
HAL Id: hal-04198351
https://imt-atlantique.hal.science/hal-04198351

Submitted on 7 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Latency and Complexity Analysis of Flexible
Semi-Parallel Decoding Architectures for 5G NR Polar

Codes
Oualid Mouhoubi, Charbel Abdel Nour, Amer Baghdadi

To cite this version:
Oualid Mouhoubi, Charbel Abdel Nour, Amer Baghdadi. Latency and Complexity Analysis of Flexible
Semi-Parallel Decoding Architectures for 5G NR Polar Codes. IEEE Access, 2022, 10, pp.113980-
113994. �10.1109/ACCESS.2022.3216292�. �hal-04198351�

https://imt-atlantique.hal.science/hal-04198351
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Received 28 August 2022, accepted 19 September 2022, date of publication 21 October 2022, date of current version 4 November 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3216292

Latency and Complexity Analysis of Flexible
Semi-Parallel Decoding Architectures
for 5G NR Polar Codes
OUALID MOUHOUBI , (Member, IEEE), CHARBEL ABDEL NOUR , (Senior Member, IEEE),
AND AMER BAGHDADI , (Senior Member, IEEE)
IMT Atlantique, Lab-STICC, UMR CNRS 6285, 29238 Brest, France

Corresponding author: Oualid Mouhoubi (oualid.mouhoubi@imt-atlantique.fr)

This work was supported in part by the Pracom, Cluster on Advanced Research in Communications, Brest, France.

ABSTRACT Polar codes are one of the most recent additions to the family of forward error correction (FEC)
codes, having recently been adopted in the 5G New Radio (NR) standard for the control channel. However,
the stringent requirements introduced by the 5G standard in terms of block length and code rate flexibility,
along with low end-to-end latency and high error correction performance represent a major challenge for
their hardware implementation. In this context, we study the impact of main code and decoder design
parameters on the latency, throughput, and the hardware complexity of semi-parallel decoding architectures.
The impact of these parameters on the hardware efficiency of semi-parallel architectures is significant.
Therefore, we propose two multi-frame decoding approaches that increase the throughput and improve the
utilisation rate of the processing units of these architectures. Detailed analytical and logic synthesis results
are provided and compared for a large range of values in order to constitute a reference for the implementation
of flexible, yet efficient FEC decoders for polar codes.

INDEX TERMS 5G, hardware complexity, latency, list decoding, polar codes, successive-cancellation
decoding, throughput.

I. INTRODUCTION
Polar codes are a new class of forward-error correction tech-
niques that have been introduced by Arikan [1]. The 5G New
Radio (NR) standard recently adopted them for the uplink
and downlink control channels, which caught the interest
of industry and academia. The 5G control channel enforces
block length and code rate flexibility levels considerably
above previously published polar code designs in order to
accommodate the tremendous growth in the connectivity and
data traffic needs. This high flexibility constraint at the trans-
mitter side, is combined with stringent requirements at the
receiver, i.e. polar decoder side. Indeed, low block error rate
(BLER) and low hardware complexity, added to a process-
ing throughput and latency of tens of Mbps and tens of µs
respectively are requested for the 5G control channel [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Bilal Khawaja .

One of the most popular decoding techniques for polar
codes is the successive-cancellation (SC) algorithm, which is
low complexity and well suited to hardware design. Although
sufficient for long polar codes, its error correction perfor-
mance degrades significantly for medium and short code
lengths. For the latter, list-augmented SC decoding (SCL)
is necessary to improve BLER. The most likely candidate
codeword is chosen as the final estimate once the SCL algo-
rithm has completed its decoding of a list of L candidate
codewords [3]. For hardware implementations, however, this
results in more latency and chip area usage, and decreased
throughput [4].

With the stringent requirements imposed by 5G NR, sev-
eral efforts have aimed at improving throughput and latency
by proposing solutions at both hardware design and algo-
rithmic levels [5], [6], [7], [8], [9], [10]. Nevertheless, it is
always difficult to find a good compromise between hardware
complexity and key performance metrics, especially when

113980 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-0699-9842
https://orcid.org/0000-0001-9803-7810
https://orcid.org/0000-0002-6181-6500
https://orcid.org/0000-0003-1537-5502

O. Mouhoubi et al.: Latency and Complexity Analysis of Flexible Semi-Parallel Decoding Architectures

aiming for a flexible design. While fully parallel unrolled and
pipelined architectures [11], [12], [13], [14], [15], [16] yield
high throughput, they are very limited in terms of flexibility
support. For example, a framework that automatically gener-
ates high throughput decoder architectures of polar codes is
proposed in [16], which only enables design-time flexibility.
In this context, semi-parallel decoder architectures [17], [18],
[19], [20] are scalable and provide a wide range of algo-
rithmic and architectural alternatives to investigate and adapt
based on the desired performance and hardware constraints
placed at the implementation level. They are the main option
for a flexible implementation. However, it is not straightfor-
ward to select the appropriate number of processing elements
and other flexibility parameters and to assess the correspond-
ing impact on the performance metrics of the SCL decoder.
Indeed, the study of this impact becomes crucial in order to
providing design guidelines for the implementation of 5GNR
polar decoders. In this regard, we have recently investigated
in a previous conference paper [21] the impact of main code
and decoder design parameters on the latency and the hard-
ware complexity of semi-parallel decoding architectures. Our
work is extended in this paper by investigating the impact of
main code and decoder design parameters on throughput and
hardware efficiency. Analysis results show that the impact of
these parameters on the hardware efficiency of semi-parallel
architectures is significant. Therefore, we propose in this
paper two multi-frame decoding approaches that increase the
throughput and improve the utilisation rate of the processing
units of these architectures. Detailed analytical and logic
synthesis results are provided and compared for a large range
of values in order to constitute a reference for the implemen-
tation of flexible, yet efficient FEC decoders for polar codes.

The rest of this paper is organized as follows. Section II
provides a brief overview on polar codes and their decoding
algorithms. Section III presents the hardware architectures
used to implement polar codes, together with the algorith-
mic and architectural parameters considered in the proposed
study. Section IV provides a detailed analysis of the decoding
latency. Hardware complexity results and throughput analysis
are discussed in Section V, while hardware efficiency analy-
sis is provided in Section VI. Finally, Section VII concludes
the paper.

II. PRELIMINARIES
A. POLAR CODES
This code family applies the concept of channel polarization
that leads to subsets of good and bad channels. Information
bits are mapped to the K most reliable bit-channels while the
remaining bits are set to a known value, usually ’0’, and rep-
resent the frozen set. For a codeword length N = 2n, n ≥ 1,
a (N ,K) polar code is a block code with K input bits and N
output bits whose generator matrix G is the n−th Kronecker

power of matrix F =
[
1 0
1 1

]
, i.e., GN = F⊗n. The encoding

process is performed by the matrix multiplication x = u.G
where u = (u0, u1, . . . , uN−1) stands for the sequence input

FIGURE 1. SC-based decoder tree and related pruned tree of PC(16,8).

vector consisting of information bits and frozen bits and x =
(x0, x1, . . . , xN−1) stands for the encoded vector. With strin-
gent constraints on rate flexibility and low decoding latency,
polar codes were chosen in 5G NR to encode the uplink and
the downlink control information over the physical uplink
control/shared channels (PUCCH/PUSCH) and the physi-
cal downlink control/broadcast channels (PDCCH/PBCH).
They must therefore accommodate a variety of information
block lengths, encoded block lengths, and mother polar code
lengths [22].

B. DECODING ALGORITHMS BASED ON
SUCCESSIVE-CANCELLATION
The decoding of SC algorithm can be performed through
a binary tree as illustrated in Fig. 1a for the polar code
PC(16,8). It consists of log2N + 1 stages where each stage j
comprises N

2j nodes and each node represents a polar code of
length 2j. The top tree node at stage j = log2 N includes the
channel LLRs (Log-Likelihood-Ratio) and the final Partial
Sums (PS). At leaf nodes, the frozen and information bits are
represented by white and black circles respectively. A given
node v receives αv LLRs and produces βv PS. Assuming that
the processing of an activated stage j (0≤ j≤ n − 1) can be
performed in one time step, the latency required to decode a
codeword can be expressed as:

Lref =
n−1∑
j=0

2n−j = 2N − 2. (1)

The SC algorithm’s primary flaw is its inability to correct
erroneous bit estimations that arise during the initial stages of
decoding. To avoid resorting to hard decisions when comput-
ing partial sums during the sequential decoding stage, a SCL
technique was devised. On the error-prone bits detected by
low reliability values, hard decisions are substituted with soft
hypotheses. As a result, few codeword candidates, or equiv-
alently paths in the graph of Fig. 1a, are simultaneously
explored, each of which corresponds to one or more different
bit-hypotheses. Hence, for the decoding step of each bit ui,
both its possible values 0 and 1 are considered and 2L new

VOLUME 10, 2022 113981

O. Mouhoubi et al.: Latency and Complexity Analysis of Flexible Semi-Parallel Decoding Architectures

candidate paths are explored. However, in order to break the
exponential growth in the number of candidate paths, a subset
L of the most likely paths is set to survive. The choice is made
by selecting the L lowest path metric (PM) values. In terms of
complexity, the SCL decoder can be seen as the concatenation
of L competing SC decoders. Assuming that a path selection
can be performed in one time step, the latency required to
decode one codeword with SCL can be expressed as [23]:

LSCL(N ,K) = Lref + K = 2N + K − 2. (2)

A simplified SC-based decoding algorithm (SSC) has been
presented in [24] in which the tree search is pruned. Actually,
a tree with only frozen bits in its leaves does not need to be tra-
versed since its output is already known and is equal to an all-
zero vector. This type of node is called R0. In addition, a tree
containing only information bits can be decoded directly by
applying a threshold decision to the root node. This type of
node is called R1. Furthermore, the Fast-SSC algorithm vari-
ant has been the introduced in [25] by identifying two other
special types of node among the constituent codes of rate
0 < R < 1. Hence, a repetition node (REP) is a constituent
code where all the bits are frozen except for the last one, and
the single parity check (SPC) node is a constituent codewhere
at the exception of the first bit, all the bits are information.

