(Tcell,t − Tre f )), (14)

and
Tcell,t = 30 + 0.0175(Gβ,t − 300) + 1.14(Ta,t − 25), (15)

where ηDC/AC is the inververters’ efficiency, Gβ,t is the global solar radiation at time t, ηre f
is the reference efficiency for the PV panels, α is a temperature coefficient, Tre f is a reference
temperature, and Ta,t is the outdoor temperature at time t.

The ST panels produce heat which is used by the system (Ph,ST ,t), and the surplus heat
is lost. The heat produced is proportional to the area of ST:

Ph,ST ,t ≤ AST(Gβ,tη0 −Uloss(Tw,m − Ta,t)) ∀t ∈ T , (16)

where Gβ,t is the global solar radiation at time t, η0 is the optical efficiency of the panels,
Uloss is the thermal loss coefficient, and Tw,m is the mean water temperature in the collector.

The electricity and heat generated must cover the energy demands of the system.
The electric balance includes the electricity generated by the CHP and the PV panels, the
electricity bought from the grid, the electricity used by the EB, and the electricity demand:

Pe,CHP,t + Pe,PV ,t + Ue,t −
Ph,EB,t

ηEB
= Le,t ∀t ∈ T , (17)

where ηEB is the efficiency of the EB and the fraction Ph,EB,t/ηEB represents the electric
consumption of the EB.

The heat balance includes the heat generated by the CHP, the GB, the EB, the ST panels,
and the heat demand:

Ph,CHP,t + Ph,GB,t + Ph,EB,t + Ph,ST ,t = Lh,t ∀t ∈ T (18)
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The mathematical program, which derives from the above considerations, is summa-
rized in Table 6.

Table 6. Mathematical program optimizing the MES.

max ATCR = 100 ∗ (1− ATCMES
ATCre f

) (3)

max τRES = 100 ∗ ∑t∈T (Pe,PV ,t+Ph,ST ,t)
∑t∈T (Le,t+Lh,t)

(4)

s.t.
APV + AST ≤ Atotal (5)
Pe,CHP,t ≤ PCHP,nom ∀t ∈ T (6)
Ph,GB,t ≤ PGB,nom ∀t ∈ T (7)
Ph,EB,t ≤ PEB,nom ∀t ∈ T (8)
Pe,CHP,t = (a + b( Pe,CHP,t

PCHP,nom
) + c( Pe,CHP,t

PCHP,nom
)2)Fg,CHP,t ∀t ∈ T (9)

Ph,CHP,t ≤ ηth,CHP(Fg,CHP,t − Pe,CHP,t) ∀t ∈ T (12)
Ve,t + Pe,PV ,t = APV ηDC/ACηre f (1− α(30 + 0.0175(Gβ,t − 300)

+1.14(Ta,t − 25)− Tre f ))Gβ,t ∀t ∈ T (13)
Ph,ST ,t ≤ AST (Gβ,tη0 −Uloss(Tw,m − Ta,t)) ∀t ∈ T (16)
Pe,CHP,t + Pe,PV ,t + Ue,t − Ph,EB,t

ηEB
= Le,t ∀t ∈ T (17)

Ph,CHP,t + Ph,GB,t + Ph,EB,t + Ph,ST ,t = Lh,t ∀t ∈ T (18)

3. Solution Approach

Solving the proposed mathematical program is hard because of Constraint (9), which
is not linear with regard to the decision variables (the electrical efficiency function of the
CHP depends on the part-load ratio). One way to solve such a non-linear model is to
linearize this constraint. We compare here three methods of linearization. The first method
represents the non-linear efficiency function by a fixed efficiency value. The second method
is a classical piecewise linearization method from the literature that linearizes non-linear
functions with the help of a set of triangles [28]. This second method introduces a set of
extra binary/continuous variables to the original model to linearize a non-linear function,
which in turn increases the complexity of the model to be solved. For the third method, we
propose a new variant of this classical linearization method, which uses fewer triangles
and consequently introduces only a few extra variables and makes the model less complex
to be solved.

3.1. Constant Efficiency

For the first method, the efficiency of the CHP is fixed to a constant, and Equation (10)
thus becomes:

ηe,CHP,t = β,

where β is a constant. Consequently, Constraint (9) can be rewritten as:

Pe,CHP,t = βFg,CHP,t. (19)

The resulting mathematical program is now a linear program, which can be solved
using classical linear programming algorithms and solvers.

3.2. Classical Piecewise Linearization Method

The second linearization method uses the technique from [28], also used to opti-
mize an MES in [6], and which proposes piecewise linear approximations of functions of
two variables. The so-called “triangle” method approximates the 2D function by the convex
combination of triangles. This can be observed on Figure 2, where the colored surface
represents the value of Fg,CHP,t as a function of Pe,CHP,t and PCHP,nom (see Constraint (9)),
and where four triangles approximate this surface. In this figure and the following ones,
we consider values Pmin

CHP,nom = 100 kW and Pmax
CHP,nom = 1000 kW for these parameters.
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Figure 2. Visualization of the linearization with 2× 2 triangles.

To replace Constraint (9) with such an approximation, we need to introduce new
parameters, new intermediate variables and new constraints to the model. Regarding
the new parameters, let M (resp. N) represent the number of breakpoints along the
PCHP,nom (resp. Pe,CHP,t) axis (which will generate M− 1 (resp. N − 1) triangles). Let xm
(m ∈ 1, ..., M) (yn (n ∈ 1, ..., N)) be the breakpoints of the discretization along PCHP,nom
(resp. Pe,CHP,t). Pe,CHP,t ≤ PCHP,nom, as it is impossible to produce more than the nominal
power of the CHP. As a consequence M = N.

