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Cyclostationarity of Communication Signals in

Underwater Acoustic Channels

François-Xavier Socheleau

Abstract

The effect of underwater acoustic propagation on the cyclostationary features of communication

signals is modeled and analyzed. Two kinds of channels are considered: the multiscale-multilag channel,

over which mobile and wideband acoustic systems usually communicate, and the dispersive channel

resulting from low-frequency modal propagation in shallow water. It is shown that multiscale-multilag

channels transform cyclostationary signals into a sum of velocity and acceleration-dependent time-

warped cyclostationary processes. This time-warping is carefully taken into account to efficiently recover

the cyclostationary features. On the other hand, it is found that low-frequency dispersive channels

preserve the original periodicity but attenuate the shorter cycles and spread the correlations. To illustrate

the theoretical results, applications with simulated and real data are also presented. Specifically, the

problem of estimating time-varying Doppler scales is addressed for multiscale-multilag channels as well

as the detection of signals with unique cyclostationary signatures. The example of blind symbol-rate

estimation applied to covert communications in dispersive channels is also discussed. Special attention

is paid to PSK, QAM, OFDM and DSSS signals. Accompanying supplementary material provides the

MATLAB code used for the estimation and detection examples.

Index Terms

Acoustic communications, cyclostationarity, modal dispersion, multiscale-multilag channel, under-

water warfare.
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I. INTRODUCTION

Communication signals are random and unpredictable by definition. However, due to repetitive

pulse shaping, periodic carriers, framing or coding, they usually involve periodic processes

in combination with their random fluctuations. Although not themselves periodic functions of

time, communication signals often exhibit statistical characteristics that do vary periodically.

They belong to the set of so-called cyclostationary (CS) processes [2]. Analysis of CS signals

relies on a well-established theory which extends most signal processing tools historically

developed for stationary signals [3], [4]. Such a theory mainly seeks to model, reveal and

exploit the hidden periodicities (also called “cycles”) of CS signals so as to extract relevant

information. Cyclostationarity has found many applications in wireless communications such

as signal detection, modulation classification and parameter estimation, source localization,

interference mitigation or blind channel estimation, to name a few [2], [5]. CS-based algorithms

offer several interesting properties. Like all statistics-based methods, they require little prior

knowledge on the signal to process and “are potentially immune to the effects of noise and

interference, provided that a sufficiently long observation interval is adopted to estimate the

cyclic statistics” [5].

Although very popular in the context of terrestrial RF communications, CS-based methods have

received little attention in the literature dedicated to underwater acoustic communications (UAC).

Examples of UAC-specific contributions include Doppler scale estimation [6], [7], symbol rate

estimation [8] and blind modulation classification [9]. However, these works apply and test RF

methods with little adaptation to the specific features of underwater channels. For instance, they

all assume that the motion-induced Doppler effect causes a constant time compression/dilation

of the received signal over some (possibly short) measurement interval. As illustrated latter in

this paper, such an assumption may be violated in high-mobility scenarios.

The main contribution of this paper is to model and analyze the effect of UAC channels on the

second-order CS features of communication signals. We also develop CS-based algorithms that

take into account “by design” the channel specificities. More precisely, we consider two UAC-

specific channels, namely the multiscale-multilag (MSML) channel and the dispersive channel.

Underwater MSML channels are observed in multipath propagation environments when the

transmission bandwidth is of the same order as the carrier frequency and when the relative
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velocity between the transmitter and receiver is non-negligible relative to the speed of sound [10].

In this scenario, the Doppler-shift approximation is no longer valid because the motion-induced

Doppler effect actually compresses or dilates signals in time. This phenomenon is referred to

as Doppler scaling. In addition, depending on the channel geometry, each path may experience

a different Doppler scale, hence the name MSML channel. MSML models are not relevant for

all communication scenarios. More specifically, at low frequency (a few hundreds of Hz) and in

shallow water environments, the propagation is better described by normal-mode theory, which

models the channel as the sum of several modes [11]. In such a scenario, each mode has its

own travel time and bandwidth and the modal group velocity is frequency dependent so that the

channel is said to be dispersive [12]. In other words, the propagation speed varies with frequencies

and the usual model with individual paths is not accurate in this context. As discussed in the

sequel, MSML and dispersive channels do not impact the cyclostationary features of UAC signals

in the same way. MSML channels transform periodic statistics into velocity and acceleration-

dependent time-warped statistics, whereas dispersive channels keep the original periodicity but

attenuate the shorter cycles and spread the correlations.

To promote the use of CS-based method in UAC contexts and illustrate the theoretical results,

applications with both simulated and real data are also presented. Two experiments are conducted

in MSML channels and one in a dispersive channel.

1) In the first experiment, the estimation of time-varying Doppler scales resulting from strong

accelerations is considered. A method capable of estimating multiple Doppler scales, as

observed in MSML channels, is proposed and assessed on simulated PSK/QAM signals.

This method takes advantage of the CS features that become time-warped as a result

of Doppler scaling. More specifically, a quadratic function of time is used to model

the motion-induced Doppler and a cost function is derived based on the autocorrelation

properties. This cost is then iteratively optimized to estimate the polynomial coefficients

related to the velocity and acceleration of each path. The estimation procedure is non-

data-aided. It does not affect the data rate and is applicable in non-cooperative scenarios.

2) The second application deals with the problem of detecting a UAC signal with a specific

CS signature. Such a signature may be unique and therefore relevant to detect a given

communication system in underwater warfare-like applications. A statistical test that

explicitly considers time-varying Doppler scales is derived. This test offers reasonable
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complexity and its performance is illustrated with real CP-OFDM data collected in shallow-

water MSML channels. It is shown to provide much better performance than off-the-shelf

RF methods.

3) The last experiment is dedicated to the problem of blind symbol-rate estimation applied to

a DSSS transmission in a dispersive channel. Such a problem may be of key importance for

eavesdropping on low-frequency covert communications. As opposed to MSML channels,

dispersive channels do not distort much the CS features so that estimators already available

in the literature require little adaptation. An estimator is presented and its performance is

illustrated with replay simulations using real low-frequency single-input mutliple-output

(SIMO) shallow-water impulse responses. It is shown that the spatial coherence along the

array results in a significant improvement in correct estimation rate.

The Matlab code of these examples is provided as supplementary material [13].

The rest of this paper is organized as follows. Concepts and definitions related to the second-

order cyclostationarity of communications signals are reviewed in Section II, with emphasis on

PSK/QAM, OFDM and DSSS signals. The impact of MSML channels on CS features is modeled,

analyzed and illustrated in Section III. A Doppler-scale estimator and a CS detector are derived

in Section III-C and III-D, respectively. The effect of dispersive channels with application to

blind symbol-rate estimation of DSSS signals is presented in Section IV. Finally, conclusions

are drawn in Section V.

II. CYCLOSTATIONARITY OF COMMUNICATION SIGNALS

A. General definitions

A random signal x(t) is said to be second-order cyclostationary (CS) in the wide sense if its

mean and autocorrelation are periodic functions of time [2]. More specifically, let Rx(t, u) be

the autocorrelation function defined as

Rx(t, u)
∆
= E {x∗(t)x(t+ u)} . (1)

If x(t) is second-order cyclostationary with period T0 > 0, Rx(t, u) admits the following Fourier

series expansion

Rx(t, u) =
∑
α∈A

Rα
x(u)ei2παt, (2)

October 13, 2022 DRAFT



5

where A = {k/T0}k∈Z denotes the countable set of cycle frequencies α and Rα
x(u) is the cyclic

autocorrelation function defined as

Rα
x(u)

∆
=

1

T0

∫ T0
2

−T0
2

Rx(t, u)e−i2παtdt. (3)

For each α ∈ A, let

Sαx (ν)
∆
=

∫
R
Rα
x(u)e−i2πuνdu (4)

referred to as the cyclic spectrum. This spectrum reveals the spectral correlation of CS signals.

More precisely, CS signals have correlated spectral components when the frequency difference

is equal to a cycle frequency, that is [2]

Sx (ν1, ν2)
∆
= E {X∗(ν1)X(ν2)} =

∑
α∈A

Sαx (ν2)δ(ν1 − ν2 + α), (5)

where δ(·) denotes the Dirac delta distribution, X(ν) is the Fourier transform of x(t) and

Sx (ν1, ν2) is called the spectral correlation function (or Loève bifrequency spectrum). As

discussed in Sec. III and IV, the choice to study the cyclostationary properties in time via

the autocorrelation function or in frequency via the spectral correlation function will depend on

the characteristics of the considered channel.

