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Context presented using the Lorenz-63 system

Make predictions of multivariate time series:

> P77

Constraints:
@ no dynamical model (i.e., equations are not available)
@ only partial observations available (e.g., one variable is missing)
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Proposed approach and scientific questions

True dynamical model f: Proposed dynamical model f:
x = f(x) x = f(x)
with: with:
® X = [x1,x2, x3] ° x =[x x2,x3,2]
@ f is the Lorenz model e f is a statistical emulator
Questions:

@ can we learn f without observing x;?
e are predictions of f accurate and reliable?

@ can we learn z and what is its meaning?
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Mathematical formulation

State-space model (with emulated model + augmented state):

(x) +
(x) +

||
> T

e y = [y2, y3] — partial observations of the system
@ X = [x2, x3,2] — augmented state with latent variables z

o f — learned using regression methods
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Proposed algorithm

Schematic representation of the proposed iterative algorithm:
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latent variable z; is initialized as a Gaussian white noise

f is approximated using a constant and linear operator M

everything is linear and Gaussian so we use the Kalman smoother

likelihood L is the optimization criterion
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Optimization criterion

Likelihood of the observations:

z
) Lo (-
t=1

TE(r) ()

with the innovation defined by its mean and covariance:

d(t) = y(t) — Hx(t) and Z(t) =

environmental
system P observations
@ Jorecast

B analysis

niodel

HPf(t)HT +R.

Interest of the likelihood criteria:

o EM-like algorithm, thus
likelihood increases until
convergence

@ quantitative criteria to
select the optimal number

of latent components
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[llustration

Example of the Lorenz system:

@ x» and x3 are observed, but never x;
@ X = [X2)X3)Zl]

(Z1, x2) plane (Z1, x3) plane Log-likelihood
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Meaning of z;:
@ revealed by symbolic regression
@ between z; and usual transformations of x> and x3
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Estimation of z, and z

Estimation of z and z3:
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----- x =[xz, X3]

— x=[x2,X3,21]

— Xx=[x2,x3,21,2]
— X=[x2,X3,21,22,23]
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= z3 is useless (almost constant and lower likelihood) o)1e



Meaning of z; and 2

Meaning of z; and z:

71 = axXo + azx3
zp = b1Z1 + boxp + b3x3
= bpXo + b3xXz + b1axxz + b1azxs

= z1 and z take into account time delays of x» and x3
= strong connections with Takens’ and Taylor’s theorems

Linear surrogate model of the Lorenz system:

@ f is approximated using a linear regression
@ it corresponds to a constant 4 x 4 matrix M

@ it can be used to make predictions of x, and x3
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Example of statistical forecasts using linear operators

Example of statistical forecasts using linear operators:
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Performance metrics of the linear operators

Performance metrics of the linear operators:
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Conclusions and perspectives

Context:

e data-driven predictions (i.e., without physical equations)

@ missing components of the system (e.g., x; of Lorenz)

Conclusions:

@ combination of data assimilation and machine learning

@ inference of latent variables, interesting physical meaning

Perspectives:
@ apply the methodology on climate indices

@ learn time dependent and linear dynamical operators M(t)
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