Figure 1b shows the pruned tree of the Fast-SSC decoder,
with the four constituent code types being coloured dif-
ferently. This pruning technique was then extended to the
SCL decoder. Therefore, the Simplified SCL (SSCL) in [26]
propose an efficient way to decode R0, REP, and R1 nodes
of length Nj during at most logNj, 1 + logNj and Nj
time steps, respectively. This leads to a significant improve-
ment with respect to the conventional SCL algorithm that
requires 3Nj − 2 time steps (assuming adding together Nj
values requires at most logNj time steps). Furthermore, the
SSCL-SPC proposed in [27] provides an efficient decoder for
SPC nodes that requires only Nj + 1 time steps. However,
these two algorithms fail to address the effect of list size
on the maximum number of path splits performed at R1
and SPC nodes. This motivated the proposal of Fast-SSCL
and Fast-SSCL-SPC algorithms in [28] that can reduce the
latency by more than 75% without any degradation in error-
correction performance. With these algorithms, the number
of time steps required to decode R1 and SPC nodes becomes
min

(
L − 1,Nj

)
andmin

(
L,Nj

)
+1, respectively. These num-

bers can further be reduced with negligible error-correction
degradation [28].

III. HARDWARE ARCHITECTURES
Several hardware polar decoder implementations have been
developed in the previous ten years for both FPGA and ASIC
targets [8], [15], [16], [23], [28], [29], [30], [31]. Unrolled
and semi-parallel architectures are the two main architecture
models explored in the literature.

A. UNROLLED ARCHITECTURES
The unrolled architecture model consists of assigning a
separate hardware resource to each of the operations that

occurs during the decoding process. A fully-unrolled and
deeply-pipelined architecture is capable of producing one
decoded frame per clock cycle by introducing pipeline stages
between operations. Therefore, such a decoding architecture
can achieve hundreds of Gbps on ASIC technology at the
cost of high memory usage. Indeed, a throughput of Tbps
is demonstrated in [15] for PC(1024,864) using majority
logic aided successive cancellation decoding (SC-MJL) and
deeply-pipelined, unrolled hardware architecture with reg-
ister balancing. However, implementing this form of paral-
lelism results in decoders with high levels of complexity [13].
The main idea behind unrolling a decoder is to increase its
throughput. However, this leads to implementations with lim-
ited length and rate flexibility, especially when polar codes
are decoded using tree-pruning techniques. In fact, a slight
change in the location of the information and parity bits
within the frozen set of the polar code leads to a whole
different list of special node types and sizes. Their suitability
for low-latency flexible 5G NR polar decoders is therefore
limited.

B. SEMI-PARALLEL ARCHITECTURES
The semi-parallel architecture model integrates a number of
processing elements (PEs) devoted to the computation of a
single or several types of operations independently of the
length or rate of the targeted set of polar codes. When there
are more simultaneous operations than there are instantiated
PEs, the operations are scheduled into smaller groups and
executed sequentially. As a result, the attainable throughput
is generally lower than that of the unrolled fully parallel
architecture model. Nevertheless, semi-parallel architectures
permit the adoption of particular hardware enhancements
like memory access sharing and arithmetic resource sharing.
This leads to better hardware efficiency as a result of the
requirement for flexibility. The SC algorithm’s two primary
operations, f and g, cannot be overlapped and are always car-
ried out in two separate time periods because of the sequential
decoding of SC. Thus, an area-efficient combined processing
element is presented in [18] in which these two operations
are carried out by a single PE that exploits resource sharing
to perform both operations alternately. In fact, semi-parallel
decoder architectures are scalable and provide a wide range
of algorithmic and architectural alternatives to investigate
and adapt based on the desired performance and hardware
constraints placed at the implementation level. They are the
main option for a flexible implementation. Figure 2 shows
the semi-parallel architecture model for SCL decoders used
in this work. It includes a set of processing elements, a path
selection unit and a partial sum computation unit. The LLRs,
partial sums, decoded codewords, and frozen set are all stored
in four memory blocks. In addition, the architecture com-
prises multiplexing networks to interface between memories
and computation units. A control unit is used to produce all
control signals required during the decoding process. Further-
more, this architecture model may include a unit to decode
special nodes when they are considered (dotted block).

113982 VOLUME 10, 2022

O. Mouhoubi et al.: Latency and Complexity Analysis of Flexible Semi-Parallel Decoding Architectures

FIGURE 2. Semi-parallel architecture model for SCL decoders.

C. ARCHITECTURAL AND ALGORITHMIC PARAMETERS
The impact of various algorithmic and architectural param-
eters needs to be investigated while designing low-latency
flexible polar decoders with a semi-parallel architecture
model. The main parameters that are considered in this work
are:

• The number of instantiated PEs: This is a main architec-
tural parameter of the semi-parallel architecture model.
Finding the ideal number requires careful analysis with
respect to the other flexibility parameters and is not
straightforward.

• The tree-pruning techniques: Identifying special nodes
in the polar decoder tree followed by applying
tree-pruning techniques with corresponding special
decoding algorithms can significantly impact the per-
formance metrics of the polar decoder. The influence
of different pruning techniques cited in Section II-B are
analysed in this work.

• The code length N : A length-flexible implementation
increases the complexity of the decoder. Furthermore,
the code length may significantly alter the influence of
the the above-mentioned parameters on the performance
metrics of the polar decoder. For this parameter, the
following lengths specified in 5GNRwill be considered:
N = 64, 128, 256, 512 and 1024.

• The code rate R: A rate-flexible implementation
decreases the hardware efficiency of the decoding archi-
tecture especially when supporting a wide range of val-
ues. In this work, we consider the polar codes of PUCCH
5G NR with R ranging from 1/8 to 5/6.

One more effective parameter for the latency and through-
put is the relationship between the encoder graph and the
tree-pruning technique. Indeed, recent works have shown that
the polar code can be designed for the tree-pruning tech-
nique to achieve low latency [32], [33]. However, since our
study is targeting the set of 5G NR polar codes, introducing
modifications to the design of the polar codes specified by
3GPP is not an available option to explore. Finally, for certain
parameters like data format, quantization, and list size for
SCL algorithms, typical values convenient for 5G NR polar
codes are taken into consideration. In PEs and special nodes
decoders, LLR values are quantized on five and seven bits,
respectively, while the list size L is set to eight. LLR values
are represented in sign and magnitude (SM) format.

IV. LATENCY ANALYSIS
In this section, we consider analyzing the decoding latency
of the 5G NR polar codes in light of the architectural
and algorithmic parameters mentioned in the section before.
We assume that each elementary operation of the decoding
process takes one time-step for the subsequent latency equa-
tions and analytical results. As a result, the reported number
of clock cycles (CC) required to decode a single frame can
be predicted by the number of elementary operations in time-
steps, which represents the latency. Using this assumption,
the latency of decoding one codeword of length N with K
information bits using SC on semi-parallel (SP) architecture
can be expressed as:

LSP
SC =

p∑
j=0

2n−j

︸ ︷︷ ︸
non-affected stages

+

n−1∑
j=p+1

2n−j2j−p

︸ ︷︷ ︸
affected stages

.