B. Examples

Most communication signals are cyclostationary with a period equal to the symbol period

Ts. This is illustrated in Fig. 1 with the cyclic autocorrelation function of four types of signals

commonly used in underwater acoustic communications: PSK/QAM [14], [15] (top left), short-

code DSSS [16]–[18] (top right), cyclic prefix OFDM (CP-OFDM) [19]–[21] (bottom left), and

guard-free OFDM with super-imposed pilots (SIP-OFDM) [22] (bottom right). Each signal has

its own CS pattern, which can be useful for blind modulation recognition, and each pattern

reveals the value of the symbol period Ts. As further discussed and illustrated in Appendix

A, such signals exhibit periodic second-order statistics due to the repetitive use of the same

pulse-shaping filter, same spreading or pilot sequence, or due to the redundancy induced by a

cyclic prefix. Other types of UAC waveforms such as MFSK, frequency-hopped FSK (as used

in the JANUS standard [23]), or chirp spread-spectrum are also second-order CS [24], [25].

Although not discussed in this paper, the examples of applications presented in the next sections

could easily be transposed to these non-coherent modulation schemes. Finally, in addition to
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(a) (b)

(c) (d)

Fig. 1: Examples of cyclic autocorrelation functions. (a) PSK/QAM with a root-raised-cosine

filter, (b) short-code DSSS with a 7-chip long spreading sequence and a root-raised-cosine filter

(c) CP-OFDM with a root-raised-cosine window, (c) SIP-OFDM with a rectangular window

data symbols, UAC signals often include signaling patterns such as preambles, postambles, or

time-frequency pilots that can generate additional CS features [26], [27]. In that case, the cycle

frequencies can be incommensurate and the signal is said to be almost CS [4]. In order not

to depend on a particular frame structure, the methods presented in the rest of the paper only

take advantage of the information provided by the cycle frequencies which are multiples of the

symbol rate.
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III. CYCLOSTATIONARITY IN MULTISCALE-MULTILAG CHANNELS

A. Channel model

As mentioned previously, MSML channels are observed in wideband, mobile and multipath

propagation environments. Given an input CS signal x(t), the channel output r(t) satisfies 1

r(t) =
L∑
`=1

λ`(t)y`(t) + w(t), (6)

where λ`(t) is the random complex attenuation of the `-th channel tap and w(t) is the additive

noise assumed to be wide-sense stationary. In practice, the received signal is observed over a

finite duration Tobs, which, as illustrated in Sec. III-C, is on the order of a few seconds or less.

Over that duration, the time-varying impulse response can be reasonably approximated as wide-

sense stationary (WSS) [28]–[30] so that E {λ∗`(t)λm(t+ u)} = Rλ`,λm(u) does not depend on t.

In (6), the signal y`(t) is a delayed, phase and frequency shifted as well as time-warped version

of the transmitted signal, i.e.,

y`(t)
∆
= x(ψ`(t)− τ`)ei2πfc(ψ`(t)−τ`−t). (7)

τ` denotes the initial time of arrival of the `-th tap, fc is the carrier frequency and ψ`(t) is the

time-varying delay of the `-th tap. Stated differently, ψ`(t) is the time-warping function of the

`-th tap resulting from motion-induced Doppler scaling. Each function ψ`(t) is usually modeled

as the sum of a dominant term, compensated by resampling at reception, plus some residual

Doppler shift that can be tracked with narrowband processing. We here focus on the dominant

term and model the relative motion between the transmitter (TX) and the receiver (RX) with the

following polynomial [31, Eq. (9)]

ψ`(t)
∆
=
(

1− v`
c

)
t− a`

2c
t2 + o(t2), (8)

where c is the sound speed, v` is the relative velocity between TX and RX, and a` is the relative

acceleration. In typical underwater scenarios, c is usually around 1500 m.s−1, v` is on the order

of a few meters per second and a` is bounded by a couple a meters per second squared. Model

(8) is usually relevant only if the observation window is restricted to a few seconds or less. Fig.

2 shows an example of the motion-induced time-varying delays of a MSML channel simulated

1For the sake of simplicity, the frequency-dependent losses are voluntarily omitted in the channel model.
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Fig. 2: Example of a simulated time-varying impulse response obtained with Bellhop. Kauai

environment [32, Fig. 16], range varying between 4.97 and 5.03 km, TX depth = 50 m, RX

depth varying between 50 and 200 m.

with Bellhop [32] over 60 seconds. Within any time interval of a few seconds, we see that

a second-order approximation of the time-varying delays seems reasonable. However, in some

specific environments such as the surf zone, note that Eq. (8) may not be accurate to model

the possible effects of wave-induced Doppler on surface-reflected arrivals. As illustrated in [33],

the acoustic focusing by the curvature of the wave crest can create time-varying delays with

discontinuities. Such an environment is not considered in the present analysis.

B. Cyclostationary analysis

Although the transmitted signal x(t) is CS, Doppler scaling expressed in (7) can destroy the

cyclic feature of the received signal, i.e., Rr(t, u) may not be periodic. However, each time-

warped signal y`(t) shows interesting properties. More specifically, as shown in Appendix B,

Ry`(t, u) = ei2πfc(φ`(t,u)−u) ×
∑
α∈A

Rα
x(φ`(t, u))ei2πα(ψ`(t)−τ`), (9)

where

φ`(t, u)
∆
= ψ`(t+ u)− ψ`(t) = ψ`(u)− uta`/c. (10)

Equivalently,

Ry`(t, u) = ei2πfc(ψ`(u)−u)
∑
α∈A

Rα
x(φ`(t, u))ei2π(α(ψ`(t)−τ`)−

a`
c
ufct). (11)
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Moreover, as illustrated in Sec. III-C and III-D, the correlation is always computed for a finite

lag |u| < umax and typical values for v`, a`, c, umax and Tobs are such that

sup
(t,u)∈[0,Tobs]×[−umax,umax]

∣∣∣∣∂φ`(t, u)

∂u

∣∣∣∣ >> sup
(t,u)∈[0,Tobs]×[−umax,umax]

∣∣∣∣∂φ`(t, u)

∂t

∣∣∣∣ . (12)

For instance, if |v`| ≤ 10 m.s−1, |a`| ≤ 3 m.s−2, c = 1500 m.s−1, |umax| = 0.1 s and Tobs ≤ 1

s, we have sup(t,u)∈[0,Tobs]×[−umax,umax]

∣∣∣∂φ`(t,u)
∂u

∣∣∣ ≈ 1.009 and sup(t,u)∈[0,Tobs]×[−umax,umax]

∣∣∣∂φ`(t,u)
∂t

∣∣∣ ≈
1.2 10−4. Therefore, φ`(t, u) can be closely approximated as φ`(t, u) ≈ ψ`(u), which yields

Ry`(t, u) ≈ ei2πfc(ψ`(u)−u) ×
∑
α∈A

Rα
x(ψ`(u))ei2π(α(ψ`(t)−τ`)−

a`
c
ufct). (13)

Eq. (13) reveals that Doppler scaling changes the periodic function of time Rx(t, u) into a

correlation function Ry`(t, u) made of a sum of chirp signals with velocity and acceleration-

dependent time-varying phases. Such a process is known as a time-warped cyclostationary

process [34], [35]. If the time-warping function ψ`(t) is known and invertible, the original cyclic

feature can be restored. This is expressed by the following relationship

Rα
x(u) = lim

T→∞

ei2πατ`

T

∫ T
2

−T
2

ρ
(
ψ−1
` (t), ψ−1

` (t+ u)
)
e−i2παtdt, (14)

where ρ(t, t+ u)
∆
= Ry`(t, u)e−i2πfc(φ`(t,u)−u) and where the expression of ψ−1

` (·) is given in Eq.

(82) (see Appendix B).

It follows that the autocorrelation function Rr(t, u) of the received signal can be approximated

as a linear combination of several chirp signals. That is,

Rr(t, u) =
L∑
`=1

L∑
m=1

E {λ∗`(t)λm(t+ u)}E {y∗` (t)ym(t+ u)}+ E {w∗(t)w(t+ u)}

=
L∑
`=1

L∑
m=1

Rλ`,λm(u)Ry`,ym(t, u) +Rw(u), (15)

where, under Assumption (12),

Ry`,ym(t, u) = ei2πfc(ψm(t+u)−ψ`(t)+τ`−τm−u) ×
∑
α∈A

Rα
x(ψm(u) + τ` − τm)ei2πα(ψ`(t)−τ`). (16)

The effect of a MSML channel on the autocorrelation function is illustrated in Fig. 3 for a

QPSK signal. We can see that Rx(t, 0) and Rr(t, 0) are in-phase at the beginning and then

we can clearly observe the time-varying phase shift due to the time-warping functions ψ`(t).

The double sum over taps in (15) also affects the amplitude of Rr(t, 0). Note that since the
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Fig. 3: Effect of the MSML channel of Figure 2 on the autocorrelation function of a QPSK

signal. Ts = 1/3 ms, SNR = 20 dB, u = 0.

noise is assumed to be wide-sense stationary, it does not affect the time-varying phase of the

autocorrelation function (15). It only increases the mean amplitude.