The newly introduced variables are:

• αm,n,t ∈ [0, 1] which represent the coefficients of the convex combination (∀m =
1, ..., M, n = 1, ..., N, t ∈ T )

• hu
m,n,t ∈ {0, 1} and hl

m,n,t ∈ {0, 1} that indicate which triangle is selected (∀m =
1, ..., M− 1, n = 1, ..., N − 1, t ∈ T )
Figure 3 illustrate these variables (αm,n,t , hu

m,n,t and hl
m,n,t) and parameters (the break-

points xm and yn) for the case where N and M equal 3. From Constraint (9), the value of
Fg,CHP,t at the different breakpoints is given by the function:

f (xm, yn) =
yn

a + b( yn
xm

) + c( yn
xm

)2
∀m = 1, ..., M, ∀n ∈ 1, ..., N (20)

On Figure 3 the gray triangles represent the part of the approximation which is not
used here, as Pe,CHP,t ≤ PCHP,nom.
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Figure 3. Top view of the linearization with 2× 2 triangles.

Constraint (9) is then replaced by the following new constraints:

∑M
m=1 ∑N

n=1 αm,n,t = 1 ∀t ∈ T (21a)

PCHP,nom = ∑M
m=1 ∑N

n=1 αm,n,txm ∀t ∈ T (21b)

Pe,CHP,t = ∑M
m=1 ∑N

n=1 αm,n,tyn ∀t ∈ T (21c)

Fg,CHP,t = ∑M
m=1 ∑N

n=1 αm,n,t f (xm, yn) ∀t ∈ T (21d)

∑M−1
m=1 ∑N−1

n=1 (h
u
m,n,t + hl

m,n,t) = 1 ∀t ∈ T (21e)

αm,n,t ≤ hu
m,n,t + hl

m,n,t + hu
m,n−1,t + hl

m−1,n−1,t

+ hu
m−1,n−1,t + hl

m−1,n,t ∀m ∈ 1, ..., M, ∀n ∈ 1, ..., N, ∀t ∈ T
(21f)

Constraint (21a) ensures that the sum of all the coefficients αm,n,t is equal to 1. Con-
straints (21b), (21c), and (21d) approximate the different variables of our model (PCHP,nom,
Pe,CHP,t , and Fg,CHP,t) using a convex combination. Constraint (21e) ensures that only one
triangle is selected for the convex combination. Constraint (21f) makes sure that only the
coefficients αm,n,t associated with the selected triangle have a value different from 0. We
consider dummy values of 0 at the extremes (h∗0,∗,t = h∗M,∗,t = h∗∗,0,t = h∗∗,N,t = 0).

The resulting mathematical program is a mixed integer linear program (due to the
newly introduced integer variables hu

m,n,t and hl
m,n,t), which can be solved using classical

mixed integer linear programming algorithms and solvers. However, compared to the
linear program of the first method, we add (M − 1) · (N − 1) · |T | binary variables (or
(N − 1)2 · |T | since M = N) and |T | · (5 + N(N+1)

2 ) constraints, which clearly increases the
complexity of the problem and therefore the calculation time to reach an optimal solution.

3.3. Proposed Adapted Piecewise Linearization Method

As a new variant of the classical piecewise linearization method, we propose an
adapted linearization which introduces much less extra variables to the original model.
The idea behind the proposed adapted linearization method is the fact that in the classical
piecewise linearization method, nearly half of the triangles are not used in practice because
of the particular shape of the surface representing Fg,CHP,t (as it can be seen in Figure 3).
We therefore propose to approximate this surface through fewer triangles, all having a
vertex at the origin, as shown in Figure 4. Hereafter, we call the proposed method the
“adapted method”.
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Figure 4. Visualization of the linearization with 3 pieces.

As it can be seen on Figure 5, the proposed method leads to introducing N breakpoints
yn (n ∈ 1, ..., N) along the Pe,CHP,t axis.
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Figure 5. Top view of the linearization with 3 pieces.

Consequently, we add the following variables to the original mathematical model of
the MES:

• αn,t ∈ [0, 1] (∀n ∈ 1, ..., N, t ∈ T )
• hn,t ∈ {0, 1} (∀n ∈ 1, ..., N − 1, t ∈ T )

Constraint (9) is then replaced by the following new constraints:

∑N
n=1 αn,t ≤ 1 ∀t ∈ T (22a)

PCHP,nom = ∑N
n=1 αn,tPmax

CHP,nom ∀t ∈ T (22b)

Pe,CHP,t = ∑N
n=1 αn,tyn ∀t ∈ T (22c)

Fg,CHP,t = ∑N
n=1 αn,t f (Pmax

CHP,nom, yn) ∀t ∈ T (22d)

∑N−1
n=1 hn,t = 1 ∀t ∈ T (22e)

αn,t ≤ hn,t + hn−1,t ∀n ∈ 1, ..., N,∀t ∈ T (22f)
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Constraint (22a) ensures that the sum of all the coefficients αn,t is less or equal to
1. Constraints (22b), (22c), and (22d) approximate the different variables of our model
(PCHP,nom, Pe,CHP,t, and Fg,CHP,t) using a convex combination. Constraint (22e) ensures
that only one triangle is selected for the convex combination. Constraint (22f) makes sure
that only the coefficients αn,t associated with the selected triangle have a value different
from 0. We consider dummy values of 0 at the extremes (h0,t = hN,t = 0).

The resulting linearized mathematical model is still a mixed integer linear program-
ming model (due to the integer variables hn,t). Compared to the first simplification method
of Section 3.1, we add (N − 1) · |T | binary variables and |T | · (5 + N) constraints.

