Data-driven reconstruction of partially observed dynamical systems

Dr. Pierre Tandeo, associate professor

IMT Atlantique, Brest, France

August 23, 2023

Context presented using the Lorenz-63 system

Make predictions of multivariate time series:

Constraints:

- no dynamical model (i.e., equations are not available)
- only partial observations available (e.g., one variable is missing)

Proposed approach and scientific questions

True dynamical model f:

 $\dot{\mathbf{x}} = f(\mathbf{x})$

with:

- $\mathbf{x} = [x_1, x_2, x_3]$
- f is the Lorenz model

Proposed dynamical model \tilde{f} :

$$\dot{\mathbf{x}} = \tilde{f}(\mathbf{x})$$

with:

•
$$\mathbf{x} = [\mathbf{x}_1, x_2, x_3, \mathbf{z}]$$

• \tilde{f} is a statistical emulator

Questions:

- can we learn \tilde{f} without observing x_1 ?
- are predictions of \tilde{f} accurate and reliable?
- can we learn z and what is its meaning?

Mathematical formulation

State-space model (with emulated model + augmented state):

$$\dot{\mathbf{x}} = \tilde{f}(\mathbf{x}) + \boldsymbol{\eta}$$

 $\mathbf{y} = h(\mathbf{x}) + \boldsymbol{\epsilon}$

- $\mathbf{y} = [y_2, y_3] \rightarrow \mathbf{partial observations}$ of the system
- $\mathbf{x} = [x_2, x_3, \mathbf{z}] \rightarrow \mathbf{augmented state}$ with latent variables \mathbf{z}
- $\tilde{f} \rightarrow$ learned using regression methods

Proposed algorithm

Schematic representation of the proposed iterative algorithm:

- latent variable z_1 is initialized as a Gaussian white noise
- \tilde{f} is approximated using a constant and linear operator ${f M}$
- everything is linear and Gaussian so we use the Kalman smoother
- likelihood $\mathcal L$ is the optimization criterion

Optimization criterion

Likelihood of the observations:

$$\mathcal{L}\left(\mathbf{y}
ight) \propto \prod_{t=1}^{\mathcal{T}} \exp\left(-\mathbf{d}(t)^{ op} \mathbf{\Sigma}(t)^{-1} \mathbf{d}(t)
ight)$$

with the **innovation** defined by its mean and covariance: $\mathbf{d}(t) = \mathbf{y}(t) - \mathbf{H}\mathbf{x}^{f}(t)$ and $\mathbf{\Sigma}(t) = \mathbf{H}\mathbf{P}^{f}(t)\mathbf{H}^{\top} + \mathbf{R}$.

Interest of the likelihood criteria:

- EM-like algorithm, thus likelihood increases until convergence
- quantitative criteria to select the **optimal number** of latent components

Illustration

Example of the Lorenz system:

• x_2 and x_3 are observed, but never x_1

•
$$\mathbf{x} = [x_2, x_3, z_1]$$

Meaning of z_1

Meaning of z_1 :

- revealed by symbolic regression
- between z_1 and usual transformations of x_2 and x_3

Estimation of z_2 and z_3

Estimation of z_2 and z_3 :

 \Rightarrow z₃ is **useless** (almost constant and lower likelihood)

Meaning of z_1 and z_2

Meaning of z_1 and z_2 :

$$z_1 = a_2 \dot{x}_2 + a_3 \dot{x}_3$$

$$z_2 = b_1 \dot{z}_1 + b_2 \dot{x}_2 + b_3 \dot{x}_3$$

$$= b_2 \dot{x}_2 + b_3 \dot{x}_3 + b_1 a_2 \ddot{x}_2 + b_1 a_3 \ddot{x}_3$$

 \Rightarrow z_1 and z_2 take into account **time delays** of x_2 and x_3 \Rightarrow strong connections with **Takens' and Taylor's theorems**

Linear surrogate model of the Lorenz system:

- f is approximated using a linear regression
- it corresponds to a constant 4×4 matrix **M**
- it can be used to make predictions of x₂ and x₃

Example of statistical forecasts using linear operators

Example of statistical forecasts using linear operators:

Performance metrics of the linear operators

Context:

- data-driven predictions (i.e., without physical equations)
- missing components of the system (e.g., x_1 of Lorenz)

Conclusions:

- combination of data assimilation and machine learning
- inference of latent variables, interesting physical meaning

Perspectives:

- apply the methodology on climate indices
- learn time dependent and linear dynamical operators $\mathbf{M}(t)$

ありがとうございます (arigatō gozaimasu)!

Tandeo et al. 2023 [NPG]:

Nonlin. Processes Geophys., 30, 129–137, 2023 https://doi.org/10.5194/npg-30-129-2023 © Author(s) 2023. This work is distributed under the Creative Commons Attribution 4.0 License.

Data-driven reconstruction of partially observed dynamical systems

Pierre Tandeo^{1,2,3}, Pierre Ailliot⁴, and Florian Sévellec^{5,2}

Contact:

- pierre.tandeo@imt-atlantique.fr
- www.tandeo.wordpress.com