If we now switch to the frequency domain, it turns out that the spectral autocorrelation function

(SAF) is not so relevant to analyze CS signals in MSML channels as it simply does not exist

in the general case with a` 6= 0.2 It may be relevant only for scenarios where the acceleration

can be neglected over the observation window. In this specific case and as shown in Appendix

C, the SAF satisfies

Sr(ν1, ν2) =
c

|c− v`|

L∑
`=1

L∑
m=1

∑
α∈A

S0
λ`λm

(ν2) ~ Sαx

(
cν2 + fcv`
c− v`

)
×δ
(
ν1 −

c− v`
c− vm

ν2 + α
(

1− v`
c

)
+ fc

v` − vm
c− vm

)
×ei2π

c(τ`−τm)
c−vm

(ν2+fc)e−i2πατ`

+S0
w(ν2)δ(ν1 − ν2), (17)

where S0
λ`λm

(·) is the cross-spectral density (Doppler spectrum) of the channel taps and S0
w(·)

is the noise power spectral density. By comparing (5) and (17), we can notice that the support

2The process is said to be not harmonizable in the sense of Loève. See [34, Sec. III-A] for a detailed discussion on these

aspects.
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of Sx (ν1, ν2) is made of lines with unit slopes in the bifrequency plane, whereas, at the output

of the channel, there are additional lines with slopes (c− v`)/(c− vm).

C. Application 1: Doppler scale estimation

As shown in Eq. (15) and illustrated in Fig. 3, the autocorrelation function of the received

signal is a linear combination of several chirp signals with velocity and acceleration-dependent

time-varying phases. We propose to take advantage of this property to estimate the time-warping

functions ψ`(t) of the MSML channel. More precisely, given the observation r(t), our objective

is to estimate ψ`(t) (or, equivalently, v` and a`) without the knowledge of the transmitted symbols

(non-data-aided scenario). This estimation is illustrated with PSK/QAM signals but, as discussed

later, is applicable to any cyclostationary signal. We first consider a single Doppler scale scenario

and then extend the estimator to multipath signals with different Doppler scales

1) Single-scale multilag channel: We here assume that the channel exhibits a single Doppler

scale, i.e., ψ`(t) = ψ(t), ∀`. Such an assumption may be reasonable in some shallow-water

environments with a transmission range much greater than the water depth [36]. As illustrated

in Fig. 1-(a), the cyclic autocorrelation function of PSK and QAM signals is maximized for

u = 0, ∀α. This suggests to estimate the time-warping function ψ(t) based on the analysis of

the zero-lag autocorrelation function of the received signal. More precisely, for u = 0, Eq. (15)

simplifies to

Rr(t, 0) =
L∑
`=1

L∑
m=1

Rλ`,λm(0)Ry`,ym(t, 0) +Rw(0), (18)

with

Ry`,ym(t, 0) = ei2πfc(τ`−τm) ×
1∑

n=−1

R
n
Ts
x (τ` − τm)ei2π

n
Ts

(ψ(t)−τ`). (19)

Equivalently, by expanding the sums in (18) and (19), this autocorrelation function can be

expressed as

Rr(t, 0) = 2<
{
Aei

2π
Ts
ψ(t)
}

+K, (20)

where A ∈ C and K ∈ R denote time-invariant but signal and channel-dependent terms. Note

that K also depends on the noise power. From Eq. (20), we see that the time-warping function

ψ(t) can be obtained by projecting Rr(t, 0) onto a chirp basis, that is

ψ(t) = argmax
ϕ(t)

∣∣∣∣∣ lim
T→∞

1

T

∫ T
2

−T
2

Rr(t, 0)e−i
2π
Ts
ϕ(t)dt

∣∣∣∣∣
2

. (21)
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Fig. 4: Example of a cost function Jr obtained with a QPSK signal propagated in a shallow-water

channel using a time-varying simulation with Bellhop [32]. Tobs = 1 s, Ts = 0.2 ms, fc = 20

kHz, Eb/N0 = 7 dB, c = 1500 m.s−1, v = 1 m.s−1and a = 0.5 m.s−2.

In practice, we only observe a single realization of the received signal so that Rr(t, 0) =

E {|r(t)|2} cannot be computed. However, R̂r(t, 0) = |r(t)|2, which is an unbiased estimate

of Rr(t, 0), can easily be computed. Moreover, since Doppler scaling is due to relative motion,

the polynomial model (8) can be used. Therefore, over some time interval Tobs and by assuming

that Ts is known, ψ(t) can be estimated as

ψ̂(t) = µ̂1t+ µ̂2t
2 with (µ̂1, µ̂2) = argmax

(µ1,µ2)

Jr(µ1, µ2) (22)

and

Jr(µ1, µ2) =
1

Tobs

∣∣∣∣∫ Tobs

0

|r(t)|2e−i
2π
Ts

(µ1t+µ2t2)dt

∣∣∣∣2 . (23)

An example of the cost function Jr is shown in Fig. 4. Given the shape of this function, the

optimization can be done by first performing a coarse-grid search and by then applying a gradient

approach. Details on the implementation of the estimator (22) are provided in Appendix D.

To illustrate the performance of the cyclostationary-based estimator (CSB), we consider a

shallow-water channel with a constant sound speed profile with c = 1500 m.s−1. The water,

TX and RX depths are set to 50, 10 and 35 m, respectively. The initial transmit range is
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Fig. 5: Example of a simulated shallow-water time-varying impulse response obtained with

Bellhop, v = −6.1 m.s−1 and a = 0.5 m.s−2.

set to 2 km. root-raised-cosine (RRC) filtered QPSK signals are simulated with Tobs = 1 s,

Ts = 0.2 ms, fc = 20 kHz, a roll-off set to ξ = 0.25 and a (baseband) sampling rate of 20

kHz. The TX moves horizontally with radial velocity and acceleration randomly drawn from the

set [−vm, vm] × [−am, am], with vm = 10 m.s−1 and am = 1 m.s−2. Bellhop is used to model

the time-varying multipath distortions due to relative motion. 100 Bellhop impulse responses

per second are generated along the TX/RX trajectory. These impulse responses are then linearly

interpolated in time to match the sampling frequency of the transmitted signal. An example of

shallow-water impulse response is shown in Fig. 5.

Our method is compared with [31]. This method, known as the “Multibranch Autocorrelation”

(MBA), is able to estimate the velocity as well as the acceleration for systems using periodic

pilot signals or repetitive data transmission. We here consider the first configuration applied to

QPSK signals. In this case, the in-phase component is dedicated to periodic pilot transmission

and the quadrature one to data [37]. The pilot sequence is 0.5 s long and is repeated twice.

The receiver does not know the value of the pilot symbols but exploits the redundancy between

consecutive blocks. As opposed to our approach, this method reduces the useful data rate by 2.

However, note that pilots can also be used for time synchronization or to estimate the channel

and the SNR, which is not considered in this paper. We use the root mean squared error (RMSE)
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of the estimate ψ̂(t) as our performance metric. It is defined as

RMSE =

√√√√√√E
{∫ Tobs

0

(
ψ̂(t)− ψ(t)

)2

dt

}
E
{∫ Tobs

0
ψ2(t)dt

} . (24)

Fig. 6 shows the estimated RMSE for both methods as a function of Eb/N0, where Eb is the

signal energy per information bit and N0 is the power spectral density of the additive white

Gaussian noise. RMSE is estimated with 300 Monte-Carlo trials per Eb/N0. As a reference, the

RMSE of the dummy estimator ψ̂(t) = t is also plotted. The parameters of method [31] are set as

explained in [37, Sec. IV]: delay step=50 µs and frequency step = 1 Hz. The solution of (22) is

found by first applying a coarse grid search with a step of 1/9.10−3 for µ1 and 1/6.10−3 for µ2.

This corresponds to a step of 1/6 m.s−1 for velocity and 1/2 m.s−2 for acceleration. As detailed

in Appendix D, a Barzilai Borwein gradient approach is then applied to get more precise results.

It converges relatively fast. For instance, Fig. 6 has been obtained with an average number of

20 iterations in gradient ascent per trial.

The performance curves exhibit the three typical regions observed in non-linear estimation

[38], [39]: the no information region driven by ambiguity errors at very low Eb/N0, the threshold

region that characterizes the transition from global to local errors and the asymptotic region at

high Eb/N0 driven by mainlobe errors. CSB and MBA show very similar performance, with a

slight gain for CSB. Both estimators are limited by an error floor mainly due to the very rich

multipath environment and the residual Doppler scaling differences between taps. MBA is also

affected by the use of a finite step for the grid-search optimization. The main conclusion here is

that the cyclostationary features of communication signals can provide accurate estimates of the

Doppler scale without pilot overhead. In addition, both methods can be implemented using FFTs

and have therefore order of O (Nobs log(Nobs)) complexity, where Nobs is the number of signal

samples over the duration Tobs. However, the actual complexity depends on constant factors that

may be slightly different between the two methods. For instance, in this specific example, MBA

is twice more complex than CSB because the grid step used for the cost function optimization is

smaller than the one used in our method. In addition, as discussed in [31, Sec. III-B], if higher

accelerations were to be considered, MBA would require signal resampling that would result in

a significant complexity burden. This is not the case for CSB as its complexity increases linearly

with am.
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Fig. 6: Performance comparison between the multibranch autocorrelation (MBA) estimator and

the cyclostationary-based (CSB) method.

