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Adaptive sampling for online learning spectral
properties of networks

Mohammed Abdullah, Yezekael Hayel, Alexandre Reiffers-Masson and Thierry Chonavel

Abstract

Recently, the area of decision and control has been interested in studying the connectivity of large-scale networks. As networks
under study are large, to have a complete knowledge of the network is impossible, whereas little but representative information
is available with an efficient exploration scheme. Machine learning approaches were presented and used to tackle this difficulty
to hold it up. In this regard, we present and prove the convergence of an efficient algorithm that converges to the Fielder vector
when the topology is initially unknown and the only accessible information is gathered by a random walk process throughout
the entire network. The Rayleigh quotient optimization problem and the notion of stochastic approximation are the foundations
of our technique. We consider multiple sampling strategies that are categorized under random walks, as well as adapting another
sampling approach that are considered random walk, the Gibbs sampling, and it showed better results. Finally, we demonstrate
its performance on different network topologies.

I. INTRODUCTION

Estimating spectrum properties of large scale graphs is a very hot topic in Computer and Network Science communities. In
particular, the connectivity of large scale networks is essential for the study of their performance. Especially, in the context of
overlay networks [PDL14] and ad-hoc wireless networks [SB14] such understanding is critical. Machine learning algorithms
based on the Power iteration or the Rayleigh quotient techniques have been used to estimate graph spectral properties [UH12].
When the graph is unknown, these techniques have been considered recently in [ARM21] by coupling with a random walk
exploration of the graph.

Due to the large size of the network, it is impossible to compute explicitly node metrics such as centrality measures. Having
this difficulty in mind, in this work we propose to design an efficient effective online learning algorithm that explores a large
graph and estimates at the same time a specific structural property of the underlying graph, the algebraic connectivity, also
called Fiedler value [GY04]. In particular, we build a controlled random walk process on the network such that an estimator
of the Fiedler vector, the eigenvector associated to the Fiedler value, is updated at each step of the stochastic process. This
vector, as well as the eigenvalue associated with, has a relation with structural properties of the network. In particular, the
Fiedler value is positive if and only if the graph is connected. Also, the Fiedler vector can be used to find a partition of the
nodes [BMS14]. Consider a connected graph consisting of a union of categories. In some problems, only some categories are
considered to estimate a particular metric. This can be done optimally using stratified sampling with full knowledge about the
graph, and as the graph is explored via crawling, a method has been proposed in [KGBM11] to deal with such issues. The
sampling is named Sampling Weighted Random Walk (S-WRW), as it was built by a weighted random walk that approximates
the stratified sampling, starting from an ideal solution under WIS and taking into account graph exploration, then performing
a simple weighted random walk and collect samples. This method was applied to the social graph of Facebook, studying a
social phenomena related to college members. The authors have used S-WRW to sample 13-15 times more college members
than a simple Random walk exploration. A normalized stochastic version of Oja’s algorithm was presented in [BM12]. Given
a connected graph, with Laplacian matrix L, a stochastic approximation scheme based on the Oja’s algorithm is studied to
estimate the first eigenvalues and the corresponding first eigenvectors. The convergence of this scheme has been demonstrated,
and with some adaptation, it has been applied to study the Spectral Decomposition of a Markov Chain [BM12]. But this scheme
and the previous ones assume a global knowledge of the entire network topology which is not the case in our approach.

Contributions: An effective algorithm that converges to the Fielder vector is proposed in this paper, and its theoretical and
analytical convergence is studied. This algorithm is related to stochastic approximation algorithms in the space of manifolds
with Markovian noise, where we use the online learning technique on the Rayleigh quotient method and the proof of the
convergence of our algorithm is done by the mean of the Poisson equation. Given that the information required to learn the
fielder vector is obtained by a random walk. To hasten convergence, we also use a new sampling scheme driven by the spectral
properties of the graph and employ other sampling distributions that all fall within the category of random walks using the
spectral properties of the network. Section II introduces the model, the notations and the Rayleigh Quotient scheme which
is the core of our algorithm. A stochastic approximation based algorithm is presented in section III and the main theorem
that proves its convergence is given. Several sampling methods based on random walks are defined in section IV and several
numerical illustrations about their performance in section V. Finally we conclude the paper in section VI.
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II. MODEL