= 2N +
N
P
log

(
N
4P

)
(3)

where p = log2 P and n = log2 N . This expression is
derived from (2) by taking into consideration both affected
and non-affected decoding stages j by the introduction of P
PEs [18]. For a SCL decoder that comprises P PEs per list,
this latency is increased by K since path selection needs to be
performed K times [23].
However, any change in the code rate R will have an

impact on the latency formula if fast decoding techniques
relying on decoding simple constituent codes are employed.
Therefore, assuming having the size of all the constituent
codes defined for a given N and R, we define E such as E =
{E0,E1, . . . ,Elog2M−1} is the set whose element Em, 0 ≤
m ≤ log2M − 1, represents the number of constituent codes
of length 2m+1 and M is the size of the largest constituent
codes that are considered during the tree-pruning technique.
Therefore, to derive the latency of the Pruned Decoder (PD)
on a semi-parallel architecture, we should remove the latency
of traversing the sub-trees corresponding to the identified
special nodes (constituent codes) from the latency of the
semi-parallel decoder provided in (3) for N = 2n. This
latency reduction can be computed through (1) with N =
2m+1 for special nodes that satisfy m ≤ p, and through
(3) with N = 2m+1 for the remaining special nodes. The
latency needed to decode each of the identified special nodes
should also be added, along with K ′ which is the number
of remaining information bits that do not constitute special
nodes As a result, the latency of the SCL PD semi-parallel
decoder can be stated as follows:

LSP
SCL PD = LSP

SC + LSN
SCL + K

′

−

p∑
m=0

 m∑
j=0

Em · 2m−j+1


︸ ︷︷ ︸

L1

VOLUME 10, 2022 113983

O. Mouhoubi et al.: Latency and Complexity Analysis of Flexible Semi-Parallel Decoding Architectures

−

log2M−1∑
m=p+1

 p∑
j=0

Em · 2m−j+1


︸ ︷︷ ︸

L2

−

log2M−1∑
m=p+1

 m∑
j=p+1

Em · 2m−j+1 · 2j−p


︸ ︷︷ ︸

L3

.

= LSP
SC + LSN

SCL + K
′
−

p∑
m=0

Em ·
(
2 · 2(m+1) − 2

)

−

log2M−1∑
m=p+1

Em

·

(
2 · 2(m+1) +

2(m+1)

P
log

(
2(m+1)

4P

))
, (4)

where LSP
SC and LSN

SCL refer to the latency of the SC
semi-parallel decoder (3) and the latency required to
decode the constituent codes (special nodes), respectively.
Also, L1 is the reduced latency due to constituent codes
{E0,E1, . . . ,Ep} of length smaller or equal to 2p+1 = 2P
whileL2 andL3 represent the reduced latency due to the pres-
ence of constituent codes {Ep+1, . . . ,Elog2M−1} of lengths
larger than 2P.

A. INFLUENCE OF N AND THE NUMBER OF PE ON
LATENCY
While algorithmic and architectural parameters are taken into
account when designing polar decoders, they are likely to
have a significant impact on the latency in the case of semi-
parallel architectures. In order to study the influence of N
and the number of PE P on the decoding latency, we plot
the number of clock cycles required to decode one frame
of the 5G NR polar code of four different lengths N =
{64, 128, 512, 1024} with P varying from 2 to 64. For each
value of P, three different algorithms are considered and
consist of SCL, SSCL-SPC and the Fast-SSCL-SPC. Based
on the speed optimization proposed for the latter [28], three
additional values of {SR1, SSPC} = {1, 2} , {1, 4} , {2, 4} are
considered in addition to the optimal variant of this algorithm
{SR1, SSPC} = {L − 1,L}. We refer to them as Fast-SSCL-
SPC-12, Fast-SSCL-SPC-14 and Fast-SSCL-SPC-24. SR1 is
the number of path splits in a R1 node and SSPC is the number
of path splits in a SPC node. Simulation results are reported
in Fig. 3 while limiting the length of constituent codes to
M = 16.
As expected, the decoding latency decreases asP increases.

However the reduction rate of latency is not linear with
respect to P as observed in (3) and this is due to the fact
that the degree of parallelism offered by the SC decoder is
reduced by half from one higher decoding stage to another
lower one. This can be seen in Fig. 3a and Fig. 3d when
Fast-SSCL-SPC-12 is used where the latency is reduced by
70% and 52% when P varies from 2 to 8, respectively, while

FIGURE 3. Number of clock cycles required to decode one polar code
frame for a varying number of PEs. Worst-case latency is reported while
varying the value of R. Results are given for SCL and five related variants
of simplified algorithms.

it is reduced by a smaller ratio of 58% and 13% when P
varies from 8 to 64, respectively. In addition, since a maxi-
mum of 32 parallel operations can be completed concurrently,
the latency is the same for P = 64 and P = 32 when
N = 64. Furthermore, we can clearly observe the impact
of the algorithmic choice on the decoding latency. Therefore,
using SSCL-SPC instead of SCL with P = 8 leads to 44%,
50%, 52% and 49% reduction in latency when N = 1024,
512, 128 and 64, respectively. However, a less significant
reduction in latency is measured when using Fast-SSCL-SPC
instead of SSCL-SPC with P = 8. The latency reduction
in this case is equal to 22%, 22%, 13% and 4% when N =
1024, 512, 128 and 64, respectively. The difference in latency
between the various values of N results from the fact that
the presence of constituent codes in short polar codes is less
important than it is in comparatively long codes. Additionally,
when they are identified, their size is usually smaller than
M = 16.

B. INFLUENCE OF TREE-PRUNING ON LATENCY
Multiple constituent codes of various types and sizes may
be present in the decoding tree of polar codes. However,
some of these constituent codes, like R0 and REP, are more
likely to appear at low code rates, while others, like R1

113984 VOLUME 10, 2022

O. Mouhoubi et al.: Latency and Complexity Analysis of Flexible Semi-Parallel Decoding Architectures

FIGURE 4. Number of clock cycles required to decode one polar code
frame as N varies from 64 to 1024. Average latency is reported while
varying the value of R. Results are provided for various values of M and
are reported for four different algorithms.

and SPC, are more likely to appear at high code rates. The
requirement for 5G NR to support a wide range of coding
rates limits the flexibility available in this regard. On the
other hand, large constituent codes are increasingly encoun-
tered as the code length increases. To show the impact of M
on latency, we plot in Fig. 4 the number of clock cycles
required to decode one frame of polar codes of lengths N =
{64, 128, 256, 512, 1024} for M = {4, 8, 16, 32}. The same
analysis is repeated with SSCL, SSCL-SPC, Fast-SSCL and
Fast-SSCL-SPC.

As expected, the number of clock cycles required to decode
a constituent code varies according to its type and size.
Furthermore, the identification of constituent codes highly
depends on M . Some polar codes may benefit better from
increasing M than others, especially when they feature large
low-latency decoding constituent codes. Indeed, among the
set of considered polar codes, the one which achieves the
best latency reduction for a fixed value of M does not nec-
essarily produce the same achievement with M ′,

(
M 6= M ′

)
.

This implies that using the worst-case latency to evaluate the
reduction provided by varying M over a set of rate-variable
polar codes that share the same code length leads to an unfair
comparison. Consequently, in this analysis we consider the
average latency reduction obtained by varying M .

FIGURE 5. Number of clock cycles required to decode one polar code
frame for a varying number of PEs and different pruning techniques.
Average latency is reported and results are given for low and high code
rates.

We can see from Fig. 4 that a decoder that can decode
constituent codes of sizeM = 32 when targeting polar codes
of length N = 1024 reduces the latency by 24%, 24%, 36%
and 42% in comparison with M = 4 under SSCL, SSCL-
SPC, FastT-SSCL and Fast-SSCL-SPC, respectively. Nev-
ertheless, a very slight improvement in latency is observed
beyond M = 32 and does not worth taking into account.
Furthermore, we note that setting M to 32 for N = 64 does
not bring any latency improvement since most polar codes of
this length do not have constituent codes larger than M = 4.

On the other hand, the influence of tree-pruning on latency
also depends on the type of special nodes. As a result of
using pruning techniques, the reduction in latency obtained
in Fig. 3 and Fig. 4 does not come from the same special
nodes. In fact, the latency of decoding polar codes increases
as the rate R increases. This observation is true for the SCL
algorithm, which requires more path selection operations.
Nevertheless, it is also true for simplified SCL algorithms,
which feature more R1 and SPC nodes as R increases; hence
several clock cycles are required to decode them. Following
this observation, The considered worst-case latency reported
in Fig. 3 is, in fact, the latency obtained from a polar code
whose code rate is close enough or equal to the maximum
value of R ∈ [18 ,

5
6]. Therefore, this latency reduction comes

directly from using R1 and SPC nodes and does not under-
line the impact of using R0 and REP nodes in reducing the
decoding latency. Similarly, the average latency reported in
Fig. 4 does not either provide information on the impact of
special node types, except the sizes, on latency reduction.
Indeed, special node types have a varying impact in reducing
the average latency of several polar codes of different code
rates. The different types of special nodes do not show an
impact in latency reduction with the same proportion when R
is varied. Therefore, to underline the impact of special node
types in reducing latency, we show in Fig. 5 the average
number of clock cycles required to decode one polar code
frame at low code rates, 1/8 ≤ R ≤ 1/4, and high code rates

VOLUME 10, 2022 113985

O. Mouhoubi et al.: Latency and Complexity Analysis of Flexible Semi-Parallel Decoding Architectures

3/4 ≤ R ≤ 5/6, distinctively. For this analysis we set M to
eight.