2) MSML channel : The previous estimator can be extended to the general model (6) with

multiple Doppler scales. More specifically, for u = 0 and for PSK/QAM signals in MSML

channels, Eq. (16) simplifies to

Ry`,ym(t, 0) = ei2πfc(τ`−τm+( v`−vmc )t+(a`−am2c )t2) ×
1∑

n=−1

R
n
Ts
x (τ` − τm)ei2π

n
Ts

(ψ`(t)−τ`). (25)

As illustrated in Fig. 1-(a), R
n
Ts
x (u) quickly decreases with u. For instance, for RRC filters and

for n 6= 0, the width of the mainlobe of R
±1
Ts
x (u) is 3Ts/ξ. Hence, we can reasonably assume that

R
n
Ts
x (τ`− τm) ≈ 0, if |τ`− τm| > 3Ts

2ξ
so that Ry`,ym(t, 0) ≈ 0 in this case. This means that if the

multipath arrivals are too delayed with each other, then they are no longer jointly cyclostationary.

In addition, for small differences in delay, i.e. |τ` − τm| ≤ 3Ts
2ξ

, we make the approximation that

v` ≈ vm and a` ≈ am. Such an approximation is a way of stating that paths with significantly

different Doppler scales should be resolved within the signal bandwidth. If not, interfering terms

depending on the velocity and acceleration differences appear in the autocorrelation function and

make it difficult to differentiate the contribution of each time-warping function. Based on this

analysis, for any ` and m, Eq. (25) can be simplified to

Ry`,ym(t, 0) = ei2πfc(τ`−τm) ×
1∑

n=−1

R
n
Ts
x (τ` − τm)ei2π

n
Ts

(ψ`(t)−τ`). (26)
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Therefore, similarly to Eq. (20), the zero-lag autocorrelation function of the received signal can

be expressed as

Rr(t, 0) =
L∑
`=1

2<
{
A`e

i 2π
Ts
ψ`(t)

}
+K, (27)

with A` ∈ C and K ∈ R. Because of the transmission geometry, it is very common in practice

that several taps share (nearly) the same time-warping function ψ`. Let Ld denote the set of tap

indexes with the same function ψd. Assuming that the channel contains D ≤ L different Doppler

scales, a more practical formulation of (27) may then be

Rr(t, 0) =
D∑
d=1

2<
{

Γde
i 2π
Ts
ψd(t)

}
+K, (28)

where Γd =
∑

`∈Ld A`.

The proposed estimation procedure relies on (28). It is iterative and very much like a matching-

pursuit procedure. At each iteration j, the dominant Doppler scale is estimated using (22).

Then, the contribution of the dominant “Doppler chirp” in (28) is subtracted after estimating its

amplitude Γ(j). The procedure is repeated until a stopping criterion is reached. Similarly to the

approach described in Sec. III-C1, we cannot observe Rr(t, 0) = E {|r(t)|2} so we rely on its

estimate R̂r(t, 0) = |r(t)|2. The full method is detailed in Alg. 1. There can be several ways

of stopping the iterative procedure. It can be stopped once a given number Dmax of significant

Doppler scales is reached. This number could be (roughly) known a priori based on the knowledge

of the transmission geometry. Another approach could be to stop the procedure once the combined

amplitudes of the paths with the same Doppler scale is considered to be too small to be of interest,

i.e., when |Γ̂(j)|/|Γ̂(0)| < ε in Alg. 1. The iterative procedure is illustrated in Fig. 7 through the

evolution of the cost function Jr(j) in a channel with two Doppler scales. At iteration j = 0,

we observe two local maxima revealing the presence of two Doppler scales. The strongest scale

is estimated and then subtracted from the observation |r(j+1)(t)|2. At iteration j = 1, the cost

function shows only one maximum corresponding to the single remaining Doppler scale.

To further illustrate the performance of CSB, we consider a deep-water multiscale-multilag

channel with a Munk sound speed profile [32]. All the simulation parameters are identical to

those described in the previous section, except that the water and RX depths are set to 5000

and 200 m, respectively. The initial TX depth is 25 m, the TX/RX range is set to 200 m and

the transmitter moves towards the surface. Such a configuration is known to be difficult for
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Algorithm 1 Multiscale Doppler estimation
Input: r(t), Dmax

1: j = 0

2: r(j)(t) = r(t)

3: stop=false

4: while stop=false do

5:
(
µ̂

(j)
1 , µ̂

(j)
2

)
= argmax(µ1,µ2) Jr(j)(µ1, µ2)

6: ψ̂(j)(t) = µ̂
(j)
1 t+ µ̂

(j)
2 t2

7: Γ̂(j) = 1
Tobs

∫ Tobs

0
|r(t)|2e−i

2π
Ts
ψ̂(j)(t)dt

8: |r(j+1)(t)|2 = |r(j)(t)|2 − 2<
{

Γ̂(j)ei
2π
Ts
ψ̂(j)(t)

}
9: stop=compute stopping criterion

(
n,Dmax, Γ̂

(j)
)

10: j = j + 1

11: end while

Output: {ψ̂(j)(t)}Dmax−1
j=0

communications systems as the time-varying channel is mostly made of two paths with similar

amplitudes and opposite-sign Doppler scales. For multiscale channels, the performance metric

is now defined as:

RMSEms =

√√√√√√
∑Dmax

d=1 |Γd| × E
{∫ Tobs

0

(
ψ̂d(t)− ψd(t)

)2

dt

}
∑Dmax

d=1 |Γd| × E
{∫ Tobs

0
ψ2
d(t)dt

} , (29)

where Dmax = 2 in this specific scenario.

The MBA curve in Fig. 8 shows that using a single Doppler scale estimator in a multiscale

environment can be worse than not performing any estimation at all (i.e, φ̂(t) = t). The figure also

shows that CSB can be highly efficient in multiscale channels. In our scenario, the asymptotic

regime is reached for a value of Eb/N0 as low as 0 dB. Detecting and estimating multiple

Doppler scales can be useful to trigger post-processing to make the communication link more

robust. For instance, it can be used to optimize the choice of the equalizer or PLL parameters.

It can also trigger a change of waveform if the transmitter is adaptive, or some array-processing

to separate multipath signals with different scales.
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(a) (b)

Fig. 7: Example of the evolution of the cost function Jr(j) obtained in a MSML channel simulated

with Bellhop. (a) Iteration j = 0, (b) iteration j = 1. The cost is expressed as a function of

velocity and acceleration based on model (8) with c = 1500 m.s−1, i.e., v = 1500(1− µ1) and

a = −3000µ2. Tobs = 1 s, Ts = 0.2 ms, fc = 20 kHz, Eb/N0 = 5 dB.

Fig. 8: Performance of the cyclostationary-based (CSB) method in a multiscale-multilag channel.

3) Extension to other modulations: The proposed Doppler scale estimator can be extended

to any second-order CS signal. The key is to consider a cost function Jr that makes use of the

specific CS features of the signal of interest. For instance, based on the analysis of Appendix

A-C, we can sum the cost function (23) over several cycle frequencies rather than just one to
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make it relevant for DSSS signals. By considering non zero-lag correlations, this cost can also be

adapted to OFDM signals. All of this is related to the concept of cyclostationary signatures that

is formally defined in the next paragraph. A general formulation of the cost function applicable

to any kind of CS features is proposed in Eq. (35). Although used for detection purposes in the

next paragraph, this cost also provides a Doppler scale estimation.

D. Application 2: signal detection in impulsive noise

As a second application, we consider the problem of detecting an underwater acoustic signal

with a specific cyclostationary signature. We define a signature of a signal x(t) as a subset

S ⊆ C, where C = {(u, α) : Rα
x(u) 6= 0}. Such a signature may be unique and therefore relevant

to detect/identify a specific communication system in underwater warfare-like applications. Based

on the observation r(t) and the knowledge of S, the detection problem addressed in this section

is to decide between the following hypotheses H0 : Rα
x(u) = 0, ∀ (u, α) ∈ S

H1 : Rα
x(u) 6= 0, ∀ (u, α) ∈ S.

