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Marine object detection and tracking is an important application for several disciplines such as sea surface monitoring, marine area management, ship collision avoidance, search and rescue missions, etc. Top-view scenes based on aerial or satellite imaging offer capturing objects from new angles of view or for locations that are not seen by capturing nodes fixed at the port side or mounted on moving boats. Moreover, artificial intelligence techniques based on deep learning provide robust solutions for classification and detection. Convolutional neural network (CNN) architectures are being used to detect multiple objects in images and videos. The achieved performance proves the relevance of CNNs in circumventing existing computer vision challenges. In this paper, we investigate the state-of-the-art CNN-based technique, so called You only look once (YOLO), to detect marine objects in images showing sea ships and humans from top-view. YOLO available models are trained using our collected dataset. The evaluation of the trained models illustrates the effectiveness of YOLO in detecting targeted classes (humans and sea ships) with high precision (90%). The deployment of the trained model on embedded edge devices achieves a high inference performance beyond 80 frames per second.

I. INTRODUCTION

Nowadays, marine surveillance is a vital task. It is essential for many applications such as sea surface monitoring, marine area management, ship collision avoidance, search and rescue missions, counter illegal migration, fishing and smuggling, etc. Computer vision techniques have been adopted to assist marine surveillance. Several topics have been addressed in the field of maritime image processing. However, the detection and classification of marine objects remain open. Maritime environment arises additional challenges due to the dynamic nature of background, continuous tides and waves lead, presence of small floating objects and unpredictable movement of marine objects [START_REF] Prasad | Challenges in video based object detection in maritime scenario using computer vision[END_REF]. In addition, the illumination is related to weather conditions (haze, fog, rain, bright sunlight, twilight, etc.) and to the incident angle of solar rays on the water surface. Color ranges of seawater vary according to time (night, day, sunrise, sunset, etc.) and according to weather conditions [START_REF] Heller | Marine objects detection using deep learning on embedded edge devices[END_REF].

The advances in artificial intelligence (AI) introduce robust solutions for detecting and classifying objects. Emergent techniques based on deep neural networks have tackled effectively computer vision tasks that were previously unsolvable. In particular, convolutional neural networks (CNNs) have shown remarkable efficiency in detecting and classifying objects in images and videos. However, these networks impose additional requirements in terms of computational resources and memory needs. Real-life applications demand the requirement of realtime detection. This imposes additional challenges when implementing CNN-based techniques on embedded edge devices with limited computational resources and power budget.

Available methods to adapt CNNs on edge devices impact the performance in terms of detection speed, accuracy, and precision. Incorporating multiple views improves detection accuracy and precision. Providing diverse perspectives on the same scene can be utilized to increase detection performance, resulting in a reduction in the number of missed or incorrect detection. Using numerous views for detection, on the other hand, mitigates the effects of object occlusion, illumination, intra-class variation, the similarity between classes, background clutter, ambiguity, etc.

In this work, we aim to assist marine object surveillance using embedded artificial intelligence by exploiting the features of top-view scenes captured by satellites or drones. Fig. 1 depicts the overview of the proposed approach to assist detection using top-view scenes. Our work focuses on investigating and examining the recently introduced CNN-based object detection approach, so called You Only Look Once (YOLO), in detecting marine objects using images providing top-view scenes. YOLO has been initially introduced in [START_REF] Redmon | You Only Look Once: Unified, real-time object detection[END_REF] as an efficient unified model of all phases of a CNN for doing object Fig. 1. Overview of the proposed approach detection in real-time. Several versions of YOLO exist, with different network architectures and specifications. In this work we target YOLOv4 and YOLOv4 tiny models introduced in 2020 [START_REF] Bochkovskiy | YOLOv4: Optimal speed and accuracy of object detection[END_REF]. Compared to previous versions of YOLO, YOLOv4 model is optimized by using CSPDarknet-53, which adopts residual connection, as backbone architecture. YOLOv4 tiny model is a compressed version of YOLOv4 and has only two detection heads rather than 3 in YOLOv4 model. New versions of YOLO have been recently introduced in [START_REF] Li | YOLOv6: A single-stage object detection framework for industrial applications[END_REF] and [START_REF] Wang | YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[END_REF]. The evaluation of these versions is under the scope and the achieved results will be introduced in future publications. The main contributions of this paper are:

• collect a novel dataset showing marine objects from top-view, which has the widest number of annotations compared to available datasets, • train and evaluate YOLOv4 and YOLOv4 tiny neural networks, • deploy the trained networks on embedded edge devices and evaluate the detection performance and inference speed using real-life video sequences. The rest of the paper is organized as follows. Section II presents a brief background and reviews related work. Section III describes the adopted methods for training and evaluation. Section IV describes the deployment of models on edge devices and presents the obtained results. Finally, Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Object Detection using Deep Learning

Currently, approaches based on deep learning are a key trend for computer vision applications. CNN-based methods provide robust solutions for object detection and classification that outperform traditional computer vision techniques [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF], [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF] and circumvent challenges. Several methods have been introduced in the literature. Two-stage methods such as region-based CNNs [START_REF] Girshick | Rich feature hierarchies for accurate object detection and semantic segmentation[END_REF]- [START_REF] Ren | Faster R-CNN: Towards realtime object detection with region proposal networks[END_REF] have been considered pioneer approaches for object detection. However, these approaches can not ensure real-time inference when deployed on embedded devices as they compromise two basic steps: identification of regions from the input image and then performing forward propagation on each region to extract features. One-stage approaches such as single-shot detector (SSD) [START_REF] Liu | SSD: Single shot multibox detector[END_REF] and YOLO [START_REF] Redmon | You Only Look Once: Unified, real-time object detection[END_REF] reduce the complexity of object detection. A fully convolutional approach is adopted in which the network is able to find all objects within an image in one pass. Mainly a grid is used to divide the input image into regions instead of identifying them while execution.

YOLO approach has been introduced as a unified CNN model for object detection. YOLO networks have evolved since introduced in [START_REF] Redmon | You Only Look Once: Unified, real-time object detection[END_REF]. Several models with different architecture specifications have been proposed in [START_REF] Redmon | YOLO9000: Better, faster, stronger[END_REF], [START_REF]YOLOv3: An incremental improvement[END_REF]. Recent proposed YOLO models can outperform other superior neural network models such as EfficientDet [START_REF] Tan | Efficientdet: Scalable and efficient object detection[END_REF] and RetinaNet [START_REF] Lin | Focal loss for dense object detection[END_REF] provided by Google and Facebook respectively in terms of detection performance and inference speed as well [START_REF] Bochkovskiy | YOLOv4: Optimal speed and accuracy of object detection[END_REF]- [START_REF] Wang | YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[END_REF].

B. Datasets for Top-View Marine Object Detection

Good efforts have been done to create datasets using satellite and aerial images. Seagull dataset [START_REF] Ribeiro | A dataset for airborne maritime surveillance environments[END_REF] provides a set of video sequences captured by a fixed wing UAV flying above the sea in several regions. Different types of cameras are used to capture the videos covering the visible, near infrared, and infra-red ranges. The dataset includes annotations for several marine objects such as cargo ships, small boats, and life rafts. Maritime SATellite Imagery (MASATI) dataset [START_REF] Gallego | Automatic ship classification from optical aerial images with convolutional neural networks[END_REF] contains satellite images in the visible spectrum obtained from Microsoft Bing maps. The Airbus Ship Challenge reveals a large dataset of satellite images of sea ships [START_REF]Dataset for Airbus ship detection challenge[END_REF]. Other datasets focus on detecting humans in open water for applications of detecting man overboard (MOB) cases and search and rescue missions (SAR) such as MOBDrone dataset [START_REF] Cafarelli | MOBDrone: A drone video dataset for man overboard rescue[END_REF], MaritimeSAR dataset [START_REF] Rizk | Towards real-time human detection in maritime environment using embedded deep learning[END_REF] and SeaDroneSee dataset [START_REF] Varga | Seadronessee: A maritime benchmark for detecting humans in open water[END_REF].