As expected, the impact of R0 and REP nodes in reducing
the decoding latency is more significant at low code rates.
Only a few information bits are present within the frozen
set, which leaves space for numerous and large low rate
constituent codes, i.e., R0 and REP nodes, to be identified.
Therefore, these two special nodes significantly reduce the
latency of the conventional SCL algorithm from 30% to 58%
for P varying from 2 to 64. However, the impact of these
special nodes is less significant at high code rates. Latency is
reduced by only 7% to 12% for P varying from 2 to 64. On the
other hand, the impact of R1 and SPC nodes in reducing the
decoding latency is more significant at high code rates where
the polar code features numerous and large special nodes
of type R1 and SPC. The latency reduction brought to the
decoder by further adding R1 and SPC nodes to the previous
SCL algorithm, which already includes the decoding of R0
and REP nodes, is minor for the polar codes of low code rates.
At the same time, it is significant for the polar codes of high
code rates. It can be observed from Fig. 5 that only 10% to
28% reduction is reported at low code rates against 32% to
57% at high code rates, for P varying from 2 to 64.

V. HARDWARE COMPLEXITY AND THROUGHPUT
ANALYSIS
A. INFLUENCE OF THE NUMBER OF PE ON HARDWARE
COMPLEXITY
As the latency decreases with increasing P, the complexity of
the decoder increases. To analyse the relationship between the
complexity of the semi-parallel architecture and P, we pro-
pose to implement the processing element of [18] and to
estimate the complexity considering the published results
for N = 1024 as a reference. In [18], two semi-parallel
architectures are designed with P = 16 and P = 64. Using as
a reference the design with P = 16, and the logic synthesis
results obtained from the design of a single PE, we estimated
the hardware complexity for P = 2, 8, 32, and 64. In this
estimation, we simply add and subtract from the reference
design the hardware resources (lookup tables and flip-flops)
corresponding to the number of PEs, while assuming the
remaining components of the decoder unchanged. Figure 6
shows complexity results in terms of lookup tables (LUTs),
which are more prevalent in terms of quantity and variation
than flip-flops (FFs). A slight inaccuracy in the complex-
ity estimation approach may be seen when comparing the
results for P = 64, although this was to be expected as
part of the design was taken to be constant. However, the
relative comparison with respect to several P values offers
good insights about how they affect hardware complexity.
The results indicate that the impact of the number of PE on
complexity is relatively limited. In fact, whenP increases by a
factor of×32, from 2 to 64, the overall number of LUTs of the
semi-parallel decoder architecture increases by only a factor
of ×1.55. On the other hand, this increase in the number of

FIGURE 6. Hardware complexity and information throughput as function
of P for N = 1024. Operating frequency is set to 100 MHz.

FIGURE 7. Architecture of the SNLD designed to decode special nodes.

PEs leads to an increase in information throughput by a factor
of×2.7 when considering the latency expression provided in
(3) and an operating frequency of 100 MHz. It is interesting
to notice here that the increase in the information throughput
when varying P gradually from 2 to 64 is not linear. It is
higher for small values of P. For instance, the throughput
increases by 57% when P increases from 2 to 4, whereas it
increases by only by 3%when P increases from 32 to 64. This
is due to the parallelism bottleneck of SC algorithms. Indeed,
as the number of PEs increases, less stages of the decoding
tree of polar codes can benefit from the added PEs. In the
example of Fig. 6 for N = 1024, when P = 64 only the
highest four stages make a full use of the 64 PEs. However,
no change in decoding speed happens for the lowest seven
stages when increasing P from 32 to 64. Extended analysis
on throughput is provided in Section V-C.

B. INFLUENCE OF TREE PRUNING ON HARDWARE
COMPLEXITY
The decoding of constituent codes obtained with tree-pruning
techniques requires dedicated hardware resources, beyond
those required by the classical SCL semi-parallel decoder.
A specific hardware unit namely Special Node List Decoder
(SNLD), depicted in Fig. 7, is designed to support decoding
the constituent codes R0, REP, R1 and SPC according to
SSCL and SSCL-SPC algorithms independently from the
PEs. The complexity due to tree-pruning techniques is then

113986 VOLUME 10, 2022

O. Mouhoubi et al.: Latency and Complexity Analysis of Flexible Semi-Parallel Decoding Architectures

FIGURE 8. Number of FFs and LUTs required by SNLD to decode special
nodes R0, REP, R1 and SPC as a function of M according to three
scenarios.

evaluated taking into consideration the implementation of the
SNLD for L = 8.

To do that, the proposed SNLD unit has been described
in VHDL and synthesized on a Xilinx Virtex-7 XC7VX-
485T FPGA device for three different scenarios. In the first
scenario, the SNLD is designed to support only the decoding
of R0 and REP nodes. The support of R1 nodes is added in
the second scenario through the addition of the green-colored
blocks in Fig. 7. The third scenario supports in addition R1
and SPC nodes through the addition of the orange-colored
blocks (Fig. 7). SNLD allows resource sharing of the opera-
tions that are common to the different special nodes. In the
synthesis results, the contribution of the sorter unit has been
removed as it is unchanged for all the explored decoding
algorithms. The LLR values are represented in SM format,
and both LLR and PM values are quantized to 7 bits. For each
of the three scenarios, M is varied from 2 to 32 assuming
each time that P = M so that the SNLD receives its LLRs
in one clock cycle. From the synthesis results presented in
Fig. 8, we note that the number of FFs used to decode R0-REP
special nodes is almost constant regardless of M . However,
the number of FFs starts to increase with M when decoding
R1 nodes. This is due to the register array, implemented to
store the input LLRs until they are all processed one by
one. Since the SC-based decoder does not process multiple
nodes simultaneously due to its sequential nature, R1 and
SPC nodes do not overlap and the same LLR register array
is used store the LLRs of both nodes. Therefore no additional
FFs are required during the third scenario that includes further
the decoding of SPC nodes. On the other hand, the number
of LUTs involved in the first scenario increases linearly
with M . This is due to the fact that M − 1 adders, designed
as a tree-structure fully parallel adder, are implemented to
decode R0 and REP nodes. Furthermore, the number of
LUTs is increased when R1 nodes start to be considered for
M = 2 and keep increasing asM increases. This is due to the
use of crossbars required to support candidate competition
during the successive decoding of the bits of R1 nodes. The
decoding of SPC nodes implies performing a parity check

FIGURE 9. Number of FFs and LUTs required by SNLD to decode special
nodes R0, REP, R1 and SPC when considering the second approach with
accumulator registers to reduce the number of adders, comparators and
XOR gates.

equation via a XOR array and searching for a minimum LLR
value. Yet, similarly to the first scenario, the complexity of
these operations grows linearly with M .
The number of LUTs used by the R0-REP-R1-SPC

decoder for M = 8 is 3.9 times larger than that for M = 2,
and that forM = 32 is 3.43 times larger than that forM = 8.
This significant increase in the number of LUTs is mainly due
to the growth in the number of used adders and comparators
in the minimum finder unit.

In a second strategy, we take into account an implementa-
tion based on accumulator register (dotted blocks in Fig. 7)
with a smaller tree size for the adders, comparators, and
XOR gates. This leads to a semi-parallel architecture of the
SNLD with D adders, comparators, and XOR gates, where
D < M − 1. Figure 9 shows synthesis results forD = 8 when
using this second approach. When compared to the results
of Fig. 8 for the third scenario, a significant improvement
can be observed where the number of LUTs is reduced by
26% and 55% for M = 16 and M = 32, respectively.
This comes at the cost of a slight increase in the number of
FFs due to the presence of accumulator registers. With this
approach, the increase in the number of LUTs when moving
from M = 8 to M = 32 drops from ×3.42 to ×1.42.
This significantly reduces the influence of tree pruning on the
hardware complexity.

C. INFLUENCE OF PE AND TREE PRUNING ON
THROUGHPUT
Due to data dependency between nodes of the SC decoding
tree, only a subset of nodes can be activated at a time. Hence,
the parallelism level offered by the SC algorithm is limited.
The number of operations allowed to be performed in par-
allel is equal to N/2 in the first decoding stage. However,
it is continuously halved as we evolve towards leaf nodes,
where only a single operation can be performed by visiting
one node. Pruning the decoder tree of SC algorithms using
direct decoding of specific constituent codes at earlier stages
reduces the number of nodes to visit. Also, this increases
the exploitable parallelism degrees of SC-based decoders

VOLUME 10, 2022 113987

O. Mouhoubi et al.: Latency and Complexity Analysis of Flexible Semi-Parallel Decoding Architectures

FIGURE 10. Throughput comparison between different decoder types for
different values of P and M. Two code lengths are considered
N = 1024 and N = 128.

since parallel decoding of bits of a special node overcomes
data dependency. In this context, we propose to analyze the
information throughput of 5G polar codes under the SCL
algorithm and fast decoding algorithms, used so far, as a func-
tion of P then as a function of M . Throughput is calculated
analytically based on the latency equation and assuming an
operating frequency of 100 MHz. First, we plot in Fig. 10a
and Fig. 10b the average throughput of decoding polar codes
of lengths N = 1024 and N = 128 with 1/8≤ R ≤5/6.
The maximum lengthM of special nodes is set to 16. As dis-
cussed earlier, the throughput of SCL decoder increases as P
increases. Nevertheless, this increase is not linear when vary-
ing P gradually from 2 to 64. Indeed, the throughput of polar
codes of lengths N = 1024 and N = 128 increases by 49%
and 37%, respectively, when P increases from 2 to 4, whereas
it increases by only 2% and less than 1%, respectively, whenP
increases from 32 to 64. Furthermore, we can observe from
these figures the significant addition to the throughput as
soon as fast decoding algorithms relying on tree-pruning are
used. For instance, the throughput of the SSCL-SPC decoder,
with P = 8, is 2.2 times larger than the throughput of
the SCL decoder for N = 1024. Moreover, It is 3 times
higher with a larger P (P = 64). By tolerating a loss of
0.1 dB in error correction performance for N = 1024, the
average achievable throughput with Fast-SSCL-1 (SR1 = 1)
is 144 Mbps, 7.3 times larger than with SCL.