(30)

Without loss of generality, we take OFDM signals with subcarrier-spacing ∆f , guard-time Tg and

symbol duration Ts as examples. As illustrated in Fig. 1 and Appendix A-B, possible signatures

are S =
{(

0, n
Ts

)
, n = −Nα, · · · , Nα

}
for ZP-OFDM, S =

{(
1

∆f
, n
Ts

)
, n = −Nα, · · · , Nα

}
for CP-OFDM and S = {(nTs, 0) , n = −Nu, · · · , Nu} for SIP-OFDM, with Nα and Nu the

number of cycle frequencies and delays of interest, respectively.

Problem (30) has already been addressed in the context of terrestrial radio-communications

and existing solutions rely on the computation of the following test statistic (or variations of it)

[40]–[44]

JCS
r =

1

Tobs

∑
(u,α)∈S

∣∣∣∣∫ Tobs

0

r∗(t)r(t+ u)e−i2παtdt

∣∣∣∣2 . (31)

It can be interpreted as the power estimate of the cyclic autocorrelation function on support S. To

adapt it to the underwater context, we must take into account the motion-induced compression

or dilation of the signal. A brute-force approach is to rely on Eq. (14) and de-warp r(t) prior

to the computation of (31). Since the dominant warping function is not known a priori, this
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involves an optimization over several candidate functions and a new test statistic can be

JDCS
r = max

(µ1,µ2)

1

Tobs

∑
(u,α)∈S

∣∣∣∣∫ Tobs

0

ρ̂µ1,µ2

(
ψ−1
µ1,µ2

(t), ψ−1
µ1,µ2

(t+ u)
)
e−i2παtdt

∣∣∣∣2 , (32)

where

ρ̂µ1,µ2(t, t+ u) = r∗(t)r(t+ u)e−i2πfc(ψµ1,µ2 (t+u)−ψµ1,µ2 (t)−u), (33)

with

ψµ1,µ2(t) = µ1t+ µ2t
2, ψ−1

µ1,µ2
(t) =


1

2µ2

(√
µ2

1 + 4µ2t− µ1

)
, µ2 6= 0,

t
µ1
, µ2 = 0, µ1 6= 0

(34)

In practice, the implementation of de-warping in (32) requires to resample the discrete-time

version of r(t) for each candidate pair (µ1, µ2), which is computationally costly. A less complex

approach is to rely on approximation (13) so that the previous test statistic can be approximated

as

JADCS
r = max

(µ1,µ2)

1

Tobs

∑
(u,α)∈S

∣∣∣∣∫ Tobs

0

r∗(t)r
(
t+ ψ−1

µ1,µ2
(u)
)
e−i2π(αψµ1,µ2 (t)+2µ2ufct)dt

∣∣∣∣2 . (35)

As discussed in Appendix E, the computation of this statistic does not involve any resampling.

To further adapt our approach to the underwater context, the additive noise is assumed to be

possibly impulsive or transient [45]–[48]. This type of noise can be generated by man-made

activities, biological or geophysical sources and is sometimes caused by faulty elements in the

receiver front-end. In heavy-tailed noise or when the noise statistics are not fully known, a non-

linear function is usually applied to the observed signal r(t) before further processing. It provides

robustness and reduces the influence of outliers [42], [49]. A simple and efficient example is the

spatial-sign function defined as [50]

s(r(t)) =


r(t)
|r(t)| if r(t) 6= 0

0 otherwise.
(36)

For u 6= 0, spatial-sign cyclic correlation estimators are then obtained by replacing r(t) with

s(r(t)) in Eqs (31)-(35).

Based on this analysis, we define three robust cyclostationary-based detectors:

• the cyclostationary (CS) detector: JCS
s(r)

H1

≷
H0

ΛCS ,

• the de-warped cyclostationary (DCS) detector: JDCS
s(r)

H1

≷
H0

ΛDCS,
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• the approximated de-warped cyclostationary (ADCS) detector: JADCS
s(r)

H1

≷
H0

ΛADCS,

where ΛCS, ΛDCS and ΛADCS are detection thresholds set to achieve a given false-alarm probability

PFA. Note that these detectors are scale-invariant thanks to the spatial-sign function. Moreover,

as opposed to the estimator described in Alg. 1, these detectors focus on the most powerful tap

and do not track secondary taps. This is a common behavior for detectors since the actual delay-

Doppler parameters of taps with low amplitudes are very unlikely to be correctly estimated for

low SNRs and may result in noise injection in the test statistics [51]. Finally, DCS and ADCS

also offer the advantage of providing an estimate of the relative velocity and acceleration through

the maximization over (µ1, µ2). This additional information can be useful for other applications

such as source tracking or identification.

The performance of these detectors is illustrated with real CP-OFDM data [20] collected in

shallow water (20-60 m deep) off the coast of Brest, France, in June 2017. Transmissions were

carried out to a 5-element receiving array at distances ranging from 20 m to 3 km. Both the

source and the array were immersed from drifting ships and the source was mounted on a rigid

pole. The sea state was rough with a 4 m swell. Experiments were conducted in two bandwidths:

[8 − 19.75] kHz and [20.25 − 32] kHz. The OFDM parameters were kept constant and set as

given in Table I.

TABLE I: OFDM parameters

Filter Constellation ∆f (Hz) Tg (ms) Ts (ms) Num. of subcarriers

RRC - ξ = 1/3 QPSK 16.7 20 80 705

Fig. 9 shows spectrogram examples of received OFDM packets under various noise and

propagation conditions. Each packet is 2 s long followed by 1 s of silence and the dataset is made

of 775 packets in each bandwidth. The detectors are tested with Tobs set to 0.5 s so that the total

number of signals per bandwidth is 3100. Each hydrophone is processed individually without

any array processing. Fig. 10 shows the SNR distribution of the dataset in each bandwidth. SNR

was estimated by combining power measurements of noise-only and signal-plus-noise portions

of the observation.
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(a) (b)

(c)

Fig. 9: Spectrogram examples of received OFDM packets. (a) High SNR packets with tonal

noise, (b) moderate SNR packets with impulsive noise, (c) low SNR packets.

(a) (b)

Fig. 10: SNR distribution of the OFDM dataset, (a) [8− 19.75] kHz, (b) [20.25− 32] kHz.
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The signature of the OFDM signal is defined as S =
{(

1
∆f
, n
Ts

)
, 0 < |n| ≤ 3

}
. The cycle

frequency α = 0 is not considered because tonal noise may imply that R0
w

(
1

∆f

)
6= 0, which

would result in false alarms. Moreover, to limit complexity without significant performance

penalty, no cycle frequency higher than 3/Ts is considered in the signature. For the DCS and

ADCS detectors, the maximization over (µ1, µ2) is restricted to the interval [1− 1/3.10−2, 1 +

1/3.10−2]× [−10−3, 10−3]. With a sound speed of 1500 m.s−1, this corresponds to a maximum

velocity of 5 m.s−1 and a maximum acceleration of 3 m.s−2. The latter value may seem large

but strong accelerations were observed due to the rough sea condition combined with the fact

that the source was mounted on a rigid pole. This is illustrated in Fig. 11 where two examples

of the cost function in Eq. (32) are displayed as a function of velocity and acceleration using

model (8). Both the single and multiscale examples exhibit acceleration of several meters per

second squared.

(a) (b)

Fig. 11: Examples of the cost to maximize in Eq. (32) as a function of velocity and acceleration,

bandwidth: [20.25− 32] kHz, distance: few tenths of meters. (a) Single scale multilag channel,

(b) multiscale-multilag channel.

The performance of the proposed detectors is investigated in terms of detection rate. The

detection thresholds are obtained with Monte-Carlo trials on real underwater noise and set such

that the false alarm rate equals 10−6. For both the DCS and ADCS detectors, the maximization
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is performed using a grid search approach with a step set to 1/3.10−3 for µ1 and to 1/6.10−3

for µ2. Fig. 12 shows the detection rate as function of SNR for the two bandwidths. It clearly

highlights the benefit of explicitly considering the specificity of the underwater channel. For

both channels, CS performs poorly. This is expected since the possible compression or dilation

of the signal is not taken into account. Fig. 12 also supports the use of ADCS. This detector

provides very similar performance to DCS while being computationally less expensive. Finally,

performance in the [20.25 − 32] kHz bandwidth is not as good as for lower frequencies. Even

for SNRs above 15 dB, the detection rate does not reach 100%. Analysis of the test statistics

shows a greater number of multiscale Doppler occurrences in the higher frequency band. This

is especially true for transmission range less than 1 km and thus for high SNRs. As illustrated

in Figure 11, multiscale Doppler splits the power of the cost function between two (or more)

local maxima and thus reduces the probability of detection. Without channel sounding data, it

is difficult to conjecture a physical interpretation of these results. We can only say that they are

attributable to frequency dependent phenomena.

(a) (b)

Fig. 12: Detection rate of OFDM signals as a function of SNR. (a) [8−19.75] kHz, (b) [20.25−32]

kHz.
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IV. CYCLOSTATIONARITY IN DISPERSIVE CHANNELS

A. Channel model

The previous MSML model is not applicable to all communication scenarios, especially at

(very) low-frequency. Propagation in such a scenario is better described by normal-mode theory.