Let G := (V,E) be an undirected unweighted graph, where V := {1, . . . , n} is the set of nodes and E is the set of
edges. The adjacency matrix of G is the matrix A := [aij ]i,j=1:n, where the ij-entry of A is given by aij := 1(i,j)∈E . The
neighborhood of a node i is the set N (i) := {j ∈ V | aij = 1}. We assume that for all node i, aii = 0. The degree of a
node i is given by deg(i) :=

∑n
i′=1 aii′ and the degree matrix is equal to D := [δijdeg(i)]i,j=1:n where δ·· is the Kronecker

delta operator. We also define the Laplacian matrix as L := D − A. The spectrum of the Laplacian matrix L will be used
to measure the connectivity of the graph. Let {λi}i=1:n represent the eigenvalues of L, with λ1 < λ2 < λ3 ≤ . . . ≤ λn,
and v1, . . . ,vn the corresponding unit norm eigenvectors. More precisely, we are interested in the estimation of the second
smallest eigenvalue λ2 of L denoted by λ∗. We assume that the graph is connected and therefore λ1 = 0 and λ∗ is strictly
positive [VS10]. λ∗ is called the algebraic connectivity (or Fiedler value) and we denote by v∗ it’s associated eigenvector. One
well-known efficient method to compute this eigenvector is based on the Rayleigh Quotient function.

A. Raleigh Quotient

For any symmetric matrix W , the Rayleigh quotient rW : Rn → R is the smooth function defined by:

rW (x) = xTWx∥x∥−2. (1)

Let Un−1 := {x ∈ Rn, |∥x∥ = 1} be the unit sphere in Rn. Then by considering the restriction of the Rayleigh quotient
on the unit sphere Un−1, the eigenvalues of a real symmetric matrix are characterized using the Rayleigh Quotient [UH12]
and in particular:

λmin(W ) = min
x∈Un−1

rW (x).

Therefore, the smallest eigenvalue of W can be obtained by solving an optimization problem on the manifold Un−1. One
approach to solve this optimization problem is to apply the gradient flow in order to search for the dominant eigenvector of
W . This leads to the well known Rayleight Quotient Gradient Flow defined as the following ordinary differential equations:

ẋ =
h(x(t))

||x(t)||2
, x(0) = x0 ∈ Un−1, (2)

with h(x) = −(W − rW (x)In)x. It can be proved that under specific conditions (λmin < λ2, W is a symmetric matrix) that
x converges to the eigenvector associated to the eigenvalue λmin (see [UH12]).

B. Space reduction

Recall that λ1 = 0 and v1 = 1√
n

1I, with 1I = [1, . . . , 1]T . Then, tracking v2 can be done equivalently by tracking the
eigenvector associated with the largest eigenvalue of the matrix I − 1

n1I1IT − ϵL for ϵ < λ−1
n . This method is called deflation

[PDL14]. When λn is large this could lead to numerical issues. Then a reduction technique is proposed in [ARM21] where
instead of looking at the second smallest eigenvalue of L, the problem is to find the smallest eigenvalue of the matrix S such
that

S = QTLQ,

with Q = [q1, . . . , qn−1] ∈ Rn×n−1 and

qk =
1√

k(k + 1)
[1, . . . , 1,−k, 0, . . . , 0]T

(k entries are equal to
√
k(k + 1)

−1
). The eigenvalues of matrix S are λ2 < λ3 ≤ . . . ≤ λn and corresponding unit norm

eigenvectors (w2, , . . . ,wn) := (QTv2, . . . ,Q
Tvn). Then the Rayleight quotient method is applied directly on matrix S.

