Data-driven reconstruction of partially observed dynamical systems

Dr. Pierre Tandeo, associate professor

IMT Atlantique, Brest, France

August 23, 2023

10th International Congress on Industrial and Applied Mathematics
ICIAM 2023 TOKYO

Context presented using the Lorenz-63 system

Make predictions of multivariate time series:

???

Constraints:

- no dynamical model (i.e., equations are not available)
- only partial observations available (e.g., one variable is missing)

Proposed approach and scientific questions

True dynamical model f :

$$
\dot{\mathbf{x}}=f(\mathbf{x})
$$

with:

- $\mathbf{x}=\left[x_{1}, x_{2}, x_{3}\right]$
- f is the Lorenz model

Proposed dynamical model \tilde{f} :

$$
\dot{\mathbf{x}}=\tilde{f}(\mathbf{x})
$$

with:

- $\mathbf{x}=\left[x_{2}, x_{2}, x_{3}, \mathbf{z}\right]$
- \tilde{f} is a statistical emulator

Questions:

- can we learn \tilde{f} without observing x_{1} ?
- are predictions of \tilde{f} accurate and reliable?
- can we learn z and what is its meaning?

Mathematical formulation

State-space model (with emulated model + augmented state):

$$
\begin{aligned}
& \dot{\mathbf{x}}=\tilde{f}(\mathbf{x})+\boldsymbol{\eta} \\
& \mathbf{y}=h(\mathbf{x})+\boldsymbol{\epsilon}
\end{aligned}
$$

- $\mathbf{y}=\left[y_{2}, y_{3}\right] \rightarrow$ partial observations of the system
- $\mathbf{x}=\left[x_{2}, x_{3}, \mathbf{z}\right] \rightarrow$ augmented state with latent variables \mathbf{z}
- $\tilde{f} \rightarrow$ learned using regression methods

Proposed algorithm

Schematic representation of the proposed iterative algorithm:

- latent variable z_{1} is initialized as a Gaussian white noise
- \tilde{f} is approximated using a constant and linear operator \mathbf{M}
- everything is linear and Gaussian so we use the Kalman smoother
- likelihood \mathcal{L} is the optimization criterion

Optimization criterion

Likelihood of the observations:

$$
\mathcal{L}(\mathbf{y}) \propto \prod_{t=1}^{T} \exp \left(-\mathbf{d}(t)^{\top} \boldsymbol{\Sigma}(t)^{-1} \mathbf{d}(t)\right)
$$

with the innovation defined by its mean and covariance:

$$
\mathbf{d}(t)=\mathbf{y}(t)-\mathbf{H} \mathbf{x}^{f}(t) \text { and } \boldsymbol{\Sigma}(t)=\mathbf{H} \mathbf{P}^{f}(t) \mathbf{H}^{\top}+\mathbf{R}
$$

Interest of the likelihood criteria:

- EM-like algorithm, thus likelihood increases until convergence
- quantitative criteria to select the optimal number of latent components

Illustration

Example of the Lorenz system:

- x_{2} and x_{3} are observed, but never x_{1}
- $\mathbf{x}=\left[x_{2}, x_{3}, z_{1}\right]$

Meaning of z_{1}

Meaning of z_{1} :

- revealed by symbolic regression
- between z_{1} and usual transformations of x_{2} and x_{3}

z_{1}	x_{2}	x_{3}	$x_{2} x_{3}$	x_{2}^{2}	x_{3}^{2}	$\sqrt{x_{2}}$	$\sqrt{x_{3}}$	\ldots	\dot{x}_{2}	\dot{x}_{3}

Estimation of z_{2} and z_{3}

Estimation of z_{2} and z_{3} :

$\Rightarrow z_{3}$ is useless (almost constant and lower likelihood)

Meaning of z_{1} and z_{2}

Meaning of z_{1} and z_{2} :

$$
\begin{aligned}
z_{1} & =a_{2} \dot{x_{2}}+a_{3} \dot{x_{3}} \\
z_{2} & =b_{1} \dot{\dot{1}_{1}}+b_{2} \dot{x_{2}}+b_{3} \dot{x_{3}} \\
& =b_{2} \dot{x}_{2}+b_{3} \dot{\dot{x}_{3}}+b_{1} a_{2} \ddot{x}_{2}+b_{1} a_{3} \ddot{x}_{3}
\end{aligned}
$$

$\Rightarrow z_{1}$ and z_{2} take into account time delays of x_{2} and x_{3}
\Rightarrow strong connections with Takens' and Taylor's theorems

Linear surrogate model of the Lorenz system:

- f is approximated using a linear regression
- it corresponds to a constant 4×4 matrix \mathbf{M}
- it can be used to make predictions of x_{2} and x_{3}

Example of statistical forecasts using linear operators

Example of statistical forecasts using linear operators:

Performance metrics of the linear operators

Performance metrics of the linear operators:

Component x_{2}

Component x_{3}

Conclusions and perspectives

Context:

- data-driven predictions (i.e., without physical equations)
- missing components of the system (e.g., x_{1} of Lorenz)

Conclusions:

- combination of data assimilation and machine learning
- inference of latent variables, interesting physical meaning

Perspectives:

- apply the methodology on climate indices
- learn time dependent and linear dynamical operators $\mathbf{M}(t)$

ありがとうございます（arigatō gozaimasu）！

Tandeo et al． 2023 ［NPG］：

Nonlin．Processes Geophys．，30，129－137， 2023
https：／／doi．org／10．5194／npg－30－129－2023
© Author（s）2023．This work is distributed under the Creative Commons Attribution 4．0 License．

Data－driven reconstruction of partially observed dynamical systems

Pierre Tandeo ${ }^{1,2,3}$ ，Pierre Ailliot ${ }^{4}$ ，and Florian Sévellec ${ }^{5,2}$

Contact：

－pierre．tandeo＠imt－atlantique．fr
－www．tandeo．wordpress．com