3.4. Multi-Objective Resolution

Finally, solving the original bi-objective mathematical model with the above-mentioned
three simplification/linearization methods requires finding a set of non-dominated solu-
tions, so-called Pareto solutions. Non-dominated Pareto solutions are the solutions from
which none of them can be objectively preferred to another. Indeed, by switching between
two non-dominated solutions, at least one objective is improved while (at least) another
one deteriorates. To solve the linearized bi-objective model and to obtain non-dominated
Pareto solutions, we use the ε-constraint method. First presented by [32], the ε-constraint
method is used to transfer a multi-objective optimization model into a single-objective one,
while still obtaining non-dominated Pareto solutions. In this method, one of the objectives
is kept as the main objective function of the model, and the other objectives are transferred
to the constraint body of the model by limiting the objectives with lower and upper bounds
(i.e., value of ε) for minimization and maximization objectives, respectively. In our case, we
optimize ATCR (Objective (3)) while imposing an ε-constraint on τRES (Objective (4)).

Figure 6 illustrates a Pareto front including ten non-dominated solutions of our mathe-
matical model. The upper left solution maximizes the amount of energy produced by RES
(and consequently is less interesting for the annual cost reduction objective), whereas the
lower right solution maximizes the annual cost reduction (and is therefore less efficient in
terms of RES usage). The remaining in-between solutions are intermediate Pareto-efficient
configurations. An advantage of generating the set of Pareto solutions is that it provides
more flexibility to the decision-maker when selecting a unique final solution among the
Pareto set based on his/her preferences.

4 6 8 10 12
ATCR

2

4

6

8

10

12

RE
S

Figure 6. 10 solutions of a Pareto front.

3.5. Discussion on the CHP Approximations

As explained in Section 2, we consider in this work that the CHP must be installed
with a minimal capacity Pmin

CHP,nom. The linearization methods proposed here can be coupled
with other models to choose how many units of CHP are installed using other binary
decision variables. The model proposed by [30] uses binary decision variables to decide
how many units are installed and what size those units are, but does not take into account
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the non-linear part-load efficiency of the technologies. Their model, and subsequent work
by [11], also allows using different efficiency functions for different installed capacities.
However, the main difference with the approaches we present here is that these efficiency
functions are always linear.

Figure 7 presents a view of the linearization method we propose in Section 3.3 for two dif-
ferent installed capacities (respectively PCHP,nom = 200 kWe and PCHP,nom = 1000 kWe).
On this figure, the blue dotted line represents the non-linear efficiency ηe,CHP,t from
Equation (10), and the plain green line represents the linearized approximation of this
function with the proposed adapted piecewise method using three pieces. The meth-
ods used by [11,30] approximate the same efficiencies using a different linear function
for each installed capacity for discrete installed capacities in [30] and for continuous
capacities below or above a certain threshold in [11]. These functions are written as
Pe,CHP,t = k1Fg,CHP,t + k2PCHP,nom + k3 with different coefficients k1, k2, and k3 depending
on the installed capacity. As can be seen in Figure 7, a purely linear function will not
accurately approximate the real efficiency. We will also show in our results on a case
study in Section 5.2 that such an approximated efficiency, represented by a linear function,
significantly impacts the accuracy of the model.
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Figure 7. Adapted piece-wise linearization for two different installed capacities. (a) Installed capacity
PCHP,nom = 200 kWe. (b) Installed capacity PCHP,nom = 1000 kWe.

Comparing the size of the two linearization approaches for the same number of
breakpoints N along the Pe,CHP,t axis, the method from the literature introduces O(N2 · |T |)
binary variables and O(N2 · |T |) constraints in the model, while the proposed method
introduces O(N · |T |) binary variables and O(N · |T |) constraints.

4. Case Study

In this section, a case study is presented, which will be used to validate the perfor-
mances of the proposed resolution methods.

The case study represents an area in the vicinity of the city of Nantes in France. This
area includes an MES, and it covers an area of 33.5 hectares, including the campus of IMT
Atlantique, a French technological university, and 45 single-family houses [7]. The goal is
to optimize the MES of the case study in terms of two objectives: (1) maximizing the rate of
RES, and (2) maximizing the reduction of the costs of the system. The MES of the case study
incorporates a set of available technologies: a combined heat and power unit, an electric
boiler, a gas boiler, and photovoltaic as well as solar thermal panels. Tables 7 and 8 present
a summary of the values of the parameters used in this case study. The investment and
operation and maintenance costs of the technologies come from [33] for the GB, ref. [34] for
the EB, ref. [35] for the PV panels, and [7] for the CHP and ST panels. The different costs of
electricity (Cgr,t and Igr) and gas (Cg) are the market price in France, from EDF in October
2021. The other parameters in Table 8 are from [7].
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Table 7. Cost (investment and operation) parameters per technology.

Technology j γinv,j γO&M,j, f γO&M,j,v

CHP 1140 e/kWe - 21 e/MWhe
GB 90 e/kWth 3.15 e/kWth/year -
EB 100 e/kWth 1 e/kWth/year 0.8 e/MWhth
PV 1000 e/kWe 15 e/kWe/year -
ST 615 e/m2 10 e/m2/year -

Table 8. General parameters of the case study.

Parameter Description

Pmin
CHP,nom = 100 kWe,

Pmax
CHP,nom = 1000 kWe

Minimum and maximum nominal power of the CHP

Pmin
GB,nom = 100 kWth,

Pmax
GB,nom = 3000 kWth

Minimum and maximum nominal power of the GB

Pmin
EB,nom = 100 kWth,

Pmax
EB,nom = 3000 kWth

Minimum and maximum nominal power of the EB

Amin
PV = 0 m2, Amax

PV = 10 000 m2 Minimum and maximum area of the PV panels
Amin

ST = 0 m2, Amax
ST = 10 000 m2 Minimum and maximum area of the ST panels

Le,t (kWe) Electricity demand of the system
Lh,t (kWth) Heat demand of the system
a = 0.1, b = 0.4, c = −0.2 Electrical efficiency coefficients of the CHP
β = 0.3 Constant CHP electrical efficiency
ηth,CHP = 0.8 Thermal efficiency of the heat recuperation system of