FIGURE 11. Maximum information throughput of SCL decoder and
various polar code decoders with different pruning techniques as a
function of P . Low and high code rates are considered with N = 1024.

Moreover, decoding multiple bits in parallel overcomes the
drawbacks related to the limited exploitable parallelism levels
of SCL algorithm. Indeed, fewer nodes are visited to compute
LLRs, which reduces the number of access to the stages that
do not benefit from increasing P, especially when large and
various types of special nodes are considered. Consequently,
the increase in throughput tends to bemore linear with respect
to P compared to SCL.

In order to evaluate the impact of decoding large special
nodes on the information throughput, we propose to vary M
from 4 to 32 and set P to 8 while using different decoding
algorithms. The average throughput of decoding polar codes
of lengths N = 1024 and N = 128 with 1/8≤ R ≤ 5/6 are
reported in Fig. 10c and Fig. 10d. Thus, varying M from
4 to 8 improves the average throughput by 19% and 16% for
N = 1024 andN = 128, respectively. However, varying
it from 16 to 32 improves the throughput by only 6% and
2% for N = 1024 and N = 128, respectively. Further-
more, one can notice that increasing M from 4 to 8 barely
improves the throughput of the Fast-SSCL decoder, contrary
to when M increases from 8 to 16. In fact, the added value
of the Fast-SSCL algorithm compared to SSCL occurs on
special nodes of size greater than L. However, this condition
is not satisfied in our context, i.e., L = 8. Therefore, the
Fast-SSCL decoder can enhance the throughput of the SSCL
decoder starting from M = 16 only.

On the other hand, as shown with latency analysis, the
influence of the algorithms based on pruning the decoder
tree of polar codes on the throughput depends on the type
of special nodes used by the decoder. The large range of rates
used in the previous simulation does not reveal the impor-
tance of each special node type on improving the throughput.
To analyze this effect, we present in Fig. 11a and Fig. 11b the
throughput obtained for decoding the polar codes of lengths
N = 1024 and N = 128 at low code rates, 1/8≤ R ≤ 1/4,
and at high code rates 3/4 ≤ R ≤ 5/6, respectively.
As expected, the impact of R0 and REP special nodes is

113988 VOLUME 10, 2022

O. Mouhoubi et al.: Latency and Complexity Analysis of Flexible Semi-Parallel Decoding Architectures

FIGURE 12. Number and type of active (hashed squares) and inactive
(blank squares) PEs (P = 4) and special node decoders at each stage
activation of PC(16,8) of Fig. 1.

more important at low code rates, while it is almost negligible
at higher code rates. For instance, these two special nodes
increase the throughput of the SCL decoder by 2.15 times
and 2.42 times when R is low for P = 16 and P = 64,
respectively. However, they increase the throughput by only
1.03 times and 1.11 times when R is high for P = 16 and
P = 64, respectively. Now, when R1 and SPC nodes are
considered in addition to R0 and REP nodes, a significant
throughput enhancement is observed for high code rates.
Indeed, R1 and SPC nodes increase throughput by 2.25 times
and 2.53 times for P = 16 and P = 64 when SSCL-SPC
decoding is considered and by 6 times and 10.72 times when
Fast-SSCL-SPC and {SR1, SSPC} = {1, 2}. Contrary to R0
and REP nodes which only bring minor throughput improve-
ments at high code rates, the consideration of R1 and SPC
nodes still enhances the throughput of the decoder at low code
rates. Certainly, this increase is less significant compared to
the one observed at high code rates, but quite noticeable con-
sidering that the throughput of the SCL decoder is improved
by 2.67 times when Fast-SSCL-SPC and {SR1, SSPC} = {1, 2}
are considered with 64 PEs.

VI. HARDWARE EFFICIENCY ANALYSIS
The strong data dependency of the SC algorithm limits the
performance of the SC decoder in terms of latency and
throughput. The solution, based on increasing the number of
implemented PEs, becomes less efficient when this number
is relatively high compared to the length of the polar code.
In addition, the use of a large number of PEs decreases the
efficiency of the SC decoders in terms of resource utilization
rate. On another note, decoding a group of bits in parallel
using tree-pruning algorithms breaks the data dependency of
the SC decoder and enhances its performance. To summarize,
adding further resources to the conventional decoder does not
systematically improve its hardware efficiency.

A. ACTIVITY OF SC DECODERS
To characterize the hardware efficiency of the semi-parallel
SC decoder, we propose to analyze the activity of the pro-
cessing units. We count the number of active processing units
(PE, special node decoders) during the time periods spent
decoding one polar code frame. Fig. 12a shows the number
of active (hashed squares) and inactive (blank squares) PEs

at each stage required for the decoding of the PC(16,8) rep-
resented by the SC decoder tree of Fig. 1a. The number of
PEs used for this example is four. We can notice that all of
the implemented PEs are used during the activation of stages
j = 3 and j = 2. However, only half and a quarter of the
number of implemented PEs are used during the activation
of stages j = 1 and j = 0, respectively. Given that a stage j
is activated 2n−j times, the number of times the semi-parallel
SC decoder fully benefits from the PEs when decoding the
PC(16,8), considering the additional clock cycles required to
update nodes of stages j = 3, is equal to 2× 2+ 4× 1 = 8.
On the other hand, 2 and only 1 of the 4 PEs are used 8 and
16 times respectively at stages j = 1 and j = 0. This means
that the activation of each PE occurs 8 + 8 × 1

2 + 16 × 1
4 =

16 times. Therefore, for this example, the activity γP of the
available PEs is equal to 16×P = 64. For any p = log2 P and
n = log2 N , such as (0≤ p< n), the value of γP is expressed
as:

γP =

p∑
j=0

2n−j
2P
2p−j
+

n−1∑
j=p+1

2n−j2j−pP. (5)

On the contrary, two and three PEs are left unused 8 and
16 times respectively at stages j = 1 and j = 0 for the
example of Fig. 12a. This means that each PE is inactive
8× 1

2 + 16× 3
4 = 16 times. The inactivity of PEs γ̄P is equal

to 16× P = 64 and is expressed as:

γ̄P =

p∑
j=0

2n−j
(
2−

1
2p−j

)
P+

n−1∑
j=p+1

2n−j2j−pP. (6)

To describe the hardware efficiency of the decoder, we use
γP and γ̄P to derive the utilization rate α. In the case of a SC
semi-parallel architecture, αSPSC is expressed as:

αSPSC =
γP

γP + γ̄P
. (7)

One can notice that αP = 1 is only reached with one PE
(P = 1), which means the PE is always active during the
decoding process. In the above example, where N = 16 and
P = 4, the utilization rate of the decoder αP = 1/2.
Furthermore, if we assume that one PE implementing f and g
operations represents twice the complexity of one PE imple-
menting either f or g, (8) results in an exact reformulation
of the utilization rate of the SC decoder defined in [18] as
the average number of active nodes per clock cycle, which is
given by:

αSPSC =
N log2 N

2PLSP
SC

. (8)

Following this assumption, the maximum value of the
utilization rate is αP = 0.5 for P = 1. This is obvious
since the implemented PE is always active during decoding.
However, this same PE is used alternately to execute f or g
functions per node activation. We plot in Fig. 13a the uti-
lization rate as a function of P of the decoders SC, SCL,
SSCL, Fast-SSCL, and Fast-SSCL-1 (SR1 = 1) of lengths

VOLUME 10, 2022 113989

O. Mouhoubi et al.: Latency and Complexity Analysis of Flexible Semi-Parallel Decoding Architectures

FIGURE 13. Average utilization rates of several SC-based decoders of
length N = 1024 (solid lines) and N = 128 (dotted lines): (a) αP (P),
(b) αSND(P), (c) αdec (P), (d) αdec (M).

