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Data assimilation (graphical representation)

Principle:

mix between a dynamical model and observations

taking into account their uncertainties

Goal:

to estimate accurately the initial condition

in order to get the best forecast
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Data assimilation (mathematical formulation)

State-space model:

ẋ = f (x) + η

y = h (x) + ϵ

y → observations (what is provided)

x → state (what is unknown)

h → link between x and y

f → dynamical model

η and ϵ → additive Gaussian errors
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Data assimilation

State-space model:

ẋ = f (x) + η

y = h (x) + ϵ

𝜼
𝝐

𝙮

𝑓𝙭
(estimation 
using DA)

Source: [Carrassi et al., 2018]
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Examples of dynamical models

The Lorenz system:

ẋ1 = σ(x2 − x1)

ẋ2 = x1(ρ− x3)− x2

ẋ3 = x1x2 − βx3

with x1 the rate of convection, x2 the horizontal temperature
gradient, and x3 the vertical temperature gradient.
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Examples of dynamical models

Lotka–Volterra equations:

ẋ1 = αx1 − βx1x2

ẋ2 = δx1x2 − γx2

with x1 the preys and x2 the predators.
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Scientific questions

Dynamical model f :
ẋ = f (x)

Questions:

when equations are available, is it possible to improve f ?

when equations are not available, is it possible to learn f ?

Answers:

yes, using available observations (i.e., noisy and partial)

combining data assimilation and machine learning
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Combine DA and ML to estimate f

Different case studies:
1 f is available but parameters are unknown

2 f is approximated using a catalog of the full system

3 f is approximated using a catalog of the partial system
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(1) f is defined by equations but parameters are unknown

State-space model (with augmented state) :

ẋ = f (x) + η

y = h (x) + ϵ

x = [x,θ] → augmented state

θ → unknown parameters

f → dynamical model for x and θ

see [Ruiz et al., 2013] for more details
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(1) f is defined by equations but parameters are unknown

Example of the Lorenz system:

x = [x1, x2, x3, σ, ρ, β]

f corresponds to the system of 3 ODEs to predict [x1, x2, x3]

f also corresponds to random walks for [σ, ρ, β]

Source: [Annan and Hargreaves, 2004]
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(1) f is defined by equations but parameters are unknown

Example of Lotka-Volterra:

x = [x1, x2, α, β, γ, δ]
f corresponds to the system of 2 ODEs to predict [x1, x2]
f also corresponds to random walks for [α, β, γ, δ]
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(1) f is defined by equations but parameters are unknown

Example of Lotka-Volterra:

x1 and x2 are observed

α, β, γ, and δ are initialized using random values
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(2) f is approximated using a catalog of the full system

State-space model (with emulated model) :

ẋ = f (x) + η

y = h (x) + ϵ

f = f̃ → emulated dynamical model

f̃ → build using a full catalog and regression methods
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(2) f is approximated using a catalog of the full system

More details about the Analog Data Assimilation (AnDA):

f̃ is learned using a catalog of analogs and successors

forecasts from f̃ are compared to observations

timet+dtt

Analogs Successors

*** ***

*** ***

*** ***

Catalog:

Source: [Tandeo et al., 2015] and [Lguensat et al., 2017]
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(2) f is approximated using a catalog of the full system

Example of the Lorenz system:

f̃ is build using a catalog of x = [x1, x2, x3]

x2 is observed, but never x1 nor x3

With Lorenz equations:

With a full catalog:
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(2) f is approximated using a catalog of the full system

Example of the Hare-Lynx database:

f̃ is build using a catalog of x = [Hare, Lynx ] until 1907
after 1907, Lynx are observed, but never Hares
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(3) f is approximated using a catalog of the partial system

State-space model (with emulated model + augmented state) :

ẋ = f (x) + η

y = h (x) + ϵ

f = f̃ → emulated dynamical model

f̃ → build using a partial database and regression methods

x = [x, z] → augmented state with latent variables z
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(3) f is approximated using a catalog of the partial system

Schematic representation of the proposed iterative algorithm:

⇒ starting from a Gaussian white noise, the latent variable
automatically adjusts over iterations
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(3) f is approximated using a catalog of the partial system

Example of the Lorenz system:

x = [x2, x3, z1]

x2 and x3 are observed, but never x1
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(3) f is approximated using a catalog of the partial system

Example of the Hare-Lynx database:

x = [Lynx, z ]

Lynx are observed, but never Hares

20 / 23



Conclusions and perspectives

Conclusions (presented here):

a dynamical model f can be improved or learned

using observations and appropriate tools (DA and ML)

Important remarks (not presented here):

estimation of model and observation errors is crucial
(see [Tandeo et al., 2020] for a review)

using optimization algorithms
(e.g., descent gradient or Expectation-Maximization)
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ありがとうございます (arigatō gozaimasu)!

Contact:

pierre.tandeo@imt-atlantique.fr

www.tandeo.wordpress.com

Figure: Nice places to visit near Brest, France: Crozon (left), Huelgoat (middle),
Monts d’Arrée (right).
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