the CHP
ηGB = 0.8 Efficiency of the GB
ηEB = 0.8 Efficiency of the EB
ηDC/AC = 0.9 PV inverters’ efficiency
ηre f = 0.155 Reference efficiency for PV
Gβ,t (W m−2) Global solar radiation
α = 0.43 %/°C Temperature coefficient of PV
Tre f = 25 °C Reference temperature
Ta,t (°C) Outdoor temperature
Ppanel,nom = 250 W Nominal power of a PV panel
Apanel = 1.6 m2 Area of a PV panel
η0 = 0.8 Optical efficiency of ST
Uloss = 5 W m−2 °C−1 Thermal loss coefficient of ST
Tw,m = 45 °C Mean water temperature in the ST collector
Atotal = 10 000 m2 Total area available for solar panels
Cgr,t = 0.13 e/kWh Cost of electricity bought from the grid (0 h–7 h)
Cgr,t = 0.17 e/kWh Cost of electricity bought from the grid (8 h–23 h)
Cg = 0.076 e/kWh Cost of gas bought
Igr = 0.1 e/kWh Price of electricity sold to the grid

In Table 8, some of the parameters (Le,t, Lh,t, Gβ,t, and Ta,t) are time series and are
presented in Figure 8. Figure 8a presents the energy demands of the system: the electricity
demand Le,t and the heat demand Lh,t. They are represented as a time series over the year
with an hourly resolution. These are a mix of real and simulated data. Measured electricity
and heat consumption monthly data are available for the campus buildings, and they are
disaggregated into hourly time series. For the electricity demand, it was considered that
the studied area is representative to the region’s electrical consumption, and the electricity
demand of the region was scaled accordingly to match the yearly consumption of the
campus buildings. The hourly heat demand of the campus is produced from the monthly
data using a degree-hour method. The data for the 45 houses are generated using TRNSYS
simulation software version 18 (http://www.trnsys.com/, accessed on 5 October 2023)
to model residential houses complying with the RT2012 French thermal regulations [7].
The total energy demands over the year are 3.6 GWh and 6.1 GWh for electricity and heat,
respectively. Figure 8b presents the environmental parameters: the outdoor temperature
Ta,t and the global solar radiation Gβ,t. These two parameters are used in the calculation of
the energy generated by RES.

http://www.trnsys.com/
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Figure 8. Time series parameters: (a) energy demands (Le,t, Lh,t) and (b) environmental parameters
(Ta,t, Gβ,t).

5. Experimentation

This section presents the experiments used to study the proposed resolution methods.
First, the experimental design and the performance indicators are presented; second, the
results are analyzed from a numerical and from an energy point of view.

5.1. Experimental Design

The purpose of this study is to compare the three resolution methods in terms of
approximation quality and computation time. We study also the impact of the number of
triangles on the quality of the solution for the triangle method (i.e., the classical piecewise
linearization method of Section 3.2) and our proposal (i.e., the proposed adapted piecewise
linearization method of Section 3.3). This will allow us to choose a resolution method
adapted to our problem. Next to that, it is also interesting to study the impact of the chosen
method on the physical characteristics of the solutions which are obtained when solving
the problem.

To conduct this study, we need to solve the optimization problem at hand a large
number of times (for each resolution method and each number of triangles). However,
the resolution of the problem for the whole considered year is very time-consuming (in
the order of days, even for low numbers of triangles). Therefore, to be able to carry out
the numerous calculations in a reasonable time, we decide to study in a first stage three
typical weeks of the considered year. This reduces the calculation time significantly, and
allows us to solve multiple problems to optimality in a reasonable amount of time. The
chosen weeks are one week in winter (days 45 to 52 of the year), one week in summer
(days 164 to 171), and finally one week at mid-season (days 262 to 269). This allows to
assess the resolution methods and the effect of the linearization on three different demand
profiles. The mean value and standard deviation of the energy demands and environmental
parameters are presented in Table 9. In summer, there is a low power demand and a very
low heat demand. During the mid-season week, the energy demands are higher and more
fluctuating, and there is a higher potential for RES from the environmental parameters
(temperature and solar radiation). In winter, there is a high energy demand and low values
for the environmental parameters.
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Table 9. Energy demands and environmental parameters of the three weeks.

Le,t Lh,t

Summer µ = 322 kW, σ = 54 kW µ = 55 kW, σ = 58 kW
Mid-season µ = 337 kW, σ = 55 kW µ = 395 kW, σ = 390 kW
Winter µ = 526 kW, σ = 82 kW µ = 1459 kW, σ = 528 kW

Tt Gβ,t

Summer µ = 15.1 °C, σ = 2.8 °C µ = 175 W m−2, σ = 214 W m−2

Mid-season µ = 16.5 °C, σ = 4.5 °C µ = 196 W m−2, σ = 279 W m−2

Winter µ = 5.4 °C, σ = 4.6 °C µ = 123 W m−2, σ = 224 W m−2

To validate that the conclusions of the selected resolution method on the above three
weeks can be extrapolated to the whole year, we also study the influence of the number
of triangles on the recommended resolution method on the whole year. Again, as this
potentially requires a long computation time, we decide to stop the resolution when the
gap to the optimal solution is sufficiently small on each of the objective functions. We
set the optimality gap to 0.1%. This small gap is negligible based on the expertise of
energy specialists.

To evaluate the impact of the number of triangles on the two linearization methods,
we test each of them with different numbers of triangles. For the triangle method, the
number of triangles varies from 12, 22, . . ., 62 (when possible in less than 105 s), and for
the adapted method, the number of triangles varies from 1, . . ., 36 (when possible in less
than 105 s). For each resolution, a set of Pareto-optimal solutions S is obtained using the
ε-constraints method. Furthermore, we use three different performance indicators for
these tests: the computation time, the mean distance of the Pareto front to the origin to
evaluate the evolution of the Pareto fronts with the number of triangles, and a measure of
the approximation error. The computation time for one resolution is given by the sum of
the computation times of all the |S| steps of the ε-constraints method.