C. Top-View Marine Object Detection using Deep Learning

Most of the available works on marine object detection using deep learning address the detection of ships using images or videos from the side and front/back views [START_REF] Qiao | Marine vision-based situational awareness using discriminative deep learning: A survey[END_REF] [START_REF] Heller | Marine objects detection using deep learning on embedded edge devices[END_REF]. Only few works have targeted the detection of marine objects from topview. In [START_REF] Chen | Detection of small ship objects using anchor boxes cluster and feature pyramid network model for SAR imagery[END_REF] provides a detection approach based on a feature pyramid network (FPN) using synthetic aperture radar images. The authors in [START_REF] Hass | Deep learning for detecting and classifying ocean objects: application of YOLOv3 for iceberg-ship discrimination[END_REF] have adopted YOLOv3 model to distinguish between icebergs and ships in synthetic aperture radar images. In [START_REF] Patel | Deep learning-based automatic detection of ships: An experimental study using satellite images[END_REF], the authors examine YOLOv3, YOLOv4, and YOLOv5 models to detect ships in satellite images using the dataset in [START_REF]Dataset for Airbus ship detection challenge[END_REF]. In [START_REF] Cafarelli | MOBDrone: A drone video dataset for man overboard rescue[END_REF], different detection methods have been applied to examine the collected dataset. In [START_REF] Rizk | Towards real-time human detection in maritime environment using embedded deep learning[END_REF], YOLOv4 models are adopted to detect humans in open water. Then, the authors optimize in [START_REF] Rizk | Optimization of deep-learning detection of humans in marine environment on edge devices[END_REF] the trained models using pruning and quantization methods towards efficient deployment on edge devices.

III. METHOD A. Collected Dataset

A huge dataset is collected of images showing marine objects from the top view. In this work, we focus on two classes: (1) sea ships and boats and (2) humans. The collected images show other marine objects such as jet skis and floating buoys. The collected images have been captured either from satellites or by drones. We make use of available published datasets [START_REF] Ribeiro | A dataset for airborne maritime surveillance environments[END_REF], [START_REF] Gallego | Automatic ship classification from optical aerial images with convolutional neural networks[END_REF], [START_REF] Cafarelli | MOBDrone: A drone video dataset for man overboard rescue[END_REF]- [START_REF] Varga | Seadronessee: A maritime benchmark for detecting humans in open water[END_REF], [START_REF] Gasienica-Jzkowy | An ensemble deep learning method with optimized weights for drone-based water rescue and surveillance[END_REF]- [30]. The collected images are all processed. Images without annotations are labeled manually. Available labels are converted to YOLO format and enhanced by adjusting the bounding boxes to meet the exact dimensions of the target marine objects. Fig. 2 shows some sample images from the final dataset.

The collected dataset includes images that are captured using imaging cameras with either RGB visible, infrared (IR), or near infrared (NIR) sensors. The images show marine objects from different perspectives and scales. The images differ in terms of altitudes, camera shooting angles, and illumination. The dataset includes negative samples that do not include labeled objects. These samples are used to ensure that 

B. Training and Validation

In our work, we targeted YOLOv4 and YOLOv4 tiny models. The main difference between both networks is that the number of convolutional layers in the CSP backbone is compressed [START_REF] Wang | CSPNet: A new backbone that can enhance learning capability of CNN[END_REF]. Fig. 3 shows the block diagram of YOLOv4 network. Table II shows the specifications of the targeted models. Target models are trained using Darknet framework [32] on NVIDIA GeForce RTX 3080 graphics card with 8704 CUDA cores and 10 GB memory. Transfer learning is adopted to adapt pre-trained YOLO models towards the target classes (Boats and Humans) using the created dataset.

