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Abstract—Marine object detection and tracking is an im-
portant application for several disciplines such as sea surface
monitoring, marine area management, ship collision avoidance,
search and rescue missions, etc. Top-view scenes based on aerial
or satellite imaging offer capturing objects from new angles
of view or for locations that are not seen by capturing nodes
fixed at the port side or mounted on moving boats. Moreover,
artificial intelligence techniques based on deep learning provide
robust solutions for classification and detection. Convolutional
neural network (CNN) architectures are being used to detect
multiple objects in images and videos. The achieved performance
proves the relevance of CNNs in circumventing existing computer
vision challenges. In this paper, we investigate the state-of-the-art
CNN-based technique, so called You only look once (YOLO), to
detect marine objects in images showing sea ships and humans
from top-view. YOLO available models are trained using our
collected dataset. The evaluation of the trained models illustrates
the effectiveness of YOLO in detecting targeted classes (humans
and sea ships) with high precision (90%). The deployment of
the trained model on embedded edge devices achieves a high
inference performance beyond 80 frames per second.

Index Terms—Marine, Object Detection, Neural Network,
YOLO

I. INTRODUCTION

Nowadays, marine surveillance is a vital task. It is essential
for many applications such as sea surface monitoring, marine
area management, ship collision avoidance, search and rescue
missions, counter illegal migration, fishing and smuggling, etc.
Computer vision techniques have been adopted to assist marine
surveillance. Several topics have been addressed in the field
of maritime image processing. However, the detection and
classification of marine objects remain open. Maritime envi-
ronment arises additional challenges due to the dynamic nature
of background, continuous tides and waves lead, presence of
small floating objects and unpredictable movement of marine
objects [1]. In addition, the illumination is related to weather
conditions (haze, fog, rain, bright sunlight, twilight, etc.) and
to the incident angle of solar rays on the water surface. Color
ranges of seawater vary according to time (night, day, sunrise,
sunset, etc.) and according to weather conditions [2].

The advances in artificial intelligence (AI) introduce robust
solutions for detecting and classifying objects. Emergent tech-
niques based on deep neural networks have tackled effectively
computer vision tasks that were previously unsolvable. In

particular, convolutional neural networks (CNNs) have shown
remarkable efficiency in detecting and classifying objects in
images and videos. However, these networks impose additional
requirements in terms of computational resources and memory
needs. Real-life applications demand the requirement of real-
time detection. This imposes additional challenges when im-
plementing CNN-based techniques on embedded edge devices
with limited computational resources and power budget.

Available methods to adapt CNNs on edge devices impact
the performance in terms of detection speed, accuracy, and
precision. Incorporating multiple views improves detection
accuracy and precision. Providing diverse perspectives on the
same scene can be utilized to increase detection performance,
resulting in a reduction in the number of missed or incorrect
detection. Using numerous views for detection, on the other
hand, mitigates the effects of object occlusion, illumination,
intra-class variation, the similarity between classes, back-
ground clutter, ambiguity, etc.

In this work, we aim to assist marine object surveillance us-
ing embedded artificial intelligence by exploiting the features
of top-view scenes captured by satellites or drones. Fig. 1 de-
picts the overview of the proposed approach to assist detection
using top-view scenes. Our work focuses on investigating
and examining the recently introduced CNN-based object
detection approach, so called You Only Look Once (YOLO),
in detecting marine objects using images providing top-view
scenes. YOLO has been initially introduced in [3] as an
efficient unified model of all phases of a CNN for doing object

Fig. 1. Overview of the proposed approach



detection in real-time. Several versions of YOLO exist, with
different network architectures and specifications. In this work
we target YOLOv4 and YOLOv4 tiny models introduced in
2020 [4]. Compared to previous versions of YOLO, YOLOv4
model is optimized by using CSPDarknet-53, which adopts
residual connection, as backbone architecture. YOLOv4 tiny
model is a compressed version of YOLOv4 and has only
two detection heads rather than 3 in YOLOv4 model. New
versions of YOLO have been recently introduced in [5] and
[6]. The evaluation of these versions is under the scope and
the achieved results will be introduced in future publications.
The main contributions of this paper are:

• collect a novel dataset showing marine objects from
top-view, which has the widest number of annotations
compared to available datasets,

• train and evaluate YOLOv4 and YOLOv4 tiny neural
networks,

• deploy the trained networks on embedded edge devices
and evaluate the detection performance and inference
speed using real-life video sequences.

