
A Robust Approach for the Detection and
Prevention of Conflicts in I2NSF Security Policies

Do Duc Anh Nguyen, Fabien Autrel, Ahmed Bouabdallah and Guillaume Doyen
†OCIF - IRISA (UMR CNRS 6074), IMT Atlantique

Rennes, France
firstname.lastname@imt-atlantique.fr

Abstract—In order to maintain a sufficient protection level
of their infrastructure, automating security management is at
the core of current operators issues. The Interface to Network
Security Function (I2NSF) is a framework that takes part of
the Intent-Based Networking (IBN) paradigm. It consists of
automating the translation of high-level policies into low-level
configurations of Network Security Functions (NSF) and appears
as a promising way to overcome the complexity of this challenging
task. However, if the I2NSF framework provides a comprehensive
architectural and data model for such an automation, it provides
neither detection nor prevention mechanisms against conflicting
security requirements. In this paper, we assess to what extent
state-of-the-art mechanisms can shift the initial I2NSF proposal
toward a robust framework. As such, we extend (1) the reference
architecture to integrate some checking components and (2) the
consumer-facing data model to enforce separation constraints
and partial ordering relationships. By considering a large set of
rules and conflicting situations, we evaluate the performance of
our solution within an early implementation of I2NSF achieved
in an IETF Hackathon.

Index Terms—Security management, I2NSF, Policy, Conflict
detection and mitigation

I. INTRODUCTION

In order to ensure the security of today’s high-complexity
infrastructures and ecosystems, the need for self-protection has
been identified early in autonomic computing, and network
softwarization has been the cornerstone, which, for a decade,
made the concept of autonomy, or to a lesser extent, automa-
tion, a reality. Following this idea, Intent-Based Networking
(IBN) [1] was introduced with the aim of facilitating human
operators against configuration management and monitoring
by using intents. The Interface to Network Security Function
(I2NSF) [2], a framework from the Internet Engineering
Task Force (IETF), aims to facilitate security management
by providing standard interfaces that consider high-level re-
quirements issued by human operators to dynamically enforce
security configurations on Network Security Functions (NSFs).

However, the translation of security policies into NSF
configurations lacks consistency and compliance verification,
leading to conflicts and unpredictable domain state. In order to
address this issue, we strive to answer the following research
questions: (1) How can we identify and detect conflicting
I2NSF high-level rules? (2) Can state-of-the-art conflict de-
tection methods fit with the I2NSF features? (3) What perfor-
mance is required for such an approach to be acknowledged?

This paper proposes a set of mechanisms to detect and
resolve potential conflicting rules in I2NSF at the consumer-
facing level. Firstly, given the expression of high level require-
ments in I2NSF, we exploit its closeness to the Attribute-Based
Access Control (ABAC) policy formalism to assess to what
extent an acknowledged detection solution from the literature
[3] targeting ABAC conflicts may fit with I2NSF features. Sec-
ondly, we extend the consumer-facing data model to express
separation constraints [4] and partial ordering relationships,
which mitigate the potential conflicting rule sets identified.
Finally, given the systematic conflict checking strategy we
adopt, we evaluate its scalability in terms of execution time
and memory usage with a large set of 10,000 rules, considering
exhaustive conflicting situations.

The rest of this paper is organized as follows: Section II
presents the background and related work of IBN security,
I2NSF as well as conflict detection and resolution in security
policies. Section III motivates our formal reformulation of rule
conflicts by remaining faithful to the ABAC spirit from which
we borrow and adapt the central concepts. Section IV depicts
an extended I2NSF architecture with conflict checkers, the
conflicting rule detection mechanism associated with separa-
tion constraints, and partial ordering relationships. Section V
details the testbed we deployed, our implementation of conflict
detection and resolution, and its evaluation. Finally, Section VI
concludes the paper and introduces future work.

II. BACKGROUND AND RELATED WORK

In this section, we highlight revelant contributions of the
IBN paradigm with an emphasis on security as well as the
I2NSF framework. Finally, we review the conflict detection
and mitigation in access control policy contributions fitting
with the I2NSF use case.