N = 1024 and N = 128. Only the activity of the PEs is
studied, while that of the special node decoder is ignored.
First, we can see that for the same number of PEs, the αP
of N = 1024 is higher than the αP of N = 128. This is
because n − p, the number of stages where all the P PEs are
used, increases with N . Then, it can be noticed that the αP
of the SCL decoder is worse than that of the SC decoder.
This is due to the additional decoding clock cycles required to
perform candidate competition between different codeword
paths when decoding information bits. The value of αP, in this
case, depends on the code rate R. However, forN = 1024 and
M = 16, the SSCL algorithm improves αP by 1.14 times and
1.85 times for P = 4 and 32, respectively, compared to the
SCL decoder. This improvement is more significant with the
faster Fast-SSCL-1 and results in a 1.34 times and 2.85 times
increase in αP. This is due to the latency reduction acquired
by pruning the decoder tree at low decoding stages where a
relatively large proportion of the PEs is idle. The PC(16,8)
of Fig. 1 is pruned at j = 2. Thus, nodes at stages one and
zero are not visited anymore during the decoding process.
Instead, special node decoders are implemented. The number
of active (hashed squares) and inactive (blank squares) PEs
together with the special node decoders (colored squares) for
R0, REP, SPC, and R1, is shown in Fig. 12b. Since special
nodes are decoded in different time periods, their respective

decoders are duplicated four times at stages j = 0, 1 to show
which decoder is active (hashed square) and in what order.
We see that all the PEs are used whenever stages j = 3 and
j = 2 are active and idle during special node decoding.
In case the Fast-SSCL-SPC-12 decoder is used, the activation
of each PE occurs eight times during the 14 clock cycles
required to decode one frame, which is higher than the SCL
decoder, where it occurs 16 times during 40 clock cycles.
The decoding of R0 nodes consists in summing up toM LLR
values, and the decoding of REP nodes consists in summing
up to M positive LLR values and M negative LLR values,
then decoding the information bit. Thus, their computational
complexity is equal toM and 2M+1, respectively. Following
this, the utilization rate of αR0 and αREP of the example of
Fig. 1 in the case of SSCL decoding is αR0 = M/17M and
αREP = 2M/(34M + 2). Furthermore, the utilization rate
α(Q) of an architecture which comprises Q processing units
including PEs and various computational complexity special
node decoders is expressed as a function of γq and γ̄q as:

α(Q) =

∑Q
q=1 γq∑Q

q=1 γq + γ̄q
, (9)

where γq and γ̄q are the activity and the inactivity of the
processing unit q (1≤ q≤ Q).
We plot in Fig. 13b αR0,REP,R1, the average utilization rate

of the decoders SSCL, Fast-SSCL, and Fast-SSCL-1 as a
function of P while settingM to 16. We consider the activity
of the special node decoders of R0, REP, and R1 nodes and
ignore the activity of the PEs. As expected, when P increases,
the processing of nodes f and g becomes faster, and the
activation rate of special node decoders during the decoding
period increases, which improves αR0,REP,R1. However, this
utilization rate is very low compared to αP presented in
Fig. 13a. This is due to the high computation complexity of
the special node decoders compared to that of a PE. In addi-
tion, the PEs are more used during the decoding process than
any of the implemented special node decoders. We also note
that, unlike αP, αR0,REP,R1 is better for N = 1024 than for
N = 128, especially for P ≥ 16. This is because the decoder
of length N = 1024 benefits better from increasing P beyond
P = 16 than the decoder of length N = 128. On top of that,
using special node decoders of size M with the knowledge
that polar codes of length N = 128 rarely comprise special
nodes of this size leads to poor hardware efficiency. Also,
we can observe that αR0,REP,R1 of the SSCL decoder is better
than αR0,REP,R1 of the Fast-SSCL. In fact, since Fast-SSCL-1
searches for the minimum LLR out of M LLR values, its
computational complexity is M times larger than the SSCL.
Hence, its reduced latency benefit is not worth the penalty
in terms of hardware efficiency. However, the αR0,REP,R1 of
the Fast-SSCL-1 decoder is much better than that of the Fast-
SSCL since, for the same computational complexity, the Fast-
SSCL-1 decoder is much faster. In Fig. 13c we plot αdec, the
average utilization rate of the decoders SC, SCL, SSCL, Fast-
SSCL and Fast-SSCL-1 (SR1 = 1) as a function of P for

113990 VOLUME 10, 2022

O. Mouhoubi et al.: Latency and Complexity Analysis of Flexible Semi-Parallel Decoding Architectures

FIGURE 14. Decoding one and two codewords of the same polar code using SSCL algorithm.

M = 16 using (9). All the processing units are considered,
including PEs and special node decoders of R0, REP, and
R1. We can clearly see that for P < 16, the SCL algorithm
presents a better hardware efficiency than all the simplified
algorithms used for this study. When P < 16, the number
of clock cycles to process non-pruned nodes is very large
compared to the number of clock cycles to decode special
nodes, i.e., special node decoders are longer idle than active.
However, starting from P = 16 and P = 32 respectively,
Fast-SSCL-1 and SSCL become more efficient than the SCL
decoder. Using special node decoders increases the decoder
throughput, reduces the latency of decoding one polar code
frame but decreases the efficiency of the decoder in terms
of hardware complexity. Indeed, additional computational
units proportional to M are needed to compute the M data
inputs related to the top constituent codes nodes. In addition
to that, polar codes often include special nodes of variable
lengths, which means that a special node decoder designed
for M does not frequently take total usage of its hardware
resources, especially when M is relatively large. This is
shown in Fig. 13d, where the average utilization factor of
SSCL, Fast-SSCL and Fast-SSCL-1 decoders is computed
for P = 8 and various values of M for N = 1024 and
N = 128. It clearly demonstrates that increasing the special
node decoder sizeM reduces the hardware efficiency. Recall
that the complexity of one PE is assumed to be twice the
complexity of a processing element able to process either
f or g operation in the analytical computation of utilization
rates of Fig. 13. In addition to that, special node decoders are
considered as separate hardware designs. Each decoder has
a specific computational resource complexity related to the
type and size of the special node. Therefore, when specific
hardware optimizations such as arithmetic resource sharing
are used, the utilization rate of the decoders is improved.

B. PROPOSED MULTI-FRAME DECODING TECHNIQUES
The poor hardware efficiency of SC decoders is not restricted
to semi-parallel SC architectures but also to line and tree
architectures [18]. Also pipelined, the tree architecture com-
prises N − 1 PEs, where 2j−1 PEs are instantiated at each
stage j to perform the available operations whenever the stage
is activated. In this way, PEs that belong to non-active stages
remain inactive. After duplicating some decoding stages and
by adding some PEs, a vector overlapped SC architecture
that uses these stages to decode multiple received frames

in parallel was presented in [34]. However, memory is also
duplicated as many times as the number of vectors decoded in
parallel. As a result, this architecture can decode a maximum
of n = log2 N codewords in parallel without duplicating
all the computational resources of the decoder. On the other
hand, semi-parallel SC and SCL architectures do not offer
many options to overlap the decoding of multiple codewords.
The idea of using the idle PEs requires additional hardware
complexity to maintain the routing network, but this comes
at the cost of a added control complexity. Nevertheless, at the
cost of added memory, a semi-parallel decoding architecture
similar to the one studied in the previous sections and featur-
ing dedicated special node decoders can be used to enhance
the level of parallelism without duplicating computational
resources. Precisely, an added memory for holding codeword
bits is only required for a length-flexible designwhen the total
length of codewords decoded in parallel does not exceed the
designed decoder length. It was shown in Fig. 12 that PEs
and special node decoders work alternately during the decod-
ing process. When PEs are used, the special node decoders
are not, and vice versa. Therefore, two codewords can be
decoded simultaneously with the same hardware resources
by alternately updating stages j = 2, 3 and j = 0, 1. This
improves the throughput and hardware efficiency but also
increases the decoding latency. Fig. 14 shows the timeline
of decoding a sub-tree of one and two received frames of
the same polar code using the SSCL algorithm. The polar
code selected for this example comprises four consecutive
constituent codes of length four, which are R0, two R1s,
and REP codes. The number of PEs used by the decoder
is P = 2. The SSCL decoder alternates between PEs and
special node decoders during 23 clock cycles to decode
the four special nodes of the sub-tree starting at t0. Over
this time period, PEs are activated 12 times while special
node decoders are activated 11 times. The decoding process
time is almost equally shared between PEs and special node
decoders. This motivates the study of parallel decoding of two
frames, F1 and F2, using the same architecture. The timeline
of decoding F1 and F2 shows that these frames can proceed to
use the available processing units, i.e., PEs and special node
decoders without conflict. However, they cannot use the same
type of processing units simultaneously. Therefore, F1 starts
using PEs during two clock cycles denoted by P1 then uses
the special node decoder to decode R0 for one clock cycle
denoted by S1, letting F2 uses the freed PEs, in turn, for

VOLUME 10, 2022 113991

O. Mouhoubi et al.: Latency and Complexity Analysis of Flexible Semi-Parallel Decoding Architectures

FIGURE 15. Latency and throughput as a function of code length N for a
multi-frame SSCL decoder.