The evolution of the positions of the Pareto fronts (or rather of their calculated rep-
resentative solutions) with respect to the number of breakpoints can be seen through the
mean Euclidean distance to the origin for the |S| solutions s of S :

mean distance =
1
|S| ∑

s∈S

√
ATCRs2 + τs

RES
2 (23)

This mean distance should change with the number of triangles, and when its value
stabilizes in our experiments for some iterations (i.e., changes in the number of triangles),
this indicates that the position of the Pareto front remains stable for these numbers of
triangles and there is no need to still increase the number of triangles.

The mean cumulative error is calculated as the mean of the errors of the elements s of
S , as presented in Equation (24). The error of s is the sum across the different time steps
of the absolute value of the difference between the approximated value Fs

g,CHP,t and the
real function f (x, y) = y

a+b( y
x )+c( y

x )
2 for the same (approximate) values of Ps

CHP,nom and

Ps
e,CHP,t.

mean cumulative error =
1
|S| ∑

s∈S
∑
t∈T
|Fs

g,CHP,t − f (Ps
CHP,nom, Ps

e,CHP,t)| (24)

If the mean cumulative error is close to 0, the difference between the approximation
and the real consumption f is small, and the approximation can be considered as optimal.

5.2. Results

All the models were solved using the Gurobi solver version 9.5 (https://www.gurobi.
com/, accessed on 5 October 2023) on a computation server, using 400 GB RAM and

https://www.gurobi.com/
https://www.gurobi.com/
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Intel Xeon Gold 6138 @ 2.00 GHz CPUs, with 32 threads as recommended by the Gurobi
documentation.

The next section will present numerical results for the three proposed weeks in winter,
summer, and at mid-season, as well as results over the full year.

5.2.1. Numerical Analysis

Figure 9 shows the mean cumulative error for each week, calculated using Equation (24).
The abscissa represents the number of triangles in the linearization methods.
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Figure 9. Mean cumulative errors for the (a) summer week, (b) mid-season week and (c) winter
week.

The method with a constant efficiency is represented on the figures by a single point
that we placed on the value of 0 triangles, since this method doesn’t involve any lineariza-
tion. For the two linearization methods, we can see that, depending on the week, the error
decreases before reaching a constant value when the number of triangles increases.

In summer, Figure 9a shows that for the adapted method (depicted by the orange
curve), the error decreases rapidly with an increase of the number of triangles. However,
for the triangle method from the literature (depicted by the green line), the error remains
constant. To understand these phenomena, we must determine on which part of the curve
of Equation (20) we are located. In summer, there is less demand of energy, the CHP is
therefore less used and the value of the variable PCHP,nom is always equal to Pmin

CHP,nom.
Hence Pe,CHP,t ≤ Pmin

CHP,nom. On Figure 10, line (a) represents the part of the function to be
approximated for the summer week. As can be seen in this figure, to decrease the error for
the values on this line, the number of triangles of the triangle method must be quite high,
i.e., higher than Pmax

CHP,nom/PCHP,nom = 1000/100 = 10 on each axis. As a consequence, for
this resolution method, more than 100 triangles are needed to influence the approximation
in that area of the surface. However, using so many triangles would make the computation
time very high.On the contrary, the approximation of this line is impacted by the triangles
of the adapted method, as soon as the number of triangles is greater or equal to 2, as it can
easily be seen on Figure 4.

In the mid-season week on Figure 9b, we can see that the error for the triangle method
(green line) stays stable from 1 to 9 triangles, with a slight increase in the error at 4 triangles,
and starts decreasing when there are more than 9 triangles. This can be explained for
the same reason as previously, via line (b) of Figure 10. PCHP,nom is on average 301 kW
over the |S| solutions at mid-season, so we would need more than Pmax

CHP,nom/PCHP,nom =
1000/301 ≈ 3.3 triangles on each axis (or more than 9 triangles in total) to see a change in the
error. The decrease in the error is therefore visible starting from 16 triangles. For the adapted
method, the error decreases very quickly with the number of triangles increasing, and
seems to stabilize after 10 to 15 triangles. We suppose that the error of the triangle method
will probably decrease to the same error as the adapted one, but very high calculation times
prevent us to demonstrate it.
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Figure 10. Parts of the function to be approximated for the three weeks: (a) summer, (b) mid-season
and (c) winter.

For the winter week on Figure 9c, the two linearization methods have a similar
behavior. This is again due to the part of the function that is approximated, which is
represented in Figure 10 by line (c). PCHP,nom is on average 560 kW over the |S| solutions,
and as expected, both linearization methods impact this part of the function even with
small numbers of triangles. However, the adapted method decreases more rapidly and
stabilizes after approximately 10 to 15 triangles.

The study of the results for this first indicator show that the proposed adapted method
is much more efficient to reduce the error between the real function and the approximation,
for each of the three weeks. Next to that, a choice of 9 triangles for this method seems to be
adequate, as no significant improvement can be observed above that number.