III. STOCHASTIC APPROXIMATION BASED ALGORITHM

In this work, a discrete time random walk Yk is used to explore the graph step-by-step. This is what we call Markovian
sampling. At each time step k, the stochastic process Y is in vertex ik ∈ V and the neighboring nodes N (ik) are observable.
Then, after the k-th step of the random walk process, the σ-algebra H(k) is given by H(k) := {i1,N (i1), . . . , ik,N (ik)}.
At instants k, line ik of L is observed and denoted by lik . Then matrix L is replaced by the following instantaneous matrix
Lk = (0 lik 0)

T , where only line ik of Lk is nonzero. Then, the instantaneous version of matrix S is Sk = QTLkQ.
Note that the stochastic process Yk is a Markov process and we denote by qx(ik+1, ik) := P (Yk+1 = ik+1|Yk = ik,x) its
transition kernel. This transition kernel is state dependent, it means that the transition probability of the stochastic process Y
can depend on current estimator vector x. Under a specific exploration scheme u, note that the Markov process Y is assumed
to be ergodic and the control is such that the Markov process is irreducible and aperiodic. Then there is a unique stationary
distribution denoted by Γu.
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Uniform Random walk, or any other types of exploration scheme u induced a bias in the discovery process. If the bias is
known it can be corrected by an appropriate re-weighting of the measured vector using Hansen-Hurwitz estimator [KGBM11].
Since we have that S =

∑k
i=i Si, for any time step k, the Hansen-Hurwitz estimator will be for any exploration scheme u:

S′ =
1

k

k∑
i=1

Si

Γu(i)

where Γu(i) is the probability of visiting node i in the stationary distribution using exploration scheme u and this estimator
is unbiased. Thus in order to correct the bias it is sufficient to divide the stochastic approximation scheme by the stationary
distribution Γu(i) when the exploration process is at node i.

The Rayleigh quotient method states that the minimum the Rayleigh quotient function corresponds to the smallest eigenvector
of the matrix. Moreover, as the observation of the matrix is noisy, a stochastic approximation (SA) algorithm can be used to
update the estimator of the smallest eigenvector v2. Considering the retraction function Rx(y) :=

x+y
||x+y|| , our SA scheme can

be written as:

xk+1 = Rxk

(
ϵk
H(xk, Yk)

Γu(Yk)

)
,

with H(xk, Yk) = −(Sk − rSk
(xk)In)xk, x0 is the initial point, xk are the iterates and ϵk is the kth step-size. Note that our

framework corresponds to a Stochastic Approximation scheme with Markovian noise which lives on the unit sphere manifold.
Proofs of convergence under specific assumptions for the SA scheme with Markovian noise but not on a manifold and without
Markovian noise on manifold have been done in recent works [CLP13] and [Sha21] respectively. But the proof of convergence
of this SA scheme with Markovian noise and on a manifold has never been proved. That is the aim of the following theorem.
First, the following conditions have to be satisfied:

1) Step-size:The step size ϵk = 1
k verifies

∑∞
k=0 ϵk = ∞ and

∑∞
k=0 ϵ

2
k <∞ by using the p-series test it states that a series

of the form
∑

( 1
np ) converges if p > 1 and diverges if p ≤ 1.

2) Stationary Distribution of Markov chain: For every x ∈ Un−1, we assume that the Markov chain generated by the
transition matrix π(x) := [[π(i, j,x)]]i,j , where P(Y+1 = j | Yk = i,x) =: π(i, j,x) is an irreducible and aperiodic
Markov chain. The unique stationary distribution to π(x) is denoted by Γu where u describe the exploration scheme.

3) Poisson equation: We assume that for every x, the solutions of the Poisson equation given by:
(1− πi,x)vx(·) = H1(x, ·)−

∑
j H1(x, j)Γu(i) where πi,xvx(·) =

∑
j vx(j)π(i, j,x)

are such that sup ∥vx(y)∥ ≤ C with C independent of y and v·(y) is a smooth vector filed with Un−1 (∥(vx(y)) −
vx′(y)∥ ≤ L′d(x,x′) for some L′ > 0).

Theorem 1. If the assumptions above mentioned are satisfied, then, for any exploration scheme u, the following stochastic
approximation scheme:

xk+1 = Rxk
(ϵkH1(xk, Yk)), (3)

with H1(xk, Yk) =
H(xk,Yk)
Γu(Yk)

converges as k → +∞ to the eigenvector w2 associated to the smallest eigenvalue of S.

Proof. The main result of the proof is to prove that the stochastic approximation scheme is behaving asymptotically as a
reparametrized version of the Rayleigh quotient flow. Once we have been able to prove this fact, then the conclusion is directly
from the fact that the Rayleigh quotient is converging to the Fielder vector, in our case.

