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Context presented using the Lorenz-63 system

Make predictions of multivariate time series:

???

Constraints:

no dynamical model (i.e., equations are not available)

only partial observations available (e.g., one variable is missing)
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Proposed approach and scientific questions

True dynamical model f :

ẋ = f (x)

with:

x = [x1, x2, x3]

f is the Lorenz model

Proposed dynamical model f̃ :

ẋ = f̃ (x)

with:

x = [��ZZx1, x2, x3, z]

f̃ is a statistical emulator

Questions:

can we learn f̃ without observing x1?

are predictions of f̃ accurate and reliable?

can we learn z and what is its meaning?
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Mathematical formulation

x =        + z

State-space model (with emulated model + augmented state):

ẋ = f̃ (x) + η

y = h (x) + ϵ

y = [y2, y3] → partial observations of the system

x = [x2, x3, z] → augmented state with latent variables z

f̃ → learned using regression methods
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Proposed algorithm

Schematic representation of the proposed iterative algorithm:

latent variable z1 is initialized as a Gaussian white noise

f̃ is approximated using a constant and linear operator M

everything is linear and Gaussian so we use the Kalman smoother

likelihood L is the optimization criterion
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Optimization criterion

Likelihood of the observations:

L (y) ∝
T∏
t=1

exp
(
−d(t)⊤Σ(t)−1d(t)

)
with the innovation defined by its mean and covariance:
d(t) = y(t)−Hxf (t) and Σ(t) = HPf (t)H⊤ + R.

Interest of the likelihood criteria:

EM-like algorithm, thus
likelihood increases until
convergence

quantitative criteria to
select the optimal number
of latent components
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Illustration

Example of the Lorenz system:

x2 and x3 are observed, but never x1

x = [x2, x3, z1]

7 / 14



Meaning of z1

Meaning of z1:

revealed by symbolic regression

between z1 and usual transformations of x2 and x3

z1 x2 x3 x2x3 x22 x23
√
x2

√
x3 . . . ẋ2 ẋ3
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Estimation of z2 and z3

Estimation of z2 and z3:

⇒ z3 is useless (almost constant and lower likelihood)
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Meaning of z1 and z2

Meaning of z1 and z2:

z1 = a2ẋ2 + a3ẋ3

z2 = b1ż1 + b2ẋ2 + b3ẋ3

= b2ẋ2 + b3ẋ3 + b1a2ẍ2 + b1a3ẍ3

⇒ z1 and z2 take into account time delays of x2 and x3
⇒ strong connections with Takens’ and Taylor’s theorems

Linear surrogate model of the Lorenz system:

f is approximated using a linear regression

it corresponds to a constant 4× 4 matrix M

it can be used to make predictions of x2 and x3
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Example of statistical forecasts using linear operators

Example of statistical forecasts using linear operators:
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Performance metrics of the linear operators

Performance metrics of the linear operators:
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Conclusions and perspectives

Context:

data-driven predictions (i.e., without physical equations)

missing components of the system (e.g., x1 of Lorenz)

Conclusions:

combination of data assimilation and machine learning

inference of latent variables, interesting physical meaning

Perspectives:

apply the methodology on climate indices

learn time dependent and linear dynamical operators M(t)
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ありがとうございます (arigatō gozaimasu)!

Tandeo et al. 2023 [NPG]:

Contact:

pierre.tandeo@imt-atlantique.fr

www.tandeo.wordpress.com
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