

PAYS DE LA LOIRE

unicancer

ARRONAX

SOCIÉTÉ FRANÇAISE DE PHYSIQUE MÉDICALE

Environnement dosimétrique et premiers résultats des études sur les mécanismes physicochimiques et biologiques de l'hadronthérapie FLASH au cyclotron ARRONAX

Manon Evin ^a, Charbel Koumeir ^a^c, Quentin Mouchard ^a, Guillaume Blain ^a, Emeline Craff^c, Gregory Delpon ^{a b}, Vincent Fiegel ^{b c}, Giovanna Rosa Fois ^d, Youssef Ghannam^e, Ferid Haddad ^{a c}, Lydia Maigne ^d, Vincent Potiron ^{b e}, Gaëlle Saade ^e, Noël Servagent ^a, Stéphane Supiot ^{b e}, Sarra Terfas ^a, Johan Vandenborre ^a, Vincent Métivier ^a, Sophie Chiavassa ^{a b}

^a Nantes Université, IMT Atlantique, CNRS/IN2P3, SUBATECH, F-44000 Nantes, France

^b Institut de Cancérologie de l'Ouest, Saint-Herblain, France

^c GIP ARRONAX, Saint-Herblain, France

^d Université Clermont Auvergne, CNRS/IN2P3, LPC, F-63000 Clermont-Ferrand, France

Attantique pre-Page de Luite Wree Teixcom

^e Nantes Université, CNRS, US2B, UMR 6286, F-44000 Nantes, France

Je ne déclare aucun lien d'intérêt au cours des 5 dernières années.

Contexte Radiobiologie Environnement dosimétrique Radiochimie Perspectives Le projet FLASHMOD Time (s) rradiation time **PHYSICAL Step** Développement de la radiothérapie FLASH Ionizations and excitations 10-15 **PHYSIOCHEMICAL Step** Effet FLASH Molecular dissociations 10-12 Augmentation du débit de dose de **0,1 Gy/s** (CONV) Heterogeneous CHEMICAL Step **Reactions and diffusions** à au moins 40 Gy/s (UHDD) : Réduction de la toxicité aux tissus sains 10-6 Élargissement de la Même efficacité anti-tumorale **Homogeneous CHEMICAL Step** • (s) fenêtre thérapeutique **Reactions and diffusions** 1 Objectifs du projet **BIOCHEMICAL Step DNA repair and enzymatic reactions** 3600 Avancer dans la compréhension des mécanismes de l'effet FLASH **BIOLOGICAL Step** Cellular and tissue response Montay-Gruel, P., et al. (2019). DOI: 10.1073/pnas.1901777116 Faire face aux challenges **techniques liés à l'UHDD**

Équipe pluridisciplinaire autour du cyclotron ARRONAX

Accélérateur pour la Recherche en Radiochimie et Oncologie à Nantes-Atlantique

Particules	Énergie	Parcours	TEL à l'entrée du
extraites	maximale (MeV)	dans l'eau (cm)	plateau (keV/ μ m)
H^+	70	4,08	1
He^{2+}	70	0, 34	11

Débits de dose

• UHDD : jusqu'à quelques centaines de **kGy/s**

Radiobiologie

Monitorage des faisceaux UHDD et CONV

Fluorescence du diazote de l'air : pic 337 nm (UV) -> Tube photomultiplicateur (PMT)

Site internet Matsuada, « Photomultiplier Tube (PMT) ». [31/05/2023].

Linéarité en fonction du débit de dose

Caractérisation de la méthode

- Sélection des meilleurs candidats PMT
- ✓ Faisabilité du monitorage en UHDD et CONV
- ✓ Faisabilité du monitorage temporel
- ✓ Faisabilité d'un profil géométrique

• Mouchard Q., et al.. Upgrade of the flash beam monitoring system at ARRONAX cyclotron. (FRPT 2022). (hal-03885576)

Dosimétrie in vivo

OrthoChromic Films OC-1

Dose absorbée (2, 5, 10, 20, 30 Gy)

Indépendants du débit de dose

→ Étalonnage protons en CONV avec le TRS-398 (PTW Advanced Markus)

• Villoing, et al. « Proton Beam Dosimetry at Ultra-High Dose Rates (FLASH): Evaluation of GAFchromic[™] (EBT3, EBT-XD) and OrthoChromic (OC-1) Film Performances ». *Medical Physics*, 2022. <u>https://doi.org/10.1002/mp.15526</u>.

• Villoing., et al., « Response characterization of a new radiochromic film to ultra high dose rates for light ions beams. » (*ESTRO 2022*). (hal-03680039)

Dépendants du TEL (Transfert d'Énergie Linéique)

• Ghannam Y. et al., « First evidence of in vivo effect of FLASH radiotherapy with helium ions in zebrafish embryos », soumis

• Blain, et al.. « Proton Irradiations at Ultra-High Dose Rate vs. Conventional Dose Rate: Strong Impact on Hydrogen Peroxide Yield. » Radiation Research, 2022, 198, pp.318-324. (10.1667/RADE-22-00021.1).

• Fiegel et al., « Investigation of the radiolytic ROS production mechanism under proton FLASH conditions: evidence of the key role of the aqueous electron. », soumis

Conclusion et perspectives

- ✓ Mise en évidence de l'effet du débit de dose sur des embryons de poissons-zèbre et *in vitro*
- ✓ Avancées sur les mécanismes physico-chimiques et développement d'un code de simulation

- → Radiochimie : radiolyse dans en milieu biologique
- --> Irradiation de petits animaux (tumeurs et tissus sains)
- → Design d'un *ridge filter* pour irradiation dans le **pic de Bragg étalé** (SOPB)