Note that ∥xk∥ < ∞ for all every k because xk ∈ Un−1. To simplify the proof, we will assume that xk+1 ∈ M̃ ⊂
Un−1 \ {(−1, 0, · · · , 0)}, with M̃ being compact. If we want to relax this assumption, we should construct the same atlas as
the one proposed in [Sha21]. We assume that the bijection Ψ : M̃ → Rn−1 associated with M̃ is given by the stereographic
projection ψ(x) = x−1

1+x1
, where x−1 := [x2, . . . , xn]. Note that Dψ(x) is bounded for all x ∈ M̃ .

(Step 1) The first step of the proof is to rewrite our stochastic approximation using the Poisson equation: The Poisson
equation (H1(xk, yk)− h1(xk) = vxk

(yk)−
∑

y′ vxk
(y′)πxk

(yk, y
′)) implies that

H1(xk, yk)− h1(xk) = vxk
(yk)− πxk

vxk
(yk)

= vxk
(yk+1)− πxk

vxk
(yk)︸ ︷︷ ︸

L1
k+1

+ vxk
(yk)− vxk+1

(yk+1)︸ ︷︷ ︸
L2

k+1

+ vxk+1
(yk+1)− vxk

(yk+1)︸ ︷︷ ︸
L3

k+1

.

Therefore, our stochastic approximation scheme can be rewritten as:

xk+1 = Rxk
[ϵkH1(xk, yk)]

= Rxk
[ϵkh1(xk) + ϵk(H1(xk, yk)− h1(xk, yk))]

= Rxk
[ϵkh1(xk) + ϵk(L

1
k+1 + L2

k+1 + L3
k+1)].
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(Step 2) Local parametrization of the stochastic approximation and the O.D.E: In this second step, using the local
parametrization Ψ(·), we study the error between the O.D.E and the stochastic approximation in Rn−1 and not in M̃ . We
define x̂k = ψ(xk), ĥ1(x̂k) = Dψ(xk)[h1(xk)] and L̂i

k+1 = Dψ(xk)[L
i
k+1]. Let us also define t(k) :=

∑k−1
k′=0 ϵk′ and x(t)

the interpolated version of x̂k (i.e. x(t(k)) = x̂k and x is linear by part. We now consider the ODE on the manifold expressed
using the local parametrization x̂tk(t) = ψ(xtk(t)), where x̂tk(tk) = x̂k and x̂tk(t) is a solution of ẋ = h1(x(t)). Note that
we have ˙̂x = ĥ1(x̂).

x̂k+1 = ψ(Rxk
[ϵk(h1(xk) + L1

k+1 + L2
k+1 + L3

k+1)])

By using the local rigidity property of a retraction, the fact that Rx(0x) = x and the linearity of Dψ(x) we obtain, using
a simple Taylor approximation we obtain that:

ψ(Rxk
[ϵk(h1(xk) + L1

k+1 + L2
k+1 + L3

k+1)]) = x̂k + ϵkĥ1(x̂k) + ϵk(L̂
1
k+1 + L̂3

k+1 + L̂3
k+1) +O(ϵk).

We can now write x̂k+m as follows:

x̂k+m = x̂k +

m−1∑
u=k

(ϵuĥ1(x̂u)) + δk,u +O(ϵ2k), (4)

where:

δk,k+m =

m−1∑
u=k

ϵuL̂
1
u+1︸ ︷︷ ︸

δ1k,k+m

+

m−1∑
u=k

L̂2
u+1︸ ︷︷ ︸

δ2k,k+m

+

m−1∑
u=k

ϵuL̂
3
u+1︸ ︷︷ ︸

δ3k,k+m

. (5)

Note that the error term is easy to O(ϵ2k) because converging to 0 when k is going to infinity. Let tk+m ∈ [tk, tk + T ] for all
T > 0. We are interested to study the behavior of supt∈[s,s+T ] ∥x(t)− x̂tk(t)∥ for all T when s tends to infinity. We can study
such term by simply restricting the proof to the {tk}. The error due to the linear interpolation is easy to handle by following
the same steps as in [Sha21]. For all k, we have by definition:

∥x(t)− x̂tk(tk+m)∥ ≤ ∥x̂k − x̂tk(tk)∥+ ∥δ1k,k+m∥+ ∥δ2k,k+m∥+ ∥δ3k,k+m∥+
∫ tk+k

tk

∥ĥ1(x̂tk(t))− ĥ1(x̂
tk([t]))∥dt

+

m−1∑
u=k

ϵu∥ĥ1(x̂u)− ĥ1(x̂
tk(tu))∥

In the rest of the proof we will focus on studying the convergence of the stochastic term δik,k+m when k tends to infinity. The
rest of the proof, including of the convergence of the interpolation term is standard

∫ tk+k

tk
∥ĥ1(x̂tk(t))− ĥ1(x̂

tk([t]))∥dt and
can be found in [Sha21].

(Step 3) Convergence of the stochastic terms:

δ1k,k+m =

m−1∑
u=k

ϵuDψn(xu)[L
1
u+1]

=

m−1∑
u=k

ϵuDψu(xu)[vxu
(yu+1)− πxu

vxu
(yu)]

We can notice that vxk
(yk+1) − πxk

vxk
(yk) is a zero mean martingale with respect to the filtration Fk and by the linearity

of Dψ(.) we get that L̂1
u+1 is martingale difference sequence. Also, we have ∥vxk

(yk+1) − vxk
(yk)∥ ≤ ∥vxk

(yk+1)∥ +
∥vxk

(yk)∥ and ||vxk
(yk)|| ≤ C. This implies that E[∥Dψ(xk)L

1
k+1∥2|Fk] ≤ ∥Dψ(xk)∥2E[∥L1

k+1∥2|Fk] < ∞. Hence, using
the martingale convergence theorem and the fact that the step-size are square summable, we get that limk→∞ supm δ1k,k+m =
0 a.s.
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One can write Dψ(x) =: A(x) as a matrix depending on x. We get the following following bound on δ2k,k+m:

∥δ2k,k+m∥ = ∥
m−1∑
u=k

ϵuA(xu)[L
2
u+1] +O(ϵk+m−1)∥

= ∥
m−1∑
u=k

ϵuA(xu)[vxu(yu)− (vxu+1(yu+1))∥

≤ ϵk∥A(xk)[vxk
(yk)]∥+ ϵm+1∥A(xm−1)vxm(ym)∥+ ∥

m−1∑
u=1

(ϵuA(xu)− ϵu−1A(xu−1)[vxu(yu)]∥.

From the fact that ∥A(x)[vx(y)]∥ is bounded we get that ϵk∥A(xk)[vxk
(yk)]∥+ ϵm+1∥A(xm−1)vxm

(ym)∥ −−−−→
k→∞

0.

Moreover, using the Taylor expansion and the fact that xu = xu−1−ϵu−1H1(xu−1, yu−1) we get that: A(xu) = A(xu−1)−
ϵu−1∇A(xu−1)H1(xu−1, yu−1) +O(ϵ2u−1)

Let denote the last term δ2
′

n,n+m, we obtain the following upper bound:

δ2′k,k+m = ∥
m−1∑
u=1

(ϵu − ϵu−1A(xu)[vxu
(yu)]

−ϵuϵu−1∇A(xu−1)H1(xu−1, yu−1)∥

≤
m−1∑
u=1

(ϵu − ϵu−1)∥A(xu)[vxu(yu)]∥+ ϵuϵu−1∥∇A(xu−1)H1(xu−1, yu−1)∥

≤
m−1∑
u=1

(ϵu − ϵu−1)∥A(xu)[vxu(yu)]∥+ ϵ2u∥∇A(xu−1)H1(xu−1, yu−1)∥

And all these terms we converge to zero as k approaches infinity. thus we get the following result:

∥δ2k,k+,m∥ ≤
m−1∑
u=k

ϵ2uCst −−−−→
k→∞

0

Finally, by the fact that v·(y) is L′-Lipschitz we get:

∥δ3k,k+m∥ = ∥
m−1∑
u=k

ϵuA(xu)[(vxu+1(yu+1))− vxu(yu+1)]∥

=

m−1∑
u=k

ϵu∥A(xu)∥∥(vxu+1(yu+1))− vxu(yu+1)∥

≤
m−1∑
u=k

L′ϵu∥A(xu)∥d(xu+1,xu) ≤ Cϵu,

where the last inequality is coming the fact that H1 is a smooth vector field. We get the following result:

∥δ3n,n+,m∥ ≤
m−1∑
u=n

ϵ2uCst −−−−→
n→∞

0.