The rest of the paper is organized as follows. Section II
presents a brief background and reviews related work. Sec-
tion III describes the adopted methods for training and evalu-
ation. Section IV describes the deployment of models on edge
devices and presents the obtained results. Finally, Section V
concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Object Detection using Deep Learning

Currently, approaches based on deep learning are a key trend
for computer vision applications. CNN-based methods provide
robust solutions for object detection and classification that
outperform traditional computer vision techniques [7], [8] and
circumvent challenges. Several methods have been introduced
in the literature. Two-stage methods such as region-based
CNNs [9]–[11] have been considered pioneer approaches for
object detection. However, these approaches can not ensure
real-time inference when deployed on embedded devices as
they compromise two basic steps: identification of regions
from the input image and then performing forward propagation
on each region to extract features. One-stage approaches such
as single-shot detector (SSD) [12] and YOLO [3] reduce the
complexity of object detection. A fully convolutional approach
is adopted in which the network is able to find all objects
within an image in one pass. Mainly a grid is used to divide
the input image into regions instead of identifying them while
execution.

YOLO approach has been introduced as a unified CNN
model for object detection. YOLO networks have evolved
since introduced in [3]. Several models with different archi-
tecture specifications have been proposed in [13], [14]. Recent
proposed YOLO models can outperform other superior neural
network models such as EfficientDet [15] and RetinaNet [16]
provided by Google and Facebook respectively in terms of
detection performance and inference speed as well [4]–[6].

B. Datasets for Top-View Marine Object Detection

Good efforts have been done to create datasets using satellite
and aerial images. Seagull dataset [17] provides a set of
video sequences captured by a fixed wing UAV flying above
the sea in several regions. Different types of cameras are
used to capture the videos covering the visible, near infra-
red, and infra-red ranges. The dataset includes annotations
for several marine objects such as cargo ships, small boats,
and life rafts. Maritime SATellite Imagery (MASATI) dataset
[18] contains satellite images in the visible spectrum obtained
from Microsoft Bing maps. The Airbus Ship Challenge reveals
a large dataset of satellite images of sea ships [19]. Other
datasets focus on detecting humans in open water for appli-
cations of detecting man overboard (MOB) cases and search
and rescue missions (SAR) such as MOBDrone dataset [20],
MaritimeSAR dataset [21] and SeaDroneSee dataset [22].

C. Top-View Marine Object Detection using Deep Learning

Most of the available works on marine object detection
using deep learning address the detection of ships using images
or videos from the side and front/back views [23] [2]. Only few
works have targeted the detection of marine objects from top-
view. In [24] provides a detection approach based on a feature
pyramid network (FPN) using synthetic aperture radar images.
The authors in [25] have adopted YOLOv3 model to distin-
guish between icebergs and ships in synthetic aperture radar
images. In [26], the authors examine YOLOv3, YOLOv4, and
YOLOv5 models to detect ships in satellite images using the
dataset in [19]. In [20], different detection methods have been
applied to examine the collected dataset. In [21], YOLOv4
models are adopted to detect humans in open water. Then, the
authors optimize in [27] the trained models using pruning and
quantization methods towards efficient deployment on edge
devices.

III. METHOD

A. Collected Dataset

A huge dataset is collected of images showing marine
objects from the top view. In this work, we focus on two
classes: (1) sea ships and boats and (2) humans. The collected
images show other marine objects such as jet skis and floating
buoys. The collected images have been captured either from
satellites or by drones. We make use of available published
datasets [17], [18], [20]–[22], [28]–[30]. The collected images
are all processed. Images without annotations are labeled
manually. Available labels are converted to YOLO format and
enhanced by adjusting the bounding boxes to meet the exact
dimensions of the target marine objects. Fig. 2 shows some
sample images from the final dataset.

The collected dataset includes images that are captured
using imaging cameras with either RGB visible, infrared (IR),
or near infrared (NIR) sensors. The images show marine
objects from different perspectives and scales. The images
differ in terms of altitudes, camera shooting angles, and
illumination. The dataset includes negative samples that do not
include labeled objects. These samples are used to ensure that



Fig. 2. Sample of images from the dataset

other objects in the images are not miss classified as the target
classes (boats and humans). Note that the collected dataset is
split into 90% for training and 10% for validation. Table I
presents the specfications of the created dataset. It shows the
number of images and the distribution of annotations per class.