Figure 11 represents the mean distances for each week, calculated using Equation (23).
Again, the abscissa represents the number of triangles of the linearization method, with
the value of 0 used to indicate the method with the constant efficiency where there is no
linearization. We can see that the values of the mean distances follow approximately the
same trend as the mean distance error values, except during the winter week, where the
mean distance moves around the same value of 13.545, which indicates that the Pareto
front doesn’t evolve.
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Figure 11. Mean distances for the (a) summer week, (b) mid-season week and (c) winter week.
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The mean distance to the origin decreases (or stays roughly constant) when the number
of triangles increases, which means that the set of Pareto-optimal solutions (and thus the
Pareto front) moves towards the origin. These movements are however not due to the
same causes. Figure 12 shows, for each week, the variations of the average values of the
two objective functions taken separately across the Pareto fronts (ATCR on the left, and
τRES on the right). More precisely, each point represents the average value of the objective
functions across the |S| = 10 Pareto optimal solutions, and the error bar represents the
corresponding standard deviation. For instance, we can see that for the summer and the
mid-season weeks and the adapted linearization method, the ATCR objective varies more
than the τRES objective, with respect to the number of triangles. In winter, the average
values of both objectives in the Pareto fronts show very small variations when the number
of triangles changes. The variations of the two objective functions within the same Pareto
front are on the other hand quite constant, as a function of the number of triangles, in the
three weeks. However, when we compare the three weeks between them, these variations
are very different. In summer (resp. mid-season), for ATCR, the Pareto fronts are quite
narrow, with a standard deviation of about σ = 0.022 (resp. 0.035), whereas for winter
the front is much wider, with a standard deviation of about 2.7. For τRES, we can observe
similar phenomena, with rather narrow Pareto fronts in summer (σ = 0.29) and mid-season
(σ = 0.33), and a wide one for winter (σ = 3.68). It is also interesting to note that the
variations of both objective functions across the Pareto fronts do not seem to be influenced
by the number of triangles, for any of the methods.
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Figure 12. Objective functions (average and standard deviation) for the (a) summer week, (b) mid-
season week (c) and winter week.
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These distance plots of Figure 11 show again that the adapted method causes the
Pareto front to converge more quickly than the triangle method, with respect to the number
of triangles. Again, a choice of 9 triangles for the adapted method seems to be adequate, as
no significant changes in the Pareto front can be observed above that value.

Figure 13 represents the computation time (seconds on a logarithmic scale) for the
three resolution methods when the number of triangles increases. As expected with the
analysis of the number of integer variables used by each solving method (see Section 3),
the adapted method requires significantly less computation time than the triangle method.
Obviously, the constant method requires the shortest computation time, as no integer
variables are introduced in this case.

(a)

0 5 10 15 20 25 30 35
Number of triangles

10 1

100

101

102

103

Ti
m

e 
(s

)

Constant efficiency
Adapted linearization
Triangle linearization

(b)

0 5 10 15 20 25
Number of triangles

10 1

100

101

102

103

104

105

Ti
m

e 
(s

)

Constant efficiency
Adapted linearization
Triangle linearization

(c)

0 5 10 15 20 25 30 35
Number of triangles

10 1

100

101

102

103

104

Ti
m

e 
(s

)

Constant efficiency
Adapted linearization
Triangle linearization

Figure 13. Computation times for the (a) summer week, (b) mid-season week (c) and winter week.

As can be seen on these figures, the proposed linearization method requires much
less computation time, by a factor of about 10, than the method from the literature for an
equivalent number of piecewise linear triangles. We can also see that the computation times
required are different for the three periods analyzed, with the mid-season week (Figure 13b)
requiring computation times 10 to 100 times longer than the other periods (Figure 13a,c).

If we consider the analyses of the error and distance indicators together with the
calculation time, we can see that for a given number of triangles, the error measure and
the calculation time speak in favor of the adapted resolution method. These analyses
lead us to conclude that the adapted resolution method seems to be the most appropriate
method for these three weeks. Therefore, we apply it to the whole year. First trial and error
experiments show that it is nearly impossible to solve this problem to optimality, even with
a small number of triangles. As mentioned in the experimental design section, we therefore
stop the resolution when the gap to the optimal solution is small on each of the objective
functions, with a gap value of 0.1%.

Figure 14 shows the three indicators, mean cumulative error, mean distance and
computation time for the adapted method for the full year. First of all, we observe similar
phenomena as for the three selected weeks. The error decreases when the number of
triangles increases, and the mean distance indicator and the values of the objective functions
stabilize with a higher number of triangles. We can also observe that the computation time
increases with the number of triangles. Optimizing the system with the proposed adapted
method required 2.3× 106 s (i.e., 26 days) over the full year with 15 triangles, whereas it
required at most 3.3× 103 s (i.e., 55 min) over one week for the same number of triangles.
In addition, it was not possible to solve the system with more than one triangle using the
literature method.

Let us now switch to the questions linked to the physical impact of these optimizations.
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Figure 14. Indicators on the full year (gap 0.1%): (a) mean cumulative errors, (b) mean distances,
(c) computation times and (d) objective functions.

5.2.2. Energy Analysis

Figure 15 shows the boxplot of the efficiency of the CHP ηe,CHP,t = Pe,CHP,t/ Fg,CHP,t ,
from Constraint (9), for each of the |S| = 10 solutions of the Pareto front, for each of the
three weeks. The values where Fg,CHP,t = 0 are ignored. From Equation (10) and according
to the parameters of our case study from Table 8, we know that ηe,CHP,t ∈ [0.1, 0.3]. We
can see that for the mid-season and the winter weeks, the median efficiency is close to the
maximum value of 0.3. However, this means that during those two weeks, the CHP runs
half of the time only at a partial load and a good approximation of its efficiency is therefore
important. For the summer week, ηe,CHP,t is at most equal to 0.27. It shows that the CHP
always run at a partial load, therefore, PCHP,nom = 100 and Pe,CHP,t < 100 (∀t ∈ T )
according to our parameters from Table 8. A constant efficiency of 0.3 is therefore not
accurate, especially for the summer week.

Table 10 shows the contribution (%) of each technology to the energy generation for the
adapted linearization method with 9 triangles. For each week, 10 solutions, numbered from (1)
to (10), are calculated on the Pareto front. Three of these solutions are displayed in the tables:
solutions (1) correspond to the maximization of the cost reduction, solutions (10) correspond to
the maximization of the rate of RES, and solutions (6) correspond to an intermediate solution
in the Pareto front, as shown as an example for the winter week on Figure 16. The last two
columns show the value of the two objective functions for each solution.

Table 10. Output percentages of the technologies for the adapted method with 9 triangles.