The previous theorem shows that any exploration scheme u can be used to estimate the smallest eigenvector w2 := QTv2

of matrix S. Then, the transformation v2 = (QT )−1w2 is used to obtain the fielder vector of matrix L. The next section
illustrates the stochastic approximation scheme considering diverse sampling methods u.

IV. SAMPLING METHODS

Three different sampling methods are described. The first one is the only naive one as the next step of the random walk
is totally random on the connected nodes and does not consider the exploration process so far. The two other random walk
schemes are smarter as they have specific properties depending on the values of the indices of the Fielder vector explored so
far that hold the properties of the graph.
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A. Uncontrolled Markovian sampling

The first sampling studied in this paper is the uncontrolled Markovian sampling. In this context, we assume that the network
is explored using a standard random walk. Let {Yk} be a finite state space Markov chain that captures which node is observed
at time k. The transition matrix associated to this Markov chain is given by:

P(Yk+1 = j | Yk = i) :=


1

| N(i) |
, if j ∈ N(i)

0, otherwise.

In this case, the stationary distribution is given by

Γu(i) =
|N(i)|∑
j=1 |N(j)|

, ∀i.

This exploration scheme is interesting as such, even if it is not driven by the current estimate of the Fiedler vector. Indeed,
random walks sampling schemes are a fundamental in networks applications and distributed systems, due their local and
lightweight nature (see [SMP15], [DSNPT13]). Moreover random walk are naturally designed to handle dynamic networks.
The uniform random walk may be stuck in one cluster and stays there without leaving for a large number of iterations and thus
losing a lot of information. Given this and the bias generated by this sample, the uniform random walk is not an efficient sample
distribution that can be used for all types of networks. This keeps us with introducing another Markov chain distributions.

B. Metropolis-Hastings sampling

The aim is to build a particular sampling such that each node is sampled the same number of times in average. Such a sample
is well-known in Markov theory and can be achieved via the Metropolis-Hastings algorithm [Hit03]. With such exploration
process, the stationary distribution should verify:

Γu(i) =
1

N
, ∀i.

The Metropolis-Hastings algorithm gives the following random walk transition probabilities:

P(Yk+1 = j | Yk = i) :=


0, if j /∈ N(i),

1
|N(i)| min

(
|N(i)|
|N(j)| , 1

)
, if j ∈ N(i)

1−
∑

j ̸=i P(Yk+1 = j | Yk = i), if j = i

The main interesting property of this exploration scheme is that each node is visited in average the same number of times
and thus there is a limited risk that the exploration process stays very large in a particular region of the network. However, this
scheme tends to visit all nodes evenly, even those that are very isolated, and thus not very important for global connectivity.

C. Gibbs sampling

Inspired by [BMS14], we propose a random walk sampling algorithm driven by the current estimate of xk of the Fiedler
vector. To mimic the set-up proposed in [BMS14], we first define a function Ψ : V ×Rn → R which associates to every node
i, and for a given x a value Ψ(i,x) defined as follow:

Ψ(i,x) := − 1

N(i)

∑
j∈N(i)

(xi − xj)
2. (6)

If we assume that x is the true Fiedler vector, then the node with the lowest Ψ(i,x) will be the one with, on average, the
highest difference of its own value xi, with respect to its neighbors. Of course other definitions of Ψ(i,x) can be considered.
The goal of the random walk designed in [BMS14] is to have a stationary distribution that is peaking to the argmin of Ψ(·,x).
Coming back to our case, this would mean that we will be able to design a random walk that will focus on nodes with the
lowest value of Ψ(i,x). As a result of the fact that nodes that create links between two or more clusters will have the lowest
value of the function ψ, we will enhance the likelihood of visiting nodes that connect the graph’s clusters, increasing the
likelihood of moving from one cluster to another and thus not being get stuck in one cluster for a long time. The online
algorithm can visit all of them and quickly learn more about the characteristics of the graph. We assume that the transition
probability of the Markov chain {Yk} is given by:

P(Yk+1 = j | Yk = i) :=


1

| N(i) |e
−[Ψ(j,xk)−Ψ(i,xk)]+ if j ∈ N(i)

1− 1

| N(i) |
∑
j

e−[Ψ(j,xk)−Ψ(i,xk)]+ if j = i

0, otherwise,

with [x]+ := max(x, 0). This Markov chain has the unique stationary distribution:

Γu(i) =
|N(i)|
Z

e
∑

j(xi−xj)
2

,
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where Z =
∑I

j=1 |N(j)|e
∑

j(xi−xj)
2

is a normalization factor. This exploration scheme is designed to explore the network
based on the current estimation of the connectivity measure of each node. We next illustrate the performance of the different
schemes on two types of network topology.

V. NUMERICAL ILLUSTRATIONS

We select two real-world networks and a random social one for our evaluation. The networks are Karate, Open-Street and
a random one, having from 33 to 179 nodes and from 156 to 860 edges. The numerical experiments done here are based on
using the stochastic approximation scheme with different Markovian sampling: Uniform Random walk, Metropolis-Hastings,
and Gibbs samplings. The results are compared with the exact solution computed offline. The Laplacian matrix (only one row
can be observed at each time slot k ∈ N), the sampling distribution, the number of iterations, and the step-size ϵk = 1

k+1 .

Network Social Geometric karate
Number of nodes 50 200 33
Number of edges 600 860 156

A. Convergence of the scheme

In the first numerical experiment, we aim to study the convergence of the stochastic approximation scheme for all Markovian
samples, as well as plotting the confidence intervals for these samples. To plot the confidence interval, 10 simulations were
performed for each sampling distribution with 5× 105 iterations. We restrict this study to the social network. In the following
figure, the x-axis represents the sampling distribution used, and the y-axis represents the range of the error estimated by the
stochastic scheme using the sampling distributions after 5× 105.

B. Extension to other types of network

The second numerical study applies the same scheme to other networks and compares the performance there. Two important
issues are considered in this context: the effect of using a different Markov chain distribution and its performance on different
graphs. This keeps us with 9 simulations (3 networks and 3 sampling distributions). The error in each simulation is given after
105 and 106 iterations, for better comparison.

TABLE I
ERROR NORM CALCULATED AFTER 105 AND 106 ITERATIONS USING DIFFERENT SAMPLING TECHNIQUES ON DIFFERENT NETWORKS

Networks Social Geometric karate
Random Walk 105 It 0.3 0.95 0.22

106 It 0.15 0.9 0.1
Metropolis-Hastings 105 It 0.4 0.45 0.06

106 It 0.1 0.25 0.02
Gibbs 105 It 0.16 0.35 0.035

106 It 0.02 0.2 0.005

It is clear that the error varies when different sampling distributions are used, all of which are categorized as random walks.
According to the table above, using the Gibbs distribution is the best among all, demonstrating its efficiency on various types
of networks, including networks without clusters (Karate network), networks with 2-4 clusters (Social network), and networks
with more than 5 clusters (Geometric network), helping thus to reduce the time of convergence.
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VI. CONCLUSIONS AND PERSPECTIVES

In this paper, we have proposed an efficient exploration of random walks in order to estimate online the global connectivity of
large-scale networks. Our main result is the proof of the convergence of our scheme using stochastic approximation techniques
over manifolds. We have shown numerically that different sampling methods (uniform, Metropolis-Hastings, and Gibbs) lead
to different performances in terms of convergence time. Then, a first natural extension of this work is to study in detail the
convergence time of our exploration process depending on the scheme used and the type of network under study. Another
interesting aspect is to consider a dynamic network in which nodes and/or links appear and disappear in a dynamic fashion.
Therefore it could be very interesting to understand how our scheme can track a global connectivity measure like the algebraic
connectivity for such a dynamic network. Finally, another metric like the Ricci curvature of the network can be estimated
instead of the global connectivity.
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