TABLE I
SPECIFICATIONS OF THE CREATED DATASET

Dataset Training Validation Total
# images 146,233 16,246 162,479

# negative samples 5,464 629 6,093
# Boats Annotations 110,410 10,808 121,218
# Person Annotations 165,584 13,105 165,584

B. Training and Validation

In our work, we targeted YOLOv4 and YOLOv4 tiny
models. The main difference between both networks is that
the number of convolutional layers in the CSP backbone is
compressed [31]. Fig. 3 shows the block diagram of YOLOv4
network. Table II shows the specifications of the targeted
models. Target models are trained using Darknet framework

TABLE II
SPECIFICATIONS OF THE TARGETED YOLOV4 MODELS

Model Number of Activation Model Weights’
Layers function Volume (MB)

YOLOv4 162 Mish 256.2
YOLOv4 Tiny 38 Mish 23.5

[32] on NVIDIA GeForce RTX 3080 graphics card with
8704 CUDA cores and 10 GB memory. Transfer learning
is adopted to adapt pre-trained YOLO models towards the
target classes (Boats and Humans) using the created dataset.
Transfer learning is a machine learning technique where
knowledge gained during training a set of problems can be
used to solve other similar problems [33]. In our case, transfer
learning is used to maintain the generalization gained by
the pre-trained networks using COCO dataset [34]. We make
use of the weights generated in previous training processes
of networks with similar architecture specifications targeting
COCO dataset. The weights of the feature extraction layers
are reserved; whereas, the weights of the classification and
detection layers are eliminated. During the new training, all
network layers are unfrozen. Hence, all layers of the networks
learn to turn the old feature into predictions on the new dataset.
The structure of the YOLOv4 models is not modified. Only
the number of filters in the last convolutional layer before the
detector layers is adjusted to meet with the desired number of
classes.

The batch size is set to 64 images. In Darknet framework,
an iteration is defined as the number of batches to complete
one epoch. In our case, the training process is conducted for
200,000 iterations, which is approximately equivalent to 79
epochs. The initial learning rate is set to 0.001 in the first
160,000 iterations where it is decreased to 0.0001 and then
scaled down by 0.1 at iteration 180,000.

The input images size is adjusted to 416× 416. All images
are down-scaled to meet the network size during training. The
number of channels is set to 3 corresponding to the three RGB
channels. Different data augmentation methods are applied
while training. Saturation, exposure, and hue are selected to
be randomly changed during training. Mosaic is also applied
by merging 4 images into one. CutMix, a data augmentation
strategy that removes remove pixels from an image and replace
the removed regions with a patch from another image, is used
for the classification only.

During the training process, the trained model is validated
using the validation dataset. Starting from the 1000 iteration,
the mean average precision (mAP) is calculated for every 4
epochs. Fig. 4 illustrates the training and validation perfor-
mances of YOLOv4 model. Note that the blue curve corre-
sponds to the training loss; whereas, the red curve corresponds
to the computed mAP values. The mAP value is computed
based on the metrics specified in the MS COCO competition
which recommends the following expressions to calculate the
values of Precision P , Recall R and Average Precision AP :

P =
TP

(TP + FP )
R =

TP

(TP + FN)
AP =

1

11

∑
Ri

P (Ri)
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Fig. 3. Block diagram of YOLOv4 network

TABLE III
TRAINING DATA WITH RESPECT TO THE CLASSES

Model Class AP Precision Recall F1-score average IOU mAP@0.5

YOLOv4 0: Boat 89.62% 0.9 0.87 0.89 72.28% 0.89111: Human 88.61%

YOLOv4 tiny 0: Boat 87.3% 0.84 0.87 0.86 66.84% 0.87421: Human 87.27%

iterations

mAP@0.5   training loss

Fig. 4. Performance of the trained models when evaluated using the validation
dataset

where TP , FP and FN stand for True Positive, False
Positive and False Negative respectively. Note that the AP
summarises the shape of the precision/recall curve, and is
defined as the mean precision at a set of eleven equally
spaced recall levels {0,0.1,0.2,. . . ,0.9,1}. Table III presents
the obtained performance metrics of the trained models when
evaluated using the validation dataset. High mAP values of
89.11% and 87.42% are attained for YOLOv4 and YOLOv4
tiny models respectively. The obtained results demonstrate the
effectiveness of trained YOLOv4 and YOLOv4 tiny models in
detecting the boats and humans in aerial images.