Considering a broadband source emitting at depth zs in a range-independent waveguide, the

baseband spectral component of the pressure field R(ν) received at depth zr after propagation

over a range rs is given by

R(ν) = H(ν)X(ν) +W (ν), (37)

where X(ν) and W (ν) are the baseband source and noise spectrum, respectively. H(ν) denotes

the deterministic channel transfer function expressed as [11, Ch. 5]

H(ν) =
M∑
m=1

Am (ν + fc) e
iθm(ν+fc), (38)

where M is the number of propagating modes, fc is the carrier frequency and

Am (ν) =
Q√

krm(ν)rs
ψm(ν, zs)ψm(ν, zr) (39)

and

θm (ν) = rskrm(ν). (40)

krm and ψm are the horizontal wavenumber and modal depth function of mode m, respectively.

The quantity Q = ejπ/4√
8πρ(zs)

represents a constant factor with ρ(zs) as the water density at the

source depth zs. For notational convenience, the dependencies in rs, zs and zr are dropped for

H(ν). The modal amplitude mostly depends on source/receiver depth and weakly on range,

whereas the modal phase primarily depends on range.

Channel (38) is said to be dispersive because, for each mode, different frequencies are time-

shifted by different amounts. For mode m, the modal travel time is [52, Eq. (4)]

tm(ν) =
1

2π

∂θm (ν)

∂ν
=

rs
vm(ν)

, (41)

where vm(ν) = ∂ν/∂krm(ν) denotes the modal group speed. Such a channel exhibits intermodal

dispersion (each mode has its own travel time) as well as intramodal dispersion (for a given

mode, the travel time is frequency dependent). Fig. 13 illustrates these phenomena in a Pekeris
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waveguide for a water depth of 50 m and two ranges.3 This figure shows the channel power

delay profiles in the upper panels (a) and (b) and the spectrogram of the impulse responses in the

bottom ones, (c) and (d). There are four propagating modes and modal dispersion is clearly visible

on the spectrograms, especially for rs = 25 km. Each mode is distinguishable and the frequency

dependency of the travel time is manifest. This figure also shows that modal dispersion increases

with range which makes the channel delay-spread increase as well. In addition, no dominant taps

are visible and the power-delay profiles are not sparse. Finally, in this kind of channel, each mode

acts as a high-pass filter. Below a given mode-dependent cut-off frequency, no propagating energy

is excited in the water column and the acoustic field leaks into the bottom [11]. For instance, in

the simulated channel, the cut-off frequencies νcm of each mode are: νc1 ≈ 21.5 Hz, νc2 ≈ 64.6

Hz, νc3 ≈ 107.7 Hz and νc4 ≈ 150.9 Hz. Therefore, when these cut-off frequencies are inside

the chosen frequency band, dispersive channels can be highly frequency-selective.

B. Cyclostationary analysis

Since the dispersive channel (38) acts as a time-invariant linear system, if the input signal

x(t) is cyclostationary, periodicity in the time-varying correlation at the output is still expected.

More specifically, it can be shown that the cyclic autocorrelation function of r(t) satisfies [2,

Eq. (3.83) ]

Rα
r (u) = Rα

x(u) ~u

∫
h∗(t)h(t+ u)e−i2παtdt+Rw(u), (42)

where h(t) is the channel impulse response and ~u denotes convolution with respect to u. The

cyclic spectrum is therefore expressed as [2, Eq. (3.84) ]

Sαr (ν) = Sαx (ν)H∗ (ν − α)H(ν) + S0
w(ν), (43)

where S0
w(·) is the noise power spectral density. Although the last two equations indicate that

the cyclostationary features are preserved at reception, this has to be balanced by the actual

physical properties of the channel. As mentioned previously, each mode has a cut-off frequency

and this high-pass behavior may prevent or limit the propagation of some cycle frequencies.

More precisely, based on (38), we have

H∗ (ν − α)H(ν) =
M∑
m=1

M∑
n=1

A∗m (ν + fc − α)An (ν + fc) e
i(θn(ν+fc)−θm(ν+fc−α)). (44)

3A Pekeris waveguide consists in an isospeed water layer overlaying a semi-infinite fluid basement [53].

October 13, 2022 DRAFT



27

(a) (b)

(c) (d)

Fig. 13: Simulated channels in a Pekeris waveguide, frequency range: [60−190] Hz, water depth:

50 m, zs = 10 m, zr = 30 m, sound speed in seawater 1500 m.s−1, density 1000 kg.m−3, sound

speed in the bottom 1600 m.s−1 and density 1800 kg.m−3. Left column: rs = 10 km, right

column: rs = 25 km. First row: channel power delay profiles, second row: spectrograms of the

impulse responses.

If B denotes the monolateral bandwidth of transmission and νcm the cut-off frequency of mode

m, then

A∗m (ν + fc − α)An (ν + fc) = 0 (45)

October 13, 2022 DRAFT



28

for any α ∈ (−∞,max(−2B,−(B + fc − νcn))] ∪ [min(2B,B + fc − νcm),+∞). Therefore, a

given mode m will not propagate cycle frequencies greater than αcm
∆
= min(2B,B + fc− νcm).

For instance, in the Pekeris waveguide of Fig. 13, modes 1 and 3 are the most energetic with

νc1 ≈ 21.5 Hz and νc3 ≈ 107.7 Hz. Since fc = 125 Hz and B = 65 Hz, mode 1 will propagate all

the cycle frequencies within the transmission bandwidth, that is αc1 = 2B = 130 Hz. However,

for mode 3, we have αc3 = 82.3 Hz so that cycle frequencies |α| > αc3 will not be propagated

by this mode. This analysis is illustrated in Fig. 14 where the power spectral density |H(ν)|2 is

shown for rs = 25 km as well as the product |H∗ (ν − α)H(ν)|. The left graph shows the effect

of the cut-off frequency νc3 on the channel selectivity. Stronger attenuation are observed on the

power spectral density for ν < νc3−fc. The graph on the right shows that this cut-off frequency

also impacts the attenuation of cycle frequencies. As expected, cycle frequencies outside the

range [−αc3, αc3] will be more affected by the channel.

(a) (b)

Fig. 14: Effect of the mode cut-off frequency on the channel selectivity and on the cycle

frequencies. Illustration with the Pekeris waveguide of Fig. 13, rs = 25 km. (a) Channel power

spectral density, (b) product |H∗ (ν − α)H(ν)|.

Moreover, it is also worth mentioning that modal dispersion will affect the shape of the cyclic

autocorrelation function. This is illustrated in Fig. 15 where this function is plotted for a DSSS

signal at the input and output (without noise) of a dispersive channel. The cycle frequency is set

to α = 1/Ts. It can be seen that the frequency dependency of travel time tm in Eq. (41) shifts
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and spreads the cyclic autocorrelation function along the lag-axis u. Although the signal remains

cyclostationary at the channel output, care must therefore be taken when designing estimators or

detectors. For instance, the CS signature detector presented in Sec. III-D would perform poorly

in an unknown dispersive channel.

Fig. 15: Effect of the modal dispersion on the cyclic autocorrelation function of the DSSS signal

of Sec. IV-C, α = 1/Ts. The channel is the Pekeris waveguide of Fig. 13, rs = 25 km.

In summary, unlike MSML channels, this short analysis shows that it is not necessary to

modify the standard statistical framework to recover the cyclostationary features at the output of

a dispersive channel. This means that the existing tools [2] designed to detect, estimate, filter, etc.

cyclostationary signals can be used in this kind of environment with little adaptation. However,

one should be aware that dispersive channels may attenuate the higher cycle frequencies and

may also shift and spread the amplitude of the cyclic autocorrelation function along the time-lag

axis.

C. Application

To illustrate the previous analysis, we consider the problem of eavesdropping on a low-

frequency covert communication. More specifically, we assume that the transmitter uses a DSSS

waveform, as in Eq. (74), to limit the probability of being detected and reverse-engineered. We

take the viewpoint of the eavesdropper and seek to blindly estimate the symbol duration Ts of

the transmitted signal. We also consider that the eavesdropper may have an array with several
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hydrophones to intercept the signal. No assumptions about the spreading sequence and the chip

rate are made.