Run Pe,CHP Pe,PV Ue Ph,CHP Ph,GB Ph,EB Ph,ST ATCR τRES

Summer (1) 7% 49.6% 43.4% 99.9% 0.1% 0% 0% 34.47 42.43
Summer (6) 6.4% 50.2% 43.4% 94.4% 5.5% 0.1% 0% 34.46 42.91
Summer (10) 6.3% 50.4% 43.2% 92.7% 5.3% 1.9% 0% 34.41 43.29
Mid-season (1) 42.2% 41.5% 16.2% 69.3% 30.5% 0.2% 0% 27.57 18.87
Mid-season (6) 41.1% 42.7% 16.2% 67.2% 32.5% 0.2% 0% 27.55 19.40
Mid-season (10) 40.6% 43.3% 16.1% 67.2% 32% 0.8% 0% 27.45 19.83
Winter (1) 93.8% 5.2% 1% 65% 35% 0% 0% 12.26 1.38
Winter (6) 71.4% 27.6% 1% 52% 47.5% 0.5% 0% 12.01 7.44
Winter (10) 77.9% 18.6% 3.5% 55.2% 34.7% 0.1% 10% 3.14 12.29
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Figure 15. Efficiency ηe,CHP for 10 solutions using the adapted method with 9 triangles, for the
(a) summer week, (b) mid-season week and (c) winter week

Regarding the optimization over the year, Table 11 shows the total energy generated
over the year by each technology for the adapted method with 15 triangles and a gap
of 0.1% for the solver. We can see that regardless of the solution s of the Pareto front S ,
the CHP generates most of the energy over the year. Thus, a good approximation of the
performance of the CHP seems important to accurately represent the system. This also
impacts the other technologies and the amount of electricity Ue and Ve bought and sold to
the grid.

Table 11. Output energy of the technologies for the adapted method with 15 triangles.

Run Pe,CHP Pe,PV Ue Ve Ph,CHP Ph,GB Ph,EB Ph,ST ATCR τRES

Year (1) 2.02 GWh 840 MWh 701 MWh 1.14 GWh 4.05 GWh 2.02 GWh 1.54 MWh 0 Wh 15.71 8.73
Year (6) 1.69 GWh 1.22 GWh 698 MWh 755 MWh 3.44 GWh 2.59 GWh 45 MWh 0 Wh 15.51 12.68
Year (10) 1.75 GWh 1.2 GWh 769 MWh 310 MWh 3.55 GWh 2.07 GWh 129 MWh 322 MWh 4.48 15.84

Table 12 shows the total energy generated over the year by each technology when
considering a constant efficiency ηe,CHP,t. We can observe similar tendencies as in Table 11,
but with different values. For example, there is a relative difference of 9% for Pe,CHP
between the constant and the adapted method in these results for the solution (1). We can
also observe a difference in the values of the objective functions between Tables 11 and 12.
The relative difference of ATCR varies between 2.7% and 3.7%, while the relative difference
of τRES varies between 0% and 10.6% for solutions (10) and (1), respectively.

Table 12. Output energy of the technologies for the method with constant efficiency.

Run Pe,CHP Pe,PV Ue Ve Ph,CHP Ph,GB Ph,EB Ph,ST ATCR τRES

Year (1) 2.22 GWh 760 MWh 576 MWh 1.22 GWh 4.15 GWh 1.91 GWh 1.31 MWh 0 Wh 16.14 7.89
Year (6) 1.82 GWh 1.18 GWh 578 MWh 791 MWh 3.39 GWh 2.66 GWh 16.4 MWh 0 Wh 16.00 12.31
Year (10) 1.88 GWh 1.19 GWh 642 MWh 299 MWh 3.51 GWh 2.1 GWh 124 MWh 335 MWh 4.32 15.84
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Figure 16. Three solutions of the Pareto front for the winter week.

Figure 17 shows the boxplot of the efficiency of the CHP ηe,CHP,t over the year. This
figure shows that the CHP runs close to its rated power half of the time, the median value of
ηe,CHP,t being close to 0.3, which is the maximum efficiency of the CHP with the parameters
used in this case study. However, we can also see that the other half of the time the CHP
runs at a partial load.
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Figure 17. Efficiency ηe,CHP for the adapted method with 15 triangles over the year.

Figure 18 represents the energy outputs for two days of the year, from hours 6400 to
6448. The MES has been optimized over the full year with a gap of 0.1%, and we focus only
over two days of the year to have a detailed view on the operation of the MES. Figure 18a–c
represent three solutions (1), (6), and (10) from the set of 10 solutions, respectively. The
figures on the left depict the power energy, and those on the right represent the heat energy.
On these figures, the blue area represents the energy output of the CHP with the proposed
adapted linearization method, and the other colored areas represent the energy output of
the other technologies. The blue dotted line represents the energy output of the CHP with
a constant efficiency ηCHP,t, as a comparison. Finally, the black line represents the energy
demands; the power demand (Le,t) on the left and the heat demand (Lh,t) on the right. The
black dashed line on the electricity figures represents the extra power required for the EB.
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Figure 18. Outputs for two days of the year for the adapted linearization method with 15 triangles:
(a) solution (1), (b) solution (6), (c) solution (10).

We can observe that there is a difference between Pe,CHP,t and Ph,CHP,t using a lin-
earized efficiency (blue areas) and Pe,CHP,t and Ph,CHP,t using a constant efficiency (blue
dotted lines). Over the two days represented on the figures, Pe,CHP,t is overestimated
when using a constant efficiency compared to the more precise linearized efficiency. Con-
sequently, according to Equation (11), Ph,CHP,t is underestimated when using a constant
efficiency. We observe that the linearization method modifies the energy produced by the
CHP, and therefore also modifies the energy produced by other technologies to meet the
energy demand. For example, around hour 6440 in Figure 18a, the GB is used to produce
a part of the heat when a linearization method is used, while only the CHP is used if a
constant efficiency is considered. Therefore, the use of a linearization method seems more
appropriate to better represent the system.