Transfer learning is a machine learning technique where knowledge gained during training a set of problems can be used to solve other similar problems [START_REF] Sarkar | Hands-On Transfer Learning with Python: Implement Advanced Deep Learning and Neural Network Models Using TensorFlow and Keras[END_REF]. In our case, transfer learning is used to maintain the generalization gained by the pre-trained networks using COCO dataset [START_REF]COCO -common objects in context web site[END_REF]. We make use of the weights generated in previous training processes of networks with similar architecture specifications targeting COCO dataset. The weights of the feature extraction layers are reserved; whereas, the weights of the classification and detection layers are eliminated. During the new training, all network layers are unfrozen. Hence, all layers of the networks learn to turn the old feature into predictions on the new dataset.

The structure of the YOLOv4 models is not modified. Only the number of filters in the last convolutional layer before the detector layers is adjusted to meet with the desired number of classes.

The batch size is set to 64 images. In Darknet framework, an iteration is defined as the number of batches to complete one epoch. In our case, the training process is conducted for 200,000 iterations, which is approximately equivalent to 79 epochs. The initial learning rate is set to 0.001 in the first 160,000 iterations where it is decreased to 0.0001 and then scaled down by 0.1 at iteration 180,000.

The input images size is adjusted to 416 × 416. All images are down-scaled to meet the network size during training. The number of channels is set to 3 corresponding to the three RGB channels. Different data augmentation methods are applied while training. Saturation, exposure, and hue are selected to be randomly changed during training. Mosaic is also applied by merging 4 images into one. CutMix, a data augmentation strategy that removes remove pixels from an image and replace the removed regions with a patch from another image, is used for the classification only.

During the training process, the trained model is validated using the validation dataset. Starting from the 1000 iteration, the mean average precision (mAP) is calculated for every 4 epochs. Fig. 4 illustrates the training and validation performances of YOLOv4 model. Note that the blue curve corresponds to the training loss; whereas, the red curve corresponds to the computed mAP values. The mAP value is computed based on the metrics specified in the MS COCO competition which recommends the following expressions to calculate the values of Precision P , Recall R and Average Precision AP : where T P , F P and F N stand for True Positive, False Positive and False Negative respectively. Note that the AP summarises the shape of the precision/recall curve, and is defined as the mean precision at a set of eleven equally spaced recall levels {0,0.1,0.2,. . . ,0.9,1}. Table III presents the obtained performance metrics of the trained models when evaluated using the validation dataset. High mAP values of 89.11% and 87.42% are attained for YOLOv4 and YOLOv4 tiny models respectively. The obtained results demonstrate the effectiveness of trained YOLOv4 and YOLOv4 tiny models in detecting the boats and humans in aerial images.
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C. Evaluation

The trained models are tested using a dataset that includes images that are not seen before. The test dataset includes 1114 images from [START_REF]Dataset for Airbus ship detection challenge[END_REF] and [START_REF] Ribeiro | A dataset for airborne maritime surveillance environments[END_REF] with 1672 annotations. Fig. 5 presents sample detection results. The figure shows that trained models are able to accurately detect and classify the presence of marine objects with a high confidence ratio in different maritime environments.

IV. DEPLOYMENT ON EMBEDDED EDGE DEVICES

The trained models are deployed on embedded edge devices to evaluate the inference speed. In particular, we use Jetson Nano and Jetson Xavier NX development kits. These kits are designed to ensure the powerful computation required to run neural networks for applications like image classification, object detection, segmentation, etc. In addition, these kits are characterized by their small size and low weight. This makes them ideal choices for airborne applications that require realtime inference on the edge. whereas, YOLOv4 tiny model can achieve 18.6 FPS and 82 FPS on Jetson Nano and Jetson Xavier NX respectively. Fig. 6 presents three samples of the obtained detection results in the processed video sequences.