As shown in Appendix A-C, DSSS signals are cyclostationary with period Ts. Therefore,

estimating the symbol duration amounts to estimating the fundamental period of Rx(t, u) from

the received signals. In short, our problem is a joint cycle-frequency detection and estimation

problem. Similar problems have already been addressed in the literature and a simple yet efficient

statistic to detect unknown cycle frequencies is the estimate of the spectral coherence density

(SCD) defined as [54]

Cα
r (ν)

∆
=

Sαr (ν)√
S0
r (ν)S0

r (ν − α)
. (46)

A key feature of the SCD is that it is normalized and therefore scale-invariant. It also equalizes

regions with different energy levels and can thus reveals weak cycle frequencies. Based on the

observation of a finite duration signal r(t), the SCD can be estimated using cyclic spectrum

estimators such as the FFT accumulation method (FAM), the strip spectral correlation analyzer

(SSCA) [55], cyclic periodograms [56] or the fast method described in [57]. To adapt this

approach to our SIMO context and make an optimal use of the array at reception, we propose

to compute the SCD at the output of each hydrophone but also between hydrophones. In fact,

the channel model of Eq. (38) implies that the received signals along the array will remain

correlated. Therefore, we define the set of estimated cycle frequencies as

Â =

{
α : max

ν

∣∣∣∣∣
Nh∑
n=1

Nh∑
m=n

Ĉα
rn,rm(ν)

∣∣∣∣∣ > ΛDC

}
, (47)

where Nh denotes the number of hydrophones, rn is the received signal on the n-th hydrophone,

ΛDC is a detection threshold and Ĉα
rn,rm is an estimate of the spectral cross-coherence density

defined as

Cα
rn,rm(ν)

∆
=

Sαrn,rm(ν)√
S0
rn,rm(ν)S0

rn,rm(ν − α)
, (48)

where Sαrn,rm(ν) is the cyclic cross-spectrum

Sαrn,rm(ν)
∆
=

∫
R

∫
R
E {r∗n(t)rm(t+ u)} e−i2π(αt+uν)dtdu. (49)

Since DSSS signals have several cycle frequencies, the set Â is very likely to contain several

frequencies and may also be corrupted by false alarms inherent in any detection procedure.

Therefore, Â must be further processed to provide a robust estimate of Ts. To do so, we suggest
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finding the most likely greatest common divisor (GCD) of the estimated cycle frequencies based

on the following three-step estimation procedure:

1) Make a list Dα of all possible GCDs. This list is defined as the set of differences between

the estimated cycle frequencies, that is

Dα̂
∆
=

Nα⋃
k=1

Nα⋃
`=k+1

{|α̂k − α̂`|} (50)

where α̂k ∈ A for all k and Nα = card
(
Â
)

.

2) For each candidate GCD ∆α̂d ∈ Dα̂, count the number of cycle frequencies that are

multiples of this value. Counting is performed as follows:

c(d) = card
(
{k ∈ {1, 2, . . . , Nα} : α̂kmod (∆α̂d) ≤ ∆α̂dε}⋃
{` ∈ {1, 2, . . . , Nα} : ∆α̂d(1− ε) ≤ α̂`mod (∆α̂d)}

)
.

(51)

Since the cycle frequencies are estimated with a finite resolution, we allow for some

tolerance 0 < ε < 1 when counting the multiples of ∆α̂d.

3) Estimate the symbol period as

T̂s =
1

∆α̂d∗
, (52)

where d∗ = argmaxd c(d).

This procedure is rather ad-hoc but, as illustrated next, works well in realistic contexts.

The performance of the symbol duration estimator is illustrated with replay simulations using

real shallow-water channels. By convolving input signals with at-sea measurements of impulse

responses, channel replay has become a standard procedure to test underwater communication

systems [29], [58]–[61]. The impulse responses used in this section were measured by Sercel [62]

off the coast of Lorient, France, in November 2021. The channel was probed in the [60−190] Hz

bandwidth, between a stationary source and a vertically suspended array with 3 hydrophones.

Using the notations of Sec. IV-A, the geometry of transmission was the following: rs = 20

km, zs=10 m and zr = 12, 18, 30 m for hydrophone 1, 2 and 3, respectively. The water depth

was around 50 m. The channel was probed with a 10 s long linear chirp.4 The spectrograms

4Note that other measurements performed during this experiment showed that the impulse response was very stable with a

coherence-time greater than 30 s.
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of the measured impulse responses along the array are shown in Fig. 16. Modal dispersion

is clearly visible. As predicted by Eq. (38), the dispersion curves are identical for the three

impulse responses and the amplitudes of each mode is depth-dependent. Moreover, the high-

pass behavior discussed previously is observed, especially at the first hydrophone where mode

2 and 3 propagate a significant amount of acoustic energy.

(a) (b) (c)

Fig. 16: Spectrograms of low-frequency impulse responses measured at-sea. (a): Hydrophone #1

(zr = 12 m), Hydrophone #2 (zr = 18 m), Hydrophone #3 (zr = 30 m).

The channel input is a DSSS signal with QPSK symbols and a 15-chip spreading code. A

root raised-cosine pulse is used with a roll-off factor ξ = 1/4. The symbol duration is set to

Ts ≈ 153.8 ms, which corresponds to a symbol rate of 6.5 Bd and a chip rate of 97.5 Hz.

The duration of the received signal is set to Tobs = 15 s. All simulations are performed with a

spatially uncorrelated additive white Gaussian noise. Results are examined versus the in-band

SNR defined as

SNR =

∑Nh
n=1E

(n)
b

NhN0

× 2Tc
Ts (1 + ξ)

, (53)

where Tc is the chip duration and E
(n)
b denotes the energy per bit at the n-th hydrophone.

The detection threshold ΛDC in Eq. (47) is set such that the false-alarm rate in noise-only

conditions is 0.5%. Since most of these false-alarms will be removed by the post-processing

procedure described previously, this rate better not be too low to limit the number of missed

detections. The tolerance ε in Eq. (51) is set to 5% and the spectral cross-coherence density

Ĉα
rn,rm(ν) is estimated using time-smoothed averaged cyclic periodograms. The sampling rate is

chosen greater than 4 times the chip rate and is random. This choice is made to avoid favorable
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Fig. 17: Correct estimation rate of the DSSS symbol duration as a function of SNR.

conditions where the sampling rate is a multiple of 1/Ts. The performance is evaluated in terms

of probability of correct estimation (PCE), which is defined as the probability that the relative

estimation error is less than 1%, that is

PCE = P

(∣∣∣∣∣ T̂s − TsTs

∣∣∣∣∣ ≤ 10−2

)
. (54)

For each SNR, this probability is estimated with 100 Monte-Carlo trials.

The results are shown in Fig. 17 as a function of SNR for Nh = 1, 2 and 3. Whatever

the configuration, good results are achieved for negative SNRs. Moreover, array processing

provides a significant performance gain. For instance, a 6 dB improvement is achieved by using

3 hydrophones instead of one. Such a result is expected in shallow-water since the spatial

coherence along the vertical array is usually very high at low-frequencies [63]. Finally, the high-

pass behavior of modal propagation does not affect much this experiment. This is illustrated

in Fig. 18-(a) where an example of the test statistic in Eq. (47) is plotted before and after

thresholding. For ease of interpretation, a grid is displayed with a step set to 1/Ts = 6.5 Hz.

We see a few false alarms but, more importantly, we see that more than 10 cycle frequencies

are correctly detected. As shown by the results of Eqs (51) and (52) displayed in Fig. 18-(b),

this is large enough to correctly estimate the symbol duration.
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(a) (b)

Fig. 18: Illustration of the method used to estimate the symbol duration of a DSSS signal,

Nh = 1 and SNR = 0 dB. (a) Test statistic of Eq. (47) before (plain line) and after thresholding

(crosses), (b) plot of Eqs (51) and (52).

V. CONCLUSIONS

The theoretical results derived in this paper as well as their applications on simulated and real

data confirm the potential of cyclostationary-based methods for underwater acoustic communi-

cations. They also show that off-the-shelf RF methods are not always relevant for underwater

channels. For instance, Doppler scaling, as encountered in typical high-frequency multiscale-

multilag channels, transforms cyclostationary processes into time-warped cyclostationary ones.

As discussed in Sec. III, this time-warping may be either exploited to estimate the Doppler

scale or compensated somehow to recover the underlying cyclic features. By applying proper

approximations, specific to underwater scenarios, it is shown that recovering these features

can be simple and may not require any resampling procedure. Unlike multiscale-multilag

channels, low frequency dispersive channels do not severely alter the cyclostationary properties

of communication signals. This means that the standard statistical framework can be used to

model and estimate the cycle frequencies at the output of such a channel. However, it should be

emphasized that modal propagation can have a high-pass filter behavior. Therefore, dispersive

channels may significantly attenuate the higher cycle frequencies. Moreover, the frequency
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dependency of the modes travel-time shifts and spreads the amplitude of the cyclic autocorrelation

function along the time-lag axis.

By addressing the problems of Doppler scale estimation, signal detection and symbol-

rate estimation, this paper only provides a brief overview of what could be achieved with

cyclostationary-based methods. For instance, some acoustic interference, such as propeller noise

or clicks from odontocetes, are known to be cyclostationary. They could possibly be mitigated

using FRESH-like filters [64] or source separation methods [65] to improve the robustness

of communication links. Similarly, the non-data-aided estimation of dispersive channels using

opportunistic cyclostationary signals [2, Sec. 10] may be a relevant input to solve inverse

problems such as matched-mode processing [66]. The range of possible applications is vast.