C. Evaluation

The trained models are tested using a dataset that includes
images that are not seen before. The test dataset includes
1114 images from [19] and [17] with 1672 annotations. Fig. 5

TABLE IV
SPECIFICATIONS OF TARGET EDGE EMBEDDED DEVICES

Target Nvidia Jetson Nvidia Jetson
Device Nano Xavier NX

AI Performance 472 GFLOPs 21 TOPs

GPU 128-core NVIDIA 384-core NVIDIA Volta GPU
Maxwell GPU with 48 Tensor cores

GPU Max 921 MHz 1100 MHzFrequency

CPU Quad-core ARM Cortex 6-core NVIDIA Carmel
A57 MPCore processor ARM v8.2 64-bit CPU

CPU Max 1.43 GHz 1.9 GHzFrequency
DL Accelerator - 2× NVDLA Engines

Vision Accelerator - 7-Way VLIW Vision Processor

Memory 4 GB 64-bits 8 GB 128-bit
LPDDR4 25.6 GB/s LPDDR4x @ 51.2GB/s

Power 5 -10 W 10 - 20 Wconsumption
Mechanical 69.6 mm × 45 mm 69.6 mm × 45 mm

presents sample detection results. The figure shows that trained
models are able to accurately detect and classify the presence
of marine objects with a high confidence ratio in different
maritime environments.

IV. DEPLOYMENT ON EMBEDDED EDGE DEVICES

The trained models are deployed on embedded edge devices
to evaluate the inference speed. In particular, we use Jetson
Nano and Jetson Xavier NX development kits. These kits
are designed to ensure the powerful computation required to
run neural networks for applications like image classification,
object detection, segmentation, etc. In addition, these kits are
characterized by their small size and low weight. This makes
them ideal choices for airborne applications that require real-
time inference on the edge. Table IV presents the technical
specifications of both kits targeted in this work.

Table V presents the obtained inference speeds of the trained
models in frames per second (FPS) when processing real
captured videos on Jetson Nano and Jetson Xavier NX while
operating on different power modes. The processed videos are



Fig. 5. Sample detection results in testing dataset images

(a) visible (b) IR (c) NIR

Fig. 6. Samples of the obtained detection results in video sequences

TABLE V
AVERAGE DETECTION PERFORMANCE IN FPS

Trained Input Nvidia Nvidia Jetson Nano Nvidia Jetson Xavier NX
Video RTX 3080 Mode0 Mode1 Mode0 Mode1 Mode2 Mode3 Mode4 Mode5

Model Type 320W 10W 5W 15W 15W 4CORE 15W 6CORE 10W 2CORE 10W 4CORE 10W Desktop

YOLOv4
Visible 86.2 2 1.5 9.6 10.6 10.6 8.6 9.3 6.6

IR 108.7 2 1.5 8.6 10.7 10.5 9.1 9.3 6.6
NIR 101.5 2 1.5 9.8 10.7 10.7 8.6 9.3 6.6

YOLOv4 Visible 295.4 18.5 12.6 69.5 72.3 80.1 62.4 66.0 53.5
IR 307.4 18.6 11.8 63.5 78.5 82.0 55.4 70.8 54.4

tiny NIR 307.3 18.6 12.5 73.2 71.5 81.3 63.3 66.4 53.5

captured during real drone flights using cameras with different
types of image sensors (RGB, IR, and NIR) [17]. The table
shows that YOLOv4 can achieve 2 FPS and 10.7 FPS when
executed on Jetson Nano and Jetson Xavier NX respectively;

whereas, YOLOv4 tiny model can achieve 18.6 FPS and 82
FPS on Jetson Nano and Jetson Xavier NX respectively. Fig. 6
presents three samples of the obtained detection results in the
processed video sequences.



V. CONCLUSION

This paper presents the usage of deep learning approach
to detect marine objects using images providing top-view
scenes. Available YOLOv4 networks are investigated in terms
of detection performance and inference speed while deployed
on edge devices. The paper introduces our novel collected
dataset that includes the hugest number of images showing
floating humans and boats from top-view. The adopted method
to train, validate and evaluate the target models is presented.
The obtained results show that YOLOv4 models can achieve
a precision of 90% and a mAP value of 0.89. The trained
models are deployed on small-size low-weight edge devices
from Nvidia. The obtained inference speed demonstrates the
ability to attain real-time detection. Future work will focus on
applying optimization techniques such as pruning and quanti-
zation and investigate their impact on detection performance
and inference speed.
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