V. CONCLUSION This paper presents the usage of deep learning approach to detect marine objects using images providing top-view scenes. Available YOLOv4 networks are investigated in terms of detection performance and inference speed while deployed on edge devices. The paper introduces our novel collected dataset that includes the hugest number of images showing floating humans and boats from top-view. The adopted method to train, validate and evaluate the target models is presented. The obtained results show that YOLOv4 models can achieve a precision of 90% and a mAP value of 0.89. The trained models are deployed on small-size low-weight edge devices from Nvidia. The obtained inference speed demonstrates the ability to attain real-time detection. Future work will focus on applying optimization such as pruning and quantization and investigate their impact on detection performance and inference speed.
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 56 Fig. 5. Sample detection results in testing dataset images

TABLE II SPECIFICATIONS

 II OF THE TARGETED YOLOV4 MODELS

	Model	Number of Layers	Activation function	Model Weights' Volume (MB)
	YOLOv4	162	Mish	256.2
	YOLOv4 Tiny	38	Mish	23.5

TABLE III TRAINING

 III DATA WITH RESPECT TO THE CLASSES

	Model	Class	AP	Precision	Recall	F1-score	average IOU	mAP@0.5
	YOLOv4	0: Boat 1: Human	89.62% 88.61%	0.9	0.87	0.89	72.28%	0.8911
	YOLOv4 tiny	0: Boat 1: Human	87.3% 87.27%	0.84	0.87	0.86	66.84%	0.8742

TABLE IV SPECIFICATIONS

 IV OF TARGET EDGE EMBEDDED DEVICES

	Target	Nvidia Jetson	Nvidia Jetson
	Device	Nano	Xavier NX
	AI Performance	472 GFLOPs	21 TOPs
	GPU	128-core NVIDIA Maxwell GPU	384-core NVIDIA Volta GPU with 48 Tensor cores
	GPU Max Frequency	921 MHz	1100 MHz
	CPU	Quad-core ARM Cortex A57 MPCore processor	6-core NVIDIA Carmel ARM v8.2 64-bit CPU
	CPU Max Frequency	1.43 GHz	1.9 GHz
	DL Accelerator	-	2× NVDLA Engines
	Vision Accelerator	-	7-Way VLIW Vision Processor
	Memory	4 GB 64-bits LPDDR4 25.6 GB/s	8 GB 128-bit LPDDR4x @ 51.2GB/s
	Power consumption	5 -10 W	10 -20 W
	Mechanical	69.6 mm × 45 mm	69.6 mm × 45 mm

  Table IV presents the technical specifications of both kits targeted in this work. Table V presents the obtained inference speeds of the trained models in frames per second (FPS) when processing real captured videos on Jetson Nano and Jetson Xavier NX while operating on different power modes. The processed videos are

TABLE V AVERAGE

 V DETECTION PERFORMANCE IN FPS

	Trained	Input Video	Nvidia RTX 3080	Nvidia Jetson Nano Mode0 Mode1	Mode0	Mode1	Nvidia Jetson Xavier NX Mode2 Mode3	Mode4	Mode5
	Model	Type	320W	10W	5W	15W	15W 4CORE	15W 6CORE	10W 2CORE	10W 4CORE	10W Desktop
		Visible	86.2	2	1.5	9.6	10.6	10.6	8.6	9.3	6.6
	YOLOv4	IR	108.7	2	1.5	8.6	10.7	10.5	9.1	9.3	6.6
		NIR	101.5	2	1.5	9.8	10.7	10.7	8.6	9.3	6.6
	YOLOv4	Visible IR	295.4 307.4	18.5 18.6	12.6 11.8	69.5 63.5	72.3	80.1 82.0	62.4 55.4	66.0 70.8	53.5 54.4
	tiny	NIR	307.3	18.6	12.5	73.2	71.5	81.3	63.3	66.4	53.5

captured during real drone flights using cameras with different types of image sensors (RGB, IR, and NIR)

[START_REF] Ribeiro | A dataset for airborne maritime surveillance environments[END_REF]

. The table shows that YOLOv4 can achieve 2 FPS and 10.7 FPS when executed on Jetson Nano and Jetson Xavier NX respectively;