Finally, the proposed analysis is restricted to second-order statistics but could also be extended

to higher orders to exploit additional information [67].
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APPENDIX A

EXAMPLES OF CYCLOSTATIONARY COMMUNICATION SIGNALS

A. PSK/QAM

Let x(t) be the complex envelope of a PSK or QAM signal. It can be expressed as

x(t)
∆
=
∑
k∈Z

bkg (t− kTs) , (55)

where bk denotes the k-th data symbol, g(·) is the pulse-shaping filter and Ts is the symbol

duration. The symbols bk are assumed to be zero-mean, identically and independently distributed

(i.i.d). The bandwidth of x(t) is defined as the interval [−(1 + ξ)/(2Ts), (1 + ξ)/(2Ts)], where

ξ is the excess bandwidth of the filter g.

PSK/QAM signals are known to be cyclostationary with period Ts. Their autocorrelation

function satisfies [2, Sec. 5.2]

Rx(t, u) =
∑
n∈Z

R
n
Ts
x (u)ei2π

n
Ts
t, (56)

where

R
n
Ts
x (u) =

E {|bk|2}
Ts

∫
R
g∗(t)g(t+ u)e−i2π

n
Ts
tdt. (57)

In practice, pulse-shaping filters used in underwater communications are real-valued. Thus, the

cyclic-autocorrelation function also satisfies

R
n
Ts
x (u) =

E {|bk|2}
Ts

(G~ G̃u)

(
n

Ts

)
, (58)

where G̃u(ν) = G(ν)ei2πνu and ~ denotes convolution. Practical values for the excess bandwidth

ξ are restricted to the interval (0, 1). For these values, (G ~ G̃u)
(
n
Ts

)
is null for |n| > 1.

Therefore, n is restricted to the set {−1, 0, 1} and Eq. (56) becomes

Rx(t, u) = R0
x(u) + 2<

(
R

1
Ts
x (u)

)
cos

(
2π

t

Ts

)
− 2=

(
R

1
Ts
x (u)

)
sin

(
2π

t

Ts

)
. (59)

From Eqs (4), (5) and (57), it can be shown that the spectral correlation function and the cyclic

spectrum of PSK/QAM signals satisfy [2, Sec. 5.2]

Sx (ν1, ν2) =
E {|bk|2}

Ts

1∑
n=−1

G (ν2)G∗
(
ν2 −

n

Ts

)
δ

(
ν1 − ν2 +

n

Ts

)
, (60)

and

Sαx (ν) =
E {|bk|2}

Ts

1∑
n=−1

G (ν)G∗ (ν − α) δ[αTs−n], (61)
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where δ[·] denotes the Kronecker delta. An illustration of the cyclostationary features of a

PSK/QAM signal is shown in Fig. 19.

(a) (b)

(c) (d)

Fig. 19: Illustration of the cyclostationary features of a PSK/QAM signal with a root-raised-

cosine filter g with ξ = 0.5. (a) Autocorrelation function, (b) cyclic autocorrelation function, (c)

spectral correlation function, (d) cyclic spectrum.

B. OFDM

An OFDM signal with N subcarriers can be expressed as

x(t)
∆
=

1√
N

∑
k∈Z

N−1∑
n=0

bk,ne
2iπn∆f (t−Tg−kTs)g(t− kTs), (62)
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where bk,n is the data symbol at the n-th subcarrier of the k-th OFDM symbol. ∆f denotes

the subcarrier spacing, Ts is the total symbol duration, Tg
∆
= Ts − 1/∆f is the guard-time

and g is the real-valued pulse-shaping filter (or window). Three main types of OFDM signals

are used in underwater acoustics [19], [21], [22]: zero-padded OFDM (ZP-OFDM), cyclic prefix

OFDM (CP-OFDM), and guard-free OFDM with super-imposed pilots (SIP-OFDM). Let supp(·)

denote the support of a function, these OFDM signals can be described by the following set of

parameters

• ZP-OFDM: Tg 6= 0, supp(g) = [0, Ts − Tg), bk,n zero-mean and i.i.d,

• CP-OFDM: Tg 6= 0, supp(g) = [0, Ts), bk,n zero-mean and i.i.d,

• SIP-OFDM: Tg = 0, supp(g) = [0, Ts), bk,n = bpn + ibdk,n, where bpn are deterministic pilots

identical for all OFDM symbols and bdk,n are zero-mean, i.i.d data symbols.

Each type of OFDM signal exhibits some periodicity in their second-order statistics. It results

from the periodic use of a guard-time for ZP-OFDM, from the redundancy induced by the cyclic

prefix for CP-OFDM and from the correlation of the pilot sequence bpn for SIP-OFDM. More

specifically, their cyclostationary features are highlighted by the following results.

1) ZP-OFDM and CP-OFDM: Based on Eq. (62), it can be shown that the autocorrelation

function satisfies

Rx(t, u) =



E {|bk,n|2}
sin(π∆fNu)
N sin(π∆fu)

eiπ∆f (N−1)u

×
∑

`∈Z g(t− `Ts)g(t+ u− `Ts), 0 < |u| < Ts

E {|bk,n|2}
∑

`∈Z g
2(t− `Ts), u = 0

0 otherwise.

(63)

By Fourier transforming Rx(t, u) with respect to t, we get the expression of the cyclic

autocorrelation function

Rα
x(u) =



E {|bk,n|2}
sin(π∆fNu)
N sin(π∆fu)

eiπ∆f (N−1)u

×δ[(αTs)mod1]
1
Ts

∫ Ts
0
g(t)g(t+ u)e−i2παtdt, 0 < |u| < Ts

E {|bk,n|2} δ[(αTs)mod1]
1
Ts

∫ Ts
0
g2(t)e−i2παtdt, u = 0

0 otherwise,

(64)

where mod denotes the modulo operation. The spectral autocorrelation function and the cyclic

spectrum are obtained by noticing that the Fourier transform of x(t) can be expressed as

X(ν) =
1√
N

∑
k∈Z

N−1∑
n=0

bk,nG(ν − n∆f )e
−i2πkTsνe−i2πn∆f (Tg+kTs). (65)
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It then follows that

Sx (ν1, ν2) =
E {|bk,n|2}
TsN

∑
`∈Z

N−1∑
m=0

G (ν2 −m∆f )G
∗
(
ν2 −m∆f −

`

Ts

)
δ

(
ν1 − ν2 +

`

Ts

)
(66)

and

Sαx (ν) =
E {|bk,n|2}
TsN

δ[(αTs)mod1]

N−1∑
m=0

G (ν −m∆f )G
∗ (ν −m∆f − α) . (67)

Both ZP and CP-OFDM are cyclostationary with period Ts. An illustration of the cyclostationary

features of a ZP-OFDM signal with a rectangular window is shown in Fig. 20.

2) SIP-OFDM: Based on the definition given previously, SIP-OFDM signals can be expressed

as x(t) = xp(t) + ixd(t) where xp(t) and xd(t) are obtained by replacing bk,n in Eq. (62) with

bpn and bdk,n, respectively. Since the data symbols bk,n are zero-mean, the second-order statistics

of x(t) can be expressed as the sum of the individual statistics of xp(t) and xd(t). For instance,

the cyclic autocorrelation function can be written as

Rα
x(u) = Rα

xp(u) +Rα
xd

(u), (68)

where Rα
xd

is obtained by setting Tg = 0, ∆f = 1/Ts in Eq. (64) and by replacing bk,n with

bdk,n. The autocorrelation function of the pilots is periodic in t with period Ts and its cyclic

autocorrelation function is also periodic in u with period Ts. They satisfy

Rxp(t, u) =
1

N

∑
k∈Z

∑
k′∈Z

N−1∑
n=0

N−1∑
n′=0

bp
∗

n b
p
n′e

2iπ(n′−n)t/Tse2iπn′u/Tsg(t− kTs)g(t+ u− k′Ts), (69)

and

Rα
xp(u) =

1

N
δ[(αTs)mod1]

N−1∑
n=0

N−1∑
n′=0

bp
∗

n b
p
n′

∑
k∈Z

qαn,n′(u− kTs), (70)

where

qαn,n′(u) =
1

Ts

∫ Ts

0

g(t)g(t+ u)e−2iπt(α+(n−n′)/Ts)e2iπn′u/Tsdt. (71)

Based on Eq. (68), the cyclic spectrum can be expressed as

Sαx (ν) = Sαxp(ν) + Sαxd(ν), (72)

where Sαxp(ν) is obtained by noticing that qαn,n′(u) =
(

1
Ts
g(u)e2iπn′u/Ts

)
~
(
g(−u)e2iπ(α+nu/Ts)

)
and by Fourier transforming Rα

xp(u) with respect to u, that is

Sαxp(ν) =