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   Context: Atlantic Meridional Overturning Circulation (AMOC)

              AMOC     

                   →   Circulation in the Atlantic ocean

                                       Shallow warm water northward

                             Deep cold water southward

                    →   Influence on climate of Atlantic regions

                         →    Essential to monitor its evolution

Fig.1: Schematic of AMOC                                         [Source: 
http://www.noc.soton.ac.uk/rapidmoc/]

Fig.2: Experiences of AMOC collapse/resumption and influence on surface temperature anomalies                                         
[Source: Pedro et al., 2018]]
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   Context: AMOC observations and AMOC projections in climate models

Fig.2: AMOC anomalies from different models (SSP5-8.5 in CMIP5-6)
[Source:  Lyu and Church, 2020]

←       Historical period           →←   Projections   →             

Fig.1: AMOC observations from RAPID/MOCHA system
[Source: Moat et al., 2020]   

Observations: 
 →  Seasonal and interannual variability
 →  Hard to measure, lot of noise

CMIP Model projections:
→  Models predict severe decrease of the AMOC

→  Wide spread (model uncertainty)

How to improve accuracy 
and reliability of AMOC projections?
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   Aim of this study: compute weights to constraint climate projections

Our goal  →   Weight the projections

                    →   Using available simulations and observations
 
                    →   Reduce the uncertainty

State of the art    →   Model democracy 
      (same weights)

                                    →  Questionable
      (e.g., Knutti et al., 2019)

  aaaaa                       
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   Proposed methodology: combination of data assimilation and machine learning

Fig.1: Scheme of the methodology
[Source: Ruiz et al., 2022]   

Step (a): Data assimilation

 →  start from an accurate initial condition
 →  Ensemble Kalman filter (EnKF)
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Step (b): Data-driven forecast

 →  make forecasts without equations
 →  analog method

Step (c): Weighting procedure

 →  compute observation-forecast distance
 →  contextual model evidence (CME)

obs.

weights

Ruiz, J., Ailliot, P., Chau, T. T. T., Le Bras, P., Monbet, V., Sévellec, F., & Tandeo, 
P. (2022). Analog data assimilation for the selection of suitable general 
circulation models. Geoscientific Model Development, 15(18), 7203-7220.



6

3-variable AMOC chaotic model
          (Sévellec and Fedorov, 2014) 

  Experimental set up:  idealized AMOC chaotic model

ω
overturning 

strength

ΔB-T: Stratified 

salinity
ΔN-S: Meridional salinity gradient

ΔN-S

ΔB-T
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➔ 11 perturbed-parameter versions

➔ Leave-One-Out strategy

➔ Mimic 10 climate simulations and 1 observation 

  Experimental set up: generation of different versions of the idealized AMOC model
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Schematic of the Leave-One-Out strategy 

➔ Compute 10 weights

➔ Approximate observation distribution
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  Experimental set up: generation of different versions of the idealized AMOC model
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➔ Out-of-training simulations Attributed weights to each model

Application results for one experiment: applying the weights to reconstruct the truth 

PDFs simulations for each model Model democracy
Climatologies

AnDA+CME)

Truth~ 3 selected models

Weighting
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➔ Out-of-training simulations Attributed weights to each model

Application results for one experiment: applying the weights to reconstruct the truth 

PDFs simulations for each model Model democracy
Climatologies

AnDA+CME)

Truth~ 3 selected models

Results: reconstruction skillness

% PDFs overlap One experiment

Model democracy 77.6

Climatologies 78.3 (+0.7)

AnDA+CME 92.3 (+14.7)

PDFs of weighted simulations

Weighting
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AnDA with CME outperforms model democracy

PDFs simulations for each model
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LOO results: % PDF overlap between each weighted PDF and the true one

Application results: overall results on Leave-One-Out (LOO) experiments

11
AnDA with CME performs at least as good as model democracy
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PerspectivesConclusion & perspectives
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 Unweighted

  Weighted 

←       Historical period           →←   Projections   →             

→   Weight climate simulations using noisy observations

→   Data-driven approach (no need to run climate models)

→   Combination of Data Assimilation & Machine Learning

→   Application to synthetic data of the AMOC

→   The proposed method outperforms “model democracy”
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PerspectivesReference
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ありが
とう

ございま!

arigato gozaimasu!

Contact:
https://tandeo.wordpress.com/
pierre.tandeo@imt-atlantique.fr
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