two clock cycles. Nevertheless, since P1 > S1, F1 has to
wait for P1 − S1 clock cycles to resume decoding. Similarly,
F2 has to wait for P2 − S1 clock cycles in order to use PEs
the second time around. The remaining special nodes can
be similarly decoded with the same schedule and resource
sharing process. F1,2 highlights the different time periods
where both PEs and special node decoders are activated
simultaneously by the decoding process of frames F1 and F2
(16 clock cycles). The total amount of time required to output
the codeword bits of one frame corresponds to 28 clock cycles
against 23 clock cycles previously. As a consequence, latency
is increased by five clock cycles compared to the case where
multiple frame decoding is not applied. The total latency of
decoding F frames can be expressed as:

LM =
∑
q

(F − 1)max(Pq, Sq)+max(Pq+1, Sq), (10)

where Pq is the number of clock cycles required to process
nodes of the pruned decoder tree before decoding the next
special node, which requires Sq clock cycles. The average
latency and maximum throughput of the 5G polar code over
several R values when two frames are decoded in parallel is
measured using (10) for P = 16 andM = 16. The results are
provided in Fig. 15 for various polar code lengths. We can
see that the latency is increased by 36%, 39%, 43% and 47%
while throughput is increased by 20%, 21%, 24% and 28%
for N = 64, 128, 256 and 512. This increase in latency is
more significant compared to the latency analysis conducted
above on the simple example of Fig. 14.

Although the overall decoding time is equally shared
between PEs and special node decoder, it is frequently uneven
between two successive activation of PEs and special node
decoders, which results in relatively high decoding latency.
For instance, two consecutive 16-length R1 special nodes that
share the same parent node lead to increasing the decoder’s
latency by 15 clock cycles. However, using such a technique
guarantees a latency of decoding F frames of length N/F
lower than the worst-case latency of decoding one frame of
polar codes of length N .

FIGURE 16. Latency and throughput as a function of code length N for a
multi-frame Fast-SSCL-1 decoder.

The proposed technique of decoding multiple received
frames of the same polar code in parallel presented in this
section is based on the notion that the different frames must
alternate between using PEs and special nodes with a similar
time budget during the decoding process. Therefore, with
the same resource, this technique provides good hardware
efficiency under the SSCL algorithm but quickly reaches its
limits after only two frames are decoded in parallel. However,
if faster algorithms are used, particularly the sub-optimal
Fast-SSCL, i.e., SR1 < L − 1, the time required to decode
the set of identified special nodes is much lower than the time
required to perform f and g operations.

In this context, we propose another technique that con-
sists in duplicating the PEs as many times as the number
of decoded frames in parallel. These multiple frames share
the same special node decoder, which increases its utilization
rate. Therefore, the decoder architecture includes F × P PEs
and one special node decoder, where F is the number of
frames to decode in parallel. The maximum latency and max-
imum throughput of the Fast-SSCL-1 decoder of lengths N ∈
[64, 1024] when decoding F = 1, 2, 4, 8 and 16 received
frames of the same polar code are reported in Fig. 16. The
number of PEs and themaximum length of special nodes used
in this analysis are P = 16 × F and M = 16, respectively.
We see that the latency of decoding two frames is the same
as decoding one frame, which is reflected by doubling the
throughput of the decoder. A small increase in latency follows
increasing F above F = 2. Indeed, it reaches an average
of 51% and 80% on all the considered code lengths N ∈
[641024] when increasing F from two to four and eight to
sixteen, respectively. This increase in latency is very low
compared to the latency required to decode multiple frames
when they are decoded one at a time. For instance, in the latter
case, the latency of decoding N = 128 and F = 8 equals
3272 clock cycles while it is equal to 1007 clock cycles (30%)
using the proposed technique. Consequently, the throughput
of the decoder is significantly enhanced. For instance, it is
3.13, 4.46, and 5.66 times better when decoding four, eight,
and sixteen frames of length N = 256 in parallel than

113992 VOLUME 10, 2022

O. Mouhoubi et al.: Latency and Complexity Analysis of Flexible Semi-Parallel Decoding Architectures

decoding a single polar code frame. Nearly similar results are
obtained for other code lengths than N = 256, as shown in
the figure. Far from being limited to F = 2, this technique
of decoding several received frames in parallel when using
the Fast-SSCL decoder provides many advantages in terms
of throughput and hardware efficiency at the expense of high
memory requirement and duplicated processing elements.
Finally, latency and throughput analysis results presented in
this section for both multiple frame decoding techniques are
performed considering frames from the same polar code,
i.e., the same frozen set. Further analysis can be done by
considering decoding multiple frames of a variable rate and
length.

VII. CONCLUSION
In this paper, we provided a detailed analysis of the impact
of main code and decoder design parameters on latency,
throughput, hardware complexity and hardware efficiency
for polar decoding architectures when targeting the highly
flexible 5G NR polar code. In this context, the semi-parallel
architecture model proves to be the most suited thanks to
a broader algorithmic and architectural flexibility at design
level. Therefore, based on a detailed analytical study and
logic synthesis results, the latency, throughput and complex-
ity of the decoder were evaluated for multiple variants of
fast SCL decoding algorithms and for a varying number of
processing elements. Results have shown that length- and
rate-flexible designs limit the benefit of increasing the num-
ber of processing elements and advocate for defining various
types of constituent codes while increasing the level of tree
pruning. Indeed, while the use of a large number of processing
elements brings a significant latency reduction at large frame
sizes, this benefit becomes negligible for short frame sizes,
hence penalizing the hardware efficiency of the decoder.
Furthermore, some special constituent code types are more
likely to appear at low code rates, such that R0 and REP, while
others are more likely to appear at high code rates, such as
R1 and SPC. Adding to that, the length of these special con-
stituent codes in number of involved bits decreases with the
polar code frame size. This can significantly impact imple-
mentation efficiency metrics. Therefore, multiple trade-offs
between algorithmic and architectural parameters can be
drawn from these results. In this regard, we proposed two
multi-frame decoding approaches increasing the throughput
and improving the processing units activity at the cost of addi-
tional memory resources and latency. Finally, the analysis
conducted in this paper can be further performed on any other
set of polar codes and extended to support list size variation
as well.

REFERENCES
[1] E. Arikan, ‘‘Channel polarization: A method for constructing capacity-

achieving codes for symmetric binary-input memoryless channels,’’ IEEE
Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, Jul. 2019.

[2] Z. B. K. Egilmez, L. Xiang, R. G. Maunder, and L. Hanzo, ‘‘The develop-
ment, operation and performance of the 5G polar codes,’’ IEEE Commun.
Surveys Tuts., vol. 22, no. 1, pp. 96–122, 1st Quart., 2020.

[3] I. Tal and A. Vardy, ‘‘List decoding of polar codes,’’ IEEE Trans. Inf.
Theory, vol. 61, no. 5, pp. 2213–2226, May 2015.

[4] A. Balatsoukas-Stimming, A. J. Raymond, W. J. Gross, and A. Burg,
‘‘Hardware architecture for list successive cancellation decoding of polar
codes,’’ IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 61, no. 8,
pp. 609–613, Aug. 2014.

[5] C. Zhang, B. Yuan, and K. K. Parhi, ‘‘Reduced-latency SC polar decoder
architectures,’’ in Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2012,
pp. 3471–3475.

[6] C. Zhang and K. K. Parhi, ‘‘Low-latency sequential and overlapped archi-
tectures for successive cancellation polar decoder,’’ IEEE Trans. Signal
Process., vol. 61, no. 10, pp. 2429–2441, May 2013.

[7] X. Bian, J. Dai, K. Niu, and Z. He, ‘‘A low-latency SC polar decoder based
on the sequential logic optimization,’’ in Proc. 15th Int. Symp. Wireless
Commun. Syst. (ISWCS), Aug. 2018, pp. 1–5.

[8] B. Yuan and K. K. Parhi, ‘‘Low-latency successive-cancellation polar
decoder architectures using 2-bit decoding,’’ IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 61, no. 4, pp. 1241–1254, Apr. 2014.

[9] J. S. Roy, G. Lakshminarayanan, and S.-B. Ko, ‘‘High-speed architecture
for successive cancellation decoder with split-g node block,’’ IEEEEmbed-
ded Syst. Lett., vol. 13, no. 3, pp. 118–121, Sep. 2021.

[10] R. Shrestha and A. Sahoo, ‘‘High-speed and hardware-efficient successive
cancellation polar-decoder,’’ IEEE Trans. Circuits Syst. II, Exp. Briefs,
vol. 66, no. 7, pp. 1144–1148, Jul. 2019.

[11] O. Dizdar and E. Arikan, ‘‘A high-throughput energy-efficient implemen-
tation of successive cancellation decoder for polar codes using combina-
tional logic,’’ IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 63, no. 3,
pp. 436–447, Mar. 2016.

[12] P. Giard, G. Sarkis, C. Thibeault, and W. J. Gross, ‘‘Multi-mode unrolled
architectures for polar decoders,’’ IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 63, no. 9, pp. 1443–1453, Sep. 2016.