Regarding the different solutions, we can see an evolution in the usage of the EB,
around hour 6440, between Figure 18a–c. For solution (1) (Figure 18a), when we maximize
ATCR, the EB is not used at all. However, when we increase the RES usage according to the
second objective function τRES, a part of the electricity is used to produce heat through the
EB instead of being sold to the grid. When we maximize τRES in solution (10) (Figure 18c),
we can see that ST panels are installed and they produce heat in contrary to the other
solutions. However, PV panels produce less power in this solution. Most of the heat of ST
is wasted on the two days presented here, but for other parts of the year, the ST panels are
used more efficiently. Moreover, the CHP is limited by both the electricity and the heat
demands. Taking into account multiple energy vectors in an MES is therefore important to
optimize the system.
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6. Conclusions and Perspectives
6.1. Summary of the Contributions

In this paper, we have modeled the design and the operation of an MES as a non-
linear mathematical optimization program, summarized in Table 6. Our study has shown
that a classical linearization method from the literature shows its limits when it comes to
optimizing the problem on a full year period. Because of the specific shape of the CHP
efficiency function, we have adapted the classical linearization method of the literature by
proposing a linearization method introducing much fewer decision variables, which allows
us to solve the optimization problem on a full year, with an optimality gap of 0.1%.

6.2. Discussion

We observe that the obtained solutions are faithful to reality. Whether it is on the three
weeks that we have chosen to determine the interest of our linearization method, or on the
whole year, we can see that the implemented techniques are well dimensioned and allow
for answering the energy demand. In contrast to what one could expect, in all the obtained
Pareto solutions, the solar panels appear each time at maximum surface. This is directly
linked to their cost, which allows them to be used in all circumstances.

The results of our experiments on typical weeks show that the proposed adapted
method requires a shorter computation time and less linearization pieces than the method
from the literature for a similar quality. The proposed method requires about 10 times
less computation time than the literature method for the same number of piecewise linear
triangles, and the approximation error decreases much faster with regard to the number
of triangles when using the proposed method. On the contrary, the approximation error
decreases slower or even remains constant when using the classical linearization method,
meaning that a higher number of triangles is needed for this method to accurately approx-
imate the non-linear function. For a similar computation time of 5× 104 s, the adapted
method’s error is 80% lower than the method from the literature. The analysis for a full
year confirms these results. Even by allowing an optimality gap when obtaining the so-
lutions, it has not been possible to solve the model with the method from the literature
for more than a single triangle per variable, while the adapted method solved the model
with up to 15 triangles. Comparing the energy over the year of the proposed linearized
method and the simplified constant method, we can see a relative difference of 9% in the
output power of the CHP, and up to 10.6% relative difference in the values of the objective
functions, showing that a more accurate approximation yields more realistic solutions to
the optimization problem.

A set of analyses showed that having multiple energy vectors in an MES is an advan-
tage to globally optimize the system. The operation of the CHP is based on both the power
and the heat demand, and the energy produced by a technology can be used to power
another technology, as presented on the example of the PV panels and the EB (please see
Figure 18). Furthermore, the CHP provides most of the heat and power to respond to the
demands, up to 93.8% of the power during the winter week, and up to 99.9% of heat during
the summer week (please see Table 10).

Having two objective functions is also interesting in the optimization process, as we
observed that the different solutions of the Pareto front can be very different from each other.
We have also investigated how the non-linearities affect differently different solutions.

6.3. Limitations and Perspectives

The proposed method gives a lower approximation error than the literature method in
a faster computation time, making it possible to optimize an MES over a full year. However,
this method is not without its limitations. It cannot be generalized to all two-variable
functions, as it assumes that all piecewise linear triangles have a common vertex at the
origin, which simplifies the model by removing a large number of decision variables
compared to a traditional linearization method. In addition, computation times remain
high, with resolution over the year requiring 2.3× 106 s to optimize the MES with an
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optimality gap of 0.1%. A possible improvement to the proposed linearization method
would be to choose more carefully the location of the breakpoints used for linearization, so
as to have more breakpoints where the function is less linear, and fewer breakpoints where
it is more linear.

Although this study obtains a set of Pareto optimal solutions, the problem is not yet
completely solved for a real decision maker. In fact, there are a set of solutions among
which the decision maker must choose the configuration that corresponds best to his/her
preferences. One of the perspectives of our work could be integrating preference models in
the multi-objective optimization via an interactive method. Accordingly, the optimization
process is guided using the decision-maker’s preferences toward a most preferred optimal
solution.

In this work, we also simplified the problem by setting investment costs proportional
to the installed capacity. However, in reality, these costs are often modeled as non-linear
functions since a larger installed capacity is proportionally less expensive than a smaller
capacity [11]. Hence, another perspective of this work is then to take into account these
non-linear costs using a piecewise linear approximation for a more realistic model.

Another simplification is the use of a single unit for each technology. In most real-
world settings, multiple units are available, and a part of the design of an MES is to optimize
the number of units installed. This would introduce other integer variables in the model to
decide how many units of each type are installed. Therefore, making decisions on the use of
multiple units for each technology could be another possible perspective of this work. The
full-load efficiency is also simplified in this model. We consider that the full-load efficiency
is linear with regard to the installed capacity. In most CHP units, a higher capacity would
have a better full-load efficiency. Refs. [11,30] model this problem by using different linear
efficiency functions for different installed capacities. Our proposed adapted piecewise
linearization approach could be coupled with these models to allow different non-linear
efficiency functions for different unit capacities.

Last but not least, energy storage has not been considered in this work. However, this
topic is of a crucial importance and should be integrated in the system modeling to avoid
energy losses. We therefore plan to integrate storage solutions in our model, which will be
represented by non-linear constraints, and will probably require approximate optimization
methods for their resolution.
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