A. Intent-Based Networking

In areas where device configuration is time-consuming and
error-prone, early developments with IBN have proved to be
very promising. In the context of connected vehicles, [5]
proposes LocJury, a framework allowing users to request the
location of vehicles via IBN and detect potential threats of
location privacy violation. In [6], an IBN system is proposed
in which users can express their data access requests to check
their validity against regulations. Besides privacy and data

protection, IBN is also employed in network security: auto-
matic DDoS response system [7] [8], intent-based multilayer
secure service [9], and multi-nation military communication
and information systems [10].

B. The I2NSF framework

I2NSF aims to provide software interfaces and data models
to facilitate users in controlling and monitoring the behavior
of NSF. Such functions conduct network security tasks such
as detecting abnormal traffic or providing data protection. As
depicted in Figure 1a, which shows the global architecture
of I2NSF, this framework is globally organized around two
main layers: The Service Layer allows users to express their
security policies, and the Capability Layer depicts mechanisms
for managing NSF’s operations at the implementation level.
I2NSF Consumer-Facing Interface (CFI) introduces policies,
which are then translated and provisioned by the Security Con-
troller. The Developer’s Management System (DMS) manages
NSFs registered by vendors. I2NSF targets Network Functions
Virtualization (NFV) as a main scenario in which it proposes to
manage virtual machines implementing the NSFs through the
NSF-facing interface, thus standing for a relevant framework
for automatic security deployment [11]. Especially, a first use-
case and testbed implementation of I2NSF’s main operations
is given in [12]. However, I2NSF’s scope goes beyond this
use case (e.g., IPSec automation [13]).

1 <I2NSF>
2 <event-time>09:00-18:00</event-time>
3 <condition>
4 <src>employee</src>
5 <dest>sns-websites</dest>
6 </condition>
7 <action>drop</action>
8 </I2NSF>

Listing 1: High-level policy example in I2NSF (simplified
version), from [12]

Listing 1 shows an example of a simplified high-level policy
expressing a security requirement: employees cannot access
SNS (Social Network Site) during working time. According to
the translation proposed in [2], [15], and depicted in Figure 1b,
the I2NSF processing requires three ordered transformations
applied by the components in the Security Controller: (1) The
rule’s attributes are extracted by the Extractor (i.e., ”09:00-
18:00”, ”employee”, ”sns-websites”); (2) The Converter con-
verts the extracted data into concrete ones like IP addresses
and websites’ names (i.e., ”10.0.0.3-10.0.0.15”, ”Facebook,
Instagram”); (3) The Generator generates low-level policies
for selected NSFs (e.g., Firewall and Web-filter NSF).

However, I2NSF can suffer from conflicts in high-level
policies, leading to inconsistency in NSFs. Some basic res-
olution strategies are proposed, such as the First Matching
Rule [16], which, however, prevents later matching rules from
being applied.

C. Policy Conflict Detection and Mitigation

In access control models, if two rules of a policy involve for
the same subject and object both permission and prohibition

of its access then a conflict arises and the policy is unsound.
This issue has been tackled in several formalisms, such as
XACML [17], network rules [18], [19], and other access
control models with a high degree of abstraction [20], [21],
among others. The general solution to this issue consists to
establish a partial ordering relationship between the rules.
The undelying formalism provides a concept to abstract the
subjects of a rule into a set, such as the notion of role in
Role-based Access Control (RBAC) [22]. Conflicts can then
be solved by introducing constraints that forbid a subject from
belonging to two separate sets specified by two conflicting
rules. Besides, in order to detect them, approaches such as [3],
[23] use pair-wise rule checking to avoid missed conflicts.

III. LEVERAGING ABAC CONFLICT DETECTION AND
MITIGATION METHODS FOR I2NSF

The proximity between the Yang data model of the CFI [24]
and ABAC motivates our adoption of the ABAC framework to
express our solution to detect and mitigate conflicts. As such,
in this section, we reformulate the definitions initially proposed
in [3], [23] to make them fit with the I2NSF context.