[13] P. Giard, G. Sarkis, C. Thibeault, and W. J. Gross, ‘‘237 Gbit/s unrolled
hardware polar decoder,’’ Electron. Lett., vol. 51, no. 10, pp. 762–763,
May 2015.

[14] C. Kestel, S. Weithoffer, and N. Wehn, ‘‘Polar code decoder exploration
framework,’’ Adv. Radio Sci., vol. 16, pp. 43–50, Sep. 2018.

[15] A. Sural, E. G. Sezer, Y. Ertugrul, O. Arikan, and E. Arikan, ‘‘Terabits-per-
second throughput for polar codes,’’ in Proc. IEEE 30th Int. Symp. Pers.,
Indoor Mobile Radio Commun. (PIMRC Workshops), Sep. 2019, pp. 1–7.

[16] C. Kestel, L. Johannsen, O. Griebel, J. Jimenez, T. Vogt,
T. Lehnigk-Emden, and N. Wehn, ‘‘A 506 Gbit/s polar successive
cancellation list decoder with CRC,’’ in Proc. IEEE 31st Annu. Int. Symp.
Pers., Indoor Mobile Radio Commun., Aug. 2020, pp. 1–7.

[17] Y. Delomier, B. L. Gal, J. Crenne, and C. Jego, ‘‘Model-based design
of hardware SC polar decoders for FPGAs,’’ ACM Trans. Reconfigurable
Technol. Syst., vol. 13, no. 2, pp. 1–27, Jun. 2020.

[18] C. Leroux, A. J. Raymond, G. Sarkis, and W. J. Gross, ‘‘A semi-parallel
successive-cancellation decoder for polar codes,’’ IEEE Trans. Signal Pro-
cess., vol. 61, no. 2, pp. 289–299, Jan. 2013.

[19] B. Le Gal, C. Leroux, and C. Jego, ‘‘A scalable 3-phase polar decoder,’’ in
Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2016, pp. 417–420.

[20] A. J. Raymond and W. J. Gross, ‘‘Scalable successive-cancellation hard-
ware decoder for polar codes,’’ in Proc. IEEE Global Conf. Signal Inf.
Process., Dec. 2013, pp. 1282–1285.

[21] O. Mouhoubi, C. A. Nour, and A. Baghdadi, ‘‘On the latency and com-
plexity of semi-parallel decoding architectures for 5G NR polar codes,’’ in
Proc. 11th Int. Symp. Signal, Image, Video Commun. (ISIVC), May 2022,
pp. 1–6.

[22] NR; Multiplexing and Channel Coding (Release 15), 3GPP,
document TS 38.212 V15.2.0, Jan. 2018. [Online]. Available:
https://www.3gpp.org/DynaReport/38-series.htm

[23] A. Balatsoukas-Stimming, M. B. Parizi, and A. Burg, ‘‘LLR-based suc-
cessive cancellation list decoding of polar codes,’’ IEEE Trans. Signal
Process., vol. 63, no. 19, pp. 5165–5179, Oct. 2015.

[24] A. Alamdar-Yazdi and F. R. Kschischang, ‘‘A simplified successive-
cancellation decoder for polar codes,’’ IEEECommun. Lett., vol. 15, no. 12,
pp. 1378–1380, Dec. 2011.

[25] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross, ‘‘Fast polar
decoders: Algorithm and implementation,’’ IEEE J. Sel. Areas Commun.,
vol. 32, no. 5, pp. 946–957, May 2014.

[26] S. A. Hashemi, C. Condo, and W. J. Gross, ‘‘Simplified successive-
cancellation list decoding of polar codes,’’ in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Jul. 2016, pp. 815–819.

VOLUME 10, 2022 113993

O. Mouhoubi et al.: Latency and Complexity Analysis of Flexible Semi-Parallel Decoding Architectures

[27] S. A. Hashemi, C. Condo, and W. J. Gross, ‘‘A fast polar code list decoder
architecture based on sphere decoding,’’ IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 63, no. 12, pp. 2368–2380, Dec. 2016.

[28] S. A. Hashemi, C. Condo, and W. J. Gross, ‘‘Fast and flexible successive-
cancellation list decoders for polar codes,’’ IEEE Trans. Signal Process.,
vol. 65, no. 21, pp. 5756–5769, Nov. 2017.

[29] A. Mishra, A. J. Raymond, L. G. Amaru, G. Sarkis, C. Leroux,
P. Meinerzhagen, A. Burg, and W. J. Gross, ‘‘A successive cancellation
decoder ASIC for a 1024-bit polar code in 180 nm CMOS,’’ in Proc. IEEE
Asian Solid State Circuits Conf. (A-SSCC), Dec. 2012, pp. 205–208.

[30] X. Liu, Q. Zhang, P. Qiu, J. Tong, H. Zhang, C. Zhao, and J. Wang,
‘‘A 5.16 Gbps decoder ASIC for polar code in 16 nm FinFET,’’ in Proc.
15th Int. Symp. Wireless Commun. Syst. (ISWCS), Aug. 2018, pp. 1–5.

[31] C. Xia, Y. Fan, J. Chen, C.-Y. Tsui, C. Zeng, J. Jin, and B. Li, ‘‘An
implementation of list successive cancellation decoder with large list size
for polar codes,’’ in Proc. 27th Int. Conf. Field Program. Log. Appl. (FPL),
Sep. 2017, pp. 1–4.

[32] H. Khoshnevis, C. Cao, D. Chang, and C. Li, ‘‘Novel design of irregular
polar codes for latency reduction in fast polar decoders,’’ in Proc. IEEE
Can. Conf. Electr. Comput. Eng. (CCECE), Sep. 2021, pp. 1–5.

[33] J. Tong, X. Wang, Q. Zhang, H. Zhang, R. Li, J. Wang, andW. Tong, ‘‘Fast
polar codes for terabits-per-second throughput communications,’’ 2021,
arXiv:2107.08600.

[34] C. Leroux, I. Tal, A. Vardy, and W. J. Gross, ‘‘Hardware architectures for
successive cancellation decoding of polar codes,’’ in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process. (ICASSP), May 2011, pp. 1665–1668.

OUALID MOUHOUBI (Member, IEEE) received
the Engineering degree in electronics and telecom-
munications from Ecole National Polytechnique,
Algiers, Algeria, in 2016, and the M.Sc. degree
in embedded systems and information process-
ing from the University of Paris Saclay, France,
in 2017. He is currently pursuing the Ph.D. degree
with the Department of Mathematical and Elec-
trical Engineering (MEE), IMT Atlantique/Lab-
STICC Laboratory, Brest, France. His general

research interests include the investigation of efficient hardware architectures
for decoding error-correcting codes, and in particular the design of flexible,
and low latency decoders for 5G NR polar codes.

CHARBEL ABDEL NOUR (Senior Member,
IEEE) received the degree in computer and com-
munications engineering from Lebanese Univer-
sity, Roumieh, Lebanon, in 2002, the master’s
degree in digital communications from the Uni-
versity of Valenciennes, Valenciennes, France,
in 2003, the Ph.D. degree in digital communi-
cations from Telecom Bretagne, Brest, France,
in 2008, and the Accreditation to Supervise
Research degree from the University of Southern

Brittany, Lorient, France, in 2020. From June 2007 to October 2011, he was
worked as a Postdoctoral Fellow with the Department of Electronics, Tele-
com Bretagne. He was involved in several research projects related to
broadcasting and satellite communications. Additionally during the same
period, he was with the Digital Video Broadcasting DVB Consortium, where
he had important contributions. Since November 2011, he has been an
Associate Professor at Telecom Bretagne and then the IMT Atlantique/Lab-
STICC Laboratory. Later, he presented several contributions to the H2020
METIS, FANTASTIC-5G, and EPIC Projects, and the 3GPP consortium
related to coding solutions for 5G. His research interests include radio
mobile communications systems, broadcasting systems, coded modulations,
error correcting codes, resource and power allocation techniques, waveform
design, MIMO, and iterative receivers.

AMER BAGHDADI (Senior Member, IEEE)
received the Engineering, Master of Science, and
Ph.D. degrees from the Grenoble INP (Insti-
tut National Polytechnique), France, in 1998,
1998, and 2002, respectively, and the Accredi-
tation to Supervise Research (HDR) in sciences
and technologies of information and communi-
cation from the University of Southern Brittany,
France, in 2012. He is currently a Professor at
IMT Atlantique/Lab-STICC Laboratory. His gen-

eral technical area concerns both algorithm development for digital base-
band components and corresponding hardware/software implementations
and digital circuit design. His research activities target mainly embedded
system design and digital communication applications, in addition to other
application domains, and more particularly the design of flexible digital
physical layer for future wireless communication standards and terminals.
In this context, he has recently contributed to FlexDEC-5G, H2020 METIS,
FANTASTIC-5G, and EPIC Research Projects. He serves on the technical
program committee of several international conferences.

113994 VOLUME 10, 2022

