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Context: Atlantic Meridional Overturning Circulation (AMOC)

AMOC
— Circulation in the Atlantic ocean
Shallow warm water northward

Deep cold water southward

Fig.1: Schematic of AMOC [Source:
http://www.noc.soton.ac.uk/rapidmoc/]
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— Influence on climate of Atlantic regions

— Essential to monitor its evolution

Fig.2: Experiences of AMOC collapse/resumption and influence on surface temperature anomalies
[Source: Pedro et al., 2018]]



Context: AMOC observations and AMOC projections in climate models
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Fig.1: AMOC observations from RAPID/MOCHA system
[Source: Moat et al., 2020]
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Fig.2: AMOC anomalies from different models (SSP5-8.5 in CMIP5-6)
[Source: Lyu and Church, 2020] 3

AMOC change relative to 1995-2014(SV)




Aim of this study: compute weights to constraint climate projections

—— Climate simulation A Classic unweigted projections:
~— Climate simulation B
—— Climate simulation C =

¥ Observations with uncertainty

"one model one vote" or "model democracy"

Proposed weighted projections:
using advanced data science tools

Climate index

£C°mpﬂ§?nze$%2§n%‘ia,ﬁs' WC)} LUse (wa, wa, wc) to weight climate pro;ectlons
Past Present Future
Time
State of the art — Model democracy Our goal — Weight the projections

(same weights)
— Using available simulations and observations

— Questionable
(e.g., Knutti et al., 2019) — Reduce the uncertainty 4



Proposed methodology: combination of data assimilation and machine learning

Successors

Forecast (k)

(b)

weights
r—%

(c)

Analogs

Analysis (k—1)

*

Model MV
Model M2
Model M
Observation

(a)

Fig.1: Scheme of the methodology
[Source: Ruiz et al., 2022]
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Step (a): Data assimilation

— start from an accurate initial condition
— Ensemble Kalman filter (EnKF)

Step (b): Data-driven forecast

— make forecasts without equations
— analog method

Step (c): Weighting procedure

— compute observation-forecast distance
— contextual model evidence (CME)

Ruiz, J., Ailliot, P., Chau, T. T. T,, Le Bras, P., Monbet, V., Sévellec, F., & Tandeo,
P. (2022). Analog data assimilation for the selection of suitable general
circulation models. Geoscientific Model Development, 15(18), 7203-7220. 5




Experimental set up: idealized AMOC chaotic model

3-variable AMOC chaotic model
(Sévellec and Fedorov, 2014)
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Experimental set up: generation of different versions of the idealized AMOC model
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Leave-One-Out strategy

Mimic 10 climate simulations and 1 observation

+ Noisy observations
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Schematic of the Leave-One-Out strategy

=> Compute 10 weights

=> Approximate observation distribution




Experimental set up: generation of different versions of the idealized AMOC model

TRAINING STAGE

TESTING STAGE

Catalogs
Observations

Independent simulations as PDFs
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Application results for one experiment: applying the weights to reconstruct the truth

=  Out-of-training simulations Attributed weights to each model
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Application results for one experiment: applying the weights to reconstruct the truth

Out-of-training simulations

PDFs simulations for each model

PDFs si uIationsdfo,re ch model
Individual simulations

= = Truth

0 1 2
Normalized AMOC

PDFs of weighted simulations
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Results: reconstruction skillness

One experiment

% PDFs overlap

Model democracy 77.6
Climatologies 78.3 (+0.7)
AnDA+CME 92.3 (+14.7)

AnDA with CME outperforms model democracy

Weights
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Application results: overall results on Leave-One-Out (LOO) experiments

LOO results: % PDF overlap between each weighted PDF and the true one
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AnDA with CME performs at least as good as model democracy
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Conclusion & perspectives

AMOC change relative to 1995-2014(SV)

— Weight climate simulations using noisy observations

—

Data-driven approach (no need to run climate models)

Combination of Data Assimilation & Machine Learning

Application to synthetic data of the AMOC

The proposed method outperforms “model democracy”
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Analog data assimilation for the selection of suitable
general circulation models

Juan Ruiz &3, Pierre Ailliot, Thi Tuyet Trang Chau, Pierre Le Bras, Valérie Monbet, Florian Sévellec,
and Pierre Tandeo

Abstract

Data assimilation is a relevant framework to merge a dynamical model with noisy observations. When various models are in
competition, the question is to find the model that best matches the observations. This matching can be measured by using the
model evidence, defined by the likelihood of the observations given the model. This study explores the performance of model
selection based on model evidence computed using data-driven data assimilation, where dynamical models are emulated using
machine learning methods. In this work, the methodology is tested with the three-variable Lorenz model and with an intermediate
complexity atmospheric general circulation model (a.k.a. the SPEEDY model). Numerical experiments show that the data-driven
implementation of the model selection algorithm performs as well as the one that uses the dynamical model. The technique is
able to select the best model among a set of possible models and also to characterize the spatiotemporal variability of the model
sensitivity. Moreover, the technique Is able to detect differences among models in terms of local dynamics in both time and space
which are not reflected in the first two moments of the climatological probability distribution. This suggests the implementation of
this technique using available long-term observations and model simulations.
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