A. Explicit/potential conflicting rules

A conflict between two rules occurs when a user request
is applied by both but their decisions are different. For a
rule R, we define E(R), C(R) and Action(R) respectively
the set of attribute expressions involved in the events and
conditions parts and the set of actions associated. If req stands
for a request sent to the system, we also define |E(R)|req
and |C(R)|req the attribute expressions respectively associated
with E(R) and C(R) that apply for req. We first introduce a
general notion of conflict, from which we derive operational
definitions of explicit and potential conflicting rules.

Definition III.1 (Conflict). A conflict between rules Ri and
Rj (i ̸= j) occurs if it exists a user request req such that:

1) The two rules are applicable for the given request:
|E(Ri)|req

∧
|C(Ri)|req ≡ |E(Rj)|req

∧
|C(Rj)|req

2) The two rules’ actions are different:
Action(Ri) ̸= Action(Rj)

According to Definition III.1, a conflict can occur on-the-
fly when a specific request is sent. Let us consider again the
example from [12] that I2NSF allows us to specify:

1) R1: Block/Drop employees from accessing sns-websites
during the working time (09:00-18:00)

2) R2: Allow/Pass employees to access sns-websites at
lunch time (12:00-14:00)

If an employee accesses Facebook between 12:00-14:00
(included in sns-websites), R1 and R2 will be identified as
conflicting rules because they are applied to this request with
two different actions (drop ̸= pass).

Definition III.2 (Explicit conflicting rules). Ri and Rj (i ̸= j)
are identified as explicit conflicting rules if:

1) One rule shares all attribute identifiers with another rule.
Suppose A represents an attribute identifier, then:

(a) (b)

Fig. 1: The I2NSF framework. (a) General architecture and operation [14]; (b) Security controller components [11]

∀A ∈ E(Ri)
⋃
C(Ri),∃A′ ∈ E(Rj)

⋃
C(Rj), such

that A = A′

2) All the shared attribute identifiers have intersecting
values. Suppose A is a shared identifier with val(A)|Ri

representing the set of possible values of A when used
in rule Ri then: val(A)|Ri

∩ val(A)|Rj
̸= ∅

3) The two rules actions are different:
Action(Ri) ̸= Action(Rj)

Besides, I2NSF is also facing some implicit conflicting
rule situations since users can express high-level policies with
absent attributes. For example:

1) R1: Block/Drop employees from accessing sns-websites
2) R2: Allow/Pass employees to access sns-websites at

lunch time (12:00-14:00)
R1 does not specify time constraints, which can be con-

sidered as any and then shares the same value with that of
R2 (V al(aptime|R1

) ∩ V al(aptime|R2
) = 12:00-14:00). It is

possible to transform implicit conflicting rules into explicit
ones by adding the absent attributes with the value any.
Adding an absent attribute to a rule R must follow Law III.1
to create R, which is equivalent to R.

Law III.1. For a given rule R = (E, C, Action) and an
attribute A:

• If A is an event attribute not present in E then E =
E ∧ (A = any) is an extension of E such that R = (E,
C, Action) is semantically equivalent to R

• If A is a condition attribute not present in C then C =
C ∧ (A = any) is an extension of C such that R = (E,
C, Action) is semantically equivalent to R

Completing our previous example, we get:
1) R1: Block/Drop employees from accessing sns-websites

at any time
2) R2: Allow/Pass employees to access sns-websites at

lunch time (12:00-14:00)
Weakening Definition III.2 by removing second condition

creates a superset of explicit conflicting rules.

Definition III.3 (Potential conflicting rules). Ri and Rj (i ̸=
j) are identified as potential conflicting rules if:

1) One rule shares all attribute identifiers with another rule.
Suppose A represents an attribute identifier, then:

∀A ∈ E(Ri)
⋃
C(Ri),∃A′ ∈ E(Rj)

⋃
C(Rj), such

that A = A′

2) The two rules’ actions are different:
Action(Ri) ̸= Action(Rj)

B. Separation Constraint and Rule Ordering Definitions

Beyond the conflict detection in policy rules, separation
constraints and rule ordering can be used to prevent the
conflicts. We formalize them in our context as follows.

Definition III.4 (Separation constraint). A separation con-
straint is a binary relationship SC defined over the superset
Sip of the sets representing the domain values of the attributes
used in the high-level policy. A separation constraint forbids
an attribute value from belonging to two elements of Sip at
the same time:

1) SC ⊆ Sip × Sip

2) ∀(a, b) ∈ SC . a ∩ b = ∅

Definition III.5 (Partial ordering relationship over rule set).
A partial ordering relationship Rp is defined over the abstract
rule set Rr. Let r1 and r2 be two abstract rules belonging to
Rr. If Rp(r1, r2) holds, then r1 has a higher priority than r2.

IV. A CONFLICT DETECTION AND MITIGATION
FRAMEWORK

Section III provides firm foundations to develop an exten-
sion of the I2NSF architecture that implements the ability to
cope with conflicting requirements expressed at the CFI. Con-
sequently, the security controller is enriched with several novel
components, whose operations are detailed in this section.

A. Global architecture and process

As depicted in Figure 2, our extended I2NSF architecture
exhibits two novel components. The real-time conflict checker
is utilized to detect potential conflicting rules while the Separa-
tion Constraint (SC) and Partial Ordering Relationship (POR)
checkers handle the validation of the conflict prevention mech-
anisms. As such, two feedback loops of operations with the
user are defined in this architecture. Firstly, users can express
consumer-facing policy rules to the Security Controller, which
will be checked against all the existing ones. The outcome of
this checker is then sent as a first feedback to the user who
can in turn correct its rules specification. Then, the second

Fig. 2: The architecture of detection and prevention applied to
I2NSF. White boxes are those existing in the referred Security
Controller, while grey boxes are those we added for conflict
detection an prevention.

loop allows the user to subsequently specify SCs and PORs
to the system. The SC and POR checker will then determine
if the latter are valid according to the infrastructure setup
(e.g., endpoints’ information) stored in the NSF database. The
outcome of this second validation is also sent back to the user
to recognize any invalid SC or POR.

B. SC and POR Data Model and checker

In order to integrate SCs and PORs in the I2NSF framework,
we have extended the consumer-facing YANG data model
with some lightweight statements. For SCs, following our
example, users only need to express two elements employee
and manager to state that an employee and a manager
specified in the attribute src cannot share the same value (i.e.,
they cannot share a common IP address since an employee
and a manager cannot be the same person). In terms of PORs,
the policy names of two rules with the order of name R0,
name R1 are enough to specify that R0 has a higher priority
than R1. Deploying SCs and rule ordering relationships raise
new issues of validation. At this stage, a mechanism, namely
the SC and POR checker, is needed to validate the SCs
and PORs that have just been deployed by the user. For SC
validation, the checker obtains converted data from the two
elements (e.g., endpoints’ names) mentioned in a given SC.
It is considered invalid if their values overlap and vice versa
(∀(a, b) ∈ SC . a∩b ̸= ∅). In terms of POR validation, a POR
Rp(r1, r2) is deemed invalid if R′

p(r2, r1) already exists.

C. Conflicting Rules checker

Given the SC and POR deployment and correctness valida-
tion exposed above, valid SCs are used in the real-time conflict
checker to identify any rule that has a constraint violation and
prune the potential set of conflicting rules. Then, Definition
III.3 is implemented to detect potential conflicts with finer
granularity, and it results in the final conflicting rule set,

which is also the output of the real-time conflict checker. At
this stage, the valid PORs can handle the remaining conflicts
by suggesting the user choose the rule with the highest
precedence. We detail each of these two steps subsequently.

Let separation constraint violation validate(R0, R1)
be the function of the SC violation checker, which is used
to mitigate potential conflicts by checking two rules R0 and
R1 against a SC. All attribute values in R0 are checked against
their respective ones in R1, in pairs, to detect any specified
SC that targets one of those pairs. Then, if a SC is satisfied,
these two rules are marked as non-violating SCs or never
conflicting rules (returning false), otherwise standing for a
potential conflict (true). For example, R0 and R1 are never
conflicting rules if R0 targets a manager and R1 targets an
employee, while they cannot be the same person.

For the remaining rules, the core of the conflicting
rules checker is based on Definition III.3, which is imple-
mented in the detect function. According to this definition,
detect(R0, R1) states that R0 and R1 are conflicting rules
(returning true) if their actions are distinct while known
values of shared attributes overlap, and otherwise (false).
Note that, since our detection processes operate on the CFI,
the endpoints’ information (e.g., ”10.0.0.5”, ”facebook”) of
extracted data (e.g., ”employee”, ”sns-websites”) is unknown.
Consequently, our detection checker must only consider those
attributes that do not need to be resolved (i.e., with already
known values). Following the example of Listing 1, src and
dest are deemed value-convertible attributes or overlapping
attribute expressions, while event-time is inconvertible or
non-overlapping.

Finally, the complete algorithm of the real-time con-
flict checker is shown in Algorithm 1, which gathers the
separation constraint violation validate and detect. Its
complexity is O(M · N), with N representing the quantity
of rules and M the number of attributes, when a new rule is
introduced and compared against a set of existing rules.

Algorithm 1: checkConflict

Data: new rule R
Result: a set of conflicting rules with R
set conflicting rules = {}
for Ri in existing rules do

if
separation constraint violation validate(R,Ri)
then

if detect(R,Ri) then
set conflicting rules += {R, Ri}

end
end

end
return set conflicting rules

V. VALIDATION

In this section, we discuss the evaluation results of our
proposal. The context and the testbed are first introduced,

followed by a description of the metrics we employ. Finally,
the evaluation’s results are analyzed.

A. Testbed, Implementation and Scenario

In order to evaluate our approach in a realistic context,
we have considered the I2NSF implementation presented at
IETF Hackathon #1131. This code implements early versions
of I2NSF components and demonstrates a scenario in the NFV
infrastructure where a tenant company operates two NSFs
(Firewall and Web filter) to filter employee traffic on SNS
websites during working hours. The policy, shown in Listing
1 of Section II-B, is processed by I2NSF to initialize the
Firewall and Web-filter NSFs. As such, this scenario provides
a realistic foundation of attribute definition to identify potential
conflicts. One can notice that particular situations such as
stateful firewall rules are beyond the CFI scope and as such,
we do not handle them subsequently. The experiments we
present below were conducted on an Ubuntu 20.04.4 LTS,
Intel i7-10750H 2.6GHz, 16 GB RAM machine and our
implementation, written in Python, is about 200 lines long2.
B. Evaluation Conditions and Performance Metrics

1) Rule set Generation: In order to challenge our conflict
detection and mitigation solution, we consider the set of
conflict types depicted in Table I.

Rule Src Dst Start End Action
time time

R1 employees sns-websites 09:00 18:00 drop
R2 employees sns-websites 12:00 14:00 pass
R3 employees sns-websites pass
R4 employees 15:00 16:00 pass
R5 sns-websites 17:00 19:00 pass

TABLE I: Basic types of evaluated conflicts

Herein, rule R1 presents a concise version of the one
provided in Listing 1, and it acts as a reference that will be
conflicted by other rules. R2 is an explicit conflict situation
in which, from 12:00 to 14:00, both R1 and R2 apply
while providing divergent actions, namely drop for the first
and pass for the second. Then, R3 to R5 explore implicit
conflict situations in which some attributes are missing and
may lead to conflicts. To evaluate the impact of different
parameters on our detection engine, we consider the case
where event-time, dst, and src are missing in R3, R4,
and R5, respectively. This substrate of conflicting situations
enables the creation of datasets where we randomly choose
(1) the type of conflict, from R2 to R5, and (2) the value of
explicit attributes. We especially consider a set of 300 src and
15,000 dst attribute values, each dst containing from 1 to 5
URLs. That way, we can scale the dataset up to 10,000 rules,
which eventually stands for a realistic situation. Also, we can
study how different parameters, such as the number of rules,
deployed SCs, conflicts, and pass and drop actions, affect the
performance of I2NSF with our two checkers.

1Available at: github.com/jaehoonpaul/i2nsf-framework
2Available at: gitlab.imt-atlantique.fr/d22nguye/i2nsf-conflict-detection

2) Performance Metrics: By design, our algorithm detects
all conflicts correctly. Consequently, measuring the average
number of conflicting rules and conflicted requests is useless.
However, its complexity in time and space must be evaluated
for real-world use. Therefore, following acknowledged metrics
from the literature [3], we evaluate in what follows, under
different conditions, the time required to check a full set of
rules and the related memory usage. As an early test, we
assess the repeatability of the global framework on a scenario
containing 10,000 random rules with 10 repetitions. Over
all the experiments, the performance exhibited very stable
memory usage with a mean of 286.3 MB and a standard
deviation of 0.854 MB, as well as the execution time with
a mean of 160.79 seconds and a standard deviation of 7.393
seconds, thus demonstrating that throughout our evaluation,
there is no need to repeat the scenarios due to the randomness
of the rule set.

C. Results

Given the evaluation scenarios and performance metrics we
select, the results we collect are represented in Figure 3, and
we describe them subsequently.

1) Impact of the number of rules: Figure 3a depicts how
the number of rules impacts the memory usage and execution
time when we select randomly a scenario with up to 10,000
rules with no conflict, no SC, and no rule priorities. One can
see that, due to the systematic and pair-wise evaluation of
all rules, as one could expect, both the execution time and
memory usage follow a polynomial complexity according to
the number of rules. However, although this grow may be an
issue for extremely large scale rule sets, up to 10,000 rules,
the execution time does not exceed a few dozen of seconds
while memory does not exceeds 300MB.

2) Impact of the number and type of conflicts: In this
experiment, we generate multiple scenarios such that each
of them contains 10,000 random rules, 50% of which are
pass/drop rules, and no SC. In the first case, represented in
Figure 3b, we vary the number of conflicts and fix the ratio
between explicit and implicit conflicts at 50%. In the second
case, represented in Figure 3c, we fixed the number of conflicts
to 10%, but this time, we vary the ratio between explicit and
implicit ones. We clearly observe that the performance of our
checkers, both in terms of execution time and memory usage,
is independent of these two factors which assesses their proper
operation whatever the nature of conflicts in the rule set.

3) Impact of the number of drop/pass ratio: Fig-
ure 3d shows the impact of the rule actions on our
checkers’ performance when considering different ratios
of pass and drop rules in a rule set. It shows that
the execution time is strictly affected by the num-
ber of pass rules (number pass rule) and drop rules
(number drop rule). More specifically, the smaller the value
of |number drop rule−number pass rule|, the longer the
execution time. This is explained by the fact that for the
two given rules, if they have the same action, the detect
function can stop its execution right at the action checking

(a) (b) (c)

(d) (e) (f)

Fig. 3: Execution time of the checkers under different scenarios. (a) A scenario with 10,000 random rules; (b) Several scenarios
with varying numbers of conflicts and no SC specification; (c) Several scenarios with varying percentages of explicit conflicts;
(d) Several scenarios with 10,000 rules and varying numbers of pass/drop rules; (e) A scenario with varying numbers of
specified SC; (f) Several scenarios with varying numbers of conflicts and SC specification.

step. Otherwise, it needs to process the attribute-overlapping
check. In other words, scenarios that have a large number of
rules with different actions will take significantly longer to be
checked than those with similar actions.

4) Impact of separation constraints: Figure 3e depicts the
overhead due to SCs over a basic rule set conflict detection.
Here, we consider a rule set similar to the baseline scenario
exposed in Figure 3a, without any conflict, and we evaluate
to what extent adding SCs induces a performance overhead. It
clearly appears that SCs do not impact the memory usage but
rather the execution time, which, however, reasonably suffers
from a 5% overhead in the case of 0.1% of SCs, up to 20%
when 10% of rules have some SCs.

5) Impact of the number of conflicts with separation con-
straints: As a last evaluation benchmark, we measure to what
extent the detection of conflicts accompanied with SCs induce
an overhead. To that aim, we consider a scenario of 10,000
random rules with a ratio of 50% between explicit and implicit
conflicts as well as for pass/drop rules. Figure 3f shows
that despite the increase in the absolute number of conflicts,
both execution time and memory usage get an acceptable and
stable overhead with a maximum value of 15% and 1,5%,
respectively, thus assessing the well-support of SCs of our
solution in the presence of any amount of conflicts.

VI. CONCLUSION AND FUTURE WORK

By providing a framework for translating high-level security
requirements into low-level security function configurations,
I2NSF represents a significant step towards the automation of
network security management. In this context, our contribution
aims at strengthening this process by integrating into the
I2NSF operations mechanisms which identify the potential
conflicting requirements, discard the explicit ones, and prevent
the others. By freeing the user from all the issues concerning
the soundness of the policy to be deployed, such an approach
can help to pave the way for a widespread use of I2NSF
in experimental investigations. Besides, similarly to [3], our
approach can be adopted and applied in any frameworks using
ECA or attribute-based rules.

As a short term perspective, we will consider the case
conflict checking in dependant rules such as a stateful firewall.
Our long term work will concern the use of AI to analyze and
guide the resolution of conflicts through SCs and PORs to help
users create safe and robust security requirements.

ACKNOWLEDGMENT

This work has been partially supported by the French
National Research Agency under the France 2030 label (Su-
perviz ANR-22-PECY-0008). The views reflected herein do
not necessarily reflect the opinion of the French government.

REFERENCES

[1] A. Clemm, L. Ciavaglia, L. Z. Granville, and J. Tantsura, “Intent-Based
Networking - Concepts and Definitions,” RFC 9315, Oct. 2022.
[Online]. Available: https://www.rfc-editor.org/info/rfc9315

[2] J. P. Jeong, P. Lingga, J. Yang, and J. Kim, “Guidelines for Security
Policy Translation in Interface to Network Security Functions,” Internet
Engineering Task Force, Internet-Draft draft-yang-i2nsf-security-policy-
translation-11, Apr. 2022, work in Progress. [Online]. Available: https://
datatracker.ietf.org/doc/draft-yang-i2nsf-security-policy-translation/11/

[3] G. Liu, W. Pei, Y. Tian, C. Liu, and S. Li, “A novel conflict detection
method for ABAC security policies,” Journal of Industrial Information
Integration, vol. 22, p. 100200, 2021.

[4] G.-J. Ahn and R. Sandhu, “The RSL99 language for role-based separa-
tion of duty constraints,” in Proceedings of the fourth ACM workshop
on Role-based access control, 1999, pp. 43–54.

[5] Y. Wang, Z. Tian, Y. Sun, X. Du, and N. Guizani, “LocJury: an IBN-
based location privacy preserving scheme for IoCV,” IEEE Transactions
on Intelligent Transportation Systems, vol. 22, no. 8, pp. 5028–5037,
2020.

[6] B. E. Ujcich and W. H. Sanders, “Data Protection Intents for Software-
Defined Networking,” in 2019 IEEE Conference on Network Softwariza-
tion (NetSoft), 2019, pp. 271–275.

[7] M. F. Hyder and T. Fatima, “Towards Crossfire Distributed Denial of
Service Attack Protection Using Intent-Based Moving Target Defense
Over Software-Defined Networking,” IEEE Access, vol. 9, pp. 112 792–
112 804, 2021.

[8] M. F. Hyder and M. A. Ismail, “INMTD: Intent-based moving target
defense framework using software defined networks,” Engineering,
Technology & Applied Science Research, vol. 10, no. 1, pp. 5142–5147,
2020.

[9] T. Szyrkowiec, M. Santuari, M. Chamania, D. Siracusa, A. Autenrieth,
V. Lopez, J. Cho, and W. Kellerer, “Automatic intent-based secure
service creation through a multilayer sdn network orchestration,” Journal
of Optical Communications and Networking, vol. 10, no. 4, pp. 289–297,
2018.

[10] R. R. F. Lopes, C. Bildsten, K. Wrona, S. Huopio, D. Eidenskog,
and O. L. Worthington, “Cyber security in virtualized communication
networks: Open challenges for NATO,” in 2021 International Conference
on Military Communication and Information Systems (ICMCIS). IEEE,
2021, pp. 1–8.

[11] J. P. Jeong, P. Lingga, P. Jung-Soo, D. Lopez, and S. Hares,
“Security Management Automation of Cloud-Based Security Services
in I2NSF Framework,” Internet Engineering Task Force, Internet-
Draft draft-jeong-i2nsf-security-management-automation-04, Jul. 2022,
work in Progress. [Online]. Available: https://datatracker.ietf.org/doc/
draft-jeong-i2nsf-security-management-automation/04/

[12] J. Kim, E. Kim, J. Yang, J. Jeong, H. Kim, S. Hyun, H. Yang, J. Oh,
Y. Kim, S. Hares, and L. Dunbar, “IBCS: Intent-Based Cloud Services
for Security Applications,” IEEE Communications Magazine, vol. 58,
no. 4, pp. 45–51, 2020.

[13] R. Marin-Lopez, G. Lopez-Millan, and F. Pereniguez-Garcia, “A YANG
Data Model for IPsec Flow Protection Based on Software-Defined
Networking (SDN),” RFC 9061, Jul. 2021. [Online]. Available:
https://www.rfc-editor.org/info/rfc9061

[14] D. Lopez, E. Lopez, L. Dunbar, J. Strassner, and R. Kumar, “Framework
for Interface to Network Security Functions,” RFC 8329, Feb. 2018.
[Online]. Available: https://www.rfc-editor.org/info/rfc8329

[15] J. Yang and J. P. Jeong, “An automata-based security policy translation
for network security functions,” in 2018 International Conference on In-
formation and Communication Technology Convergence (ICTC). IEEE,
2018, pp. 268–272.

[16] S. Hares, J. P. Jeong, J. T. Kim, R. Moskowitz, and Q. Lin,
“I2NSF Capability YANG Data Model,” Internet Engineering Task
Force, Internet-Draft draft-ietf-i2nsf-capability-data-model-32, May
2022, work in Progress. [Online]. Available: https://datatracker.ietf.org/
doc/draft-ietf-i2nsf-capability-data-model/32/

[17] A. H. Anderson, “A Comparison of Two Privacy Policy Languages:
EPAL and XACML,” in Proceedings of the 3rd ACM Workshop
on Secure Web Services, ser. SWS ’06. New York, NY, USA:
Association for Computing Machinery, 2006, p. 53–60. [Online].
Available: https://doi.org/10.1145/1180367.1180378

[18] V. Capretta, B. Stepien, A. Felty, and S. Matwin, “Formal correctness
of conflict detection for firewalls,” in Proceedings of the 2007 ACM

Workshop on Formal Methods in Security Engineering, ser. FMSE ’07.
New York, NY, USA: Association for Computing Machinery, 2007, p.
22–30. [Online]. Available: https://doi.org/10.1145/1314436.1314440

[19] G. Stone, B. Lundy, and G. Xie, “Network policy languages: a survey
and a new approach,” IEEE Network, vol. 15, no. 1, pp. 10–21, 2001.

[20] S. Benferhat and R. El Baida, “A prioritized-based approach to handling
conflicts in access control,” in 16th IEEE International Conference on
Tools with Artificial Intelligence, 2004, pp. 286–293.

[21] M. Koch, L. V. Mancini, and F. Parisi-Presicce, “Conflict detection and
resolution in access control policy specifications,” in Foundations of
Software Science and Computation Structures, M. Nielsen and U. Eng-
berg, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp.
223–238.

[22] S. Osborn, R. Sandhu, and Q. Munawer, “Configuring role-based access
control to enforce mandatory and discretionary access control policies,”
ACM Transactions on Information and System Security (TISSEC), vol. 3,
no. 2, pp. 85–106, 2000.

[23] C.-c. Shu, E. Y. Yang, and A. E. Arenas, “Detecting conflicts in ABAC
policies with rule-reduction and binary-search techniques,” in 2009
IEEE International Symposium on Policies for Distributed Systems and
Networks. IEEE, 2009, pp. 182–185.

[24] J. P. Jeong, C. Chung, T.-J. Ahn, R. Kumar, and
S. Hares, “I2NSF Consumer-Facing Interface YANG Data
Model,” Internet Engineering Task Force, Internet-Draft
draft-ietf-i2nsf-consumer-facing-interface-dm-23, Aug. 2022, work
in Progress. [Online]. Available: https://datatracker.ietf.org/doc/
draft-ietf-i2nsf-consumer-facing-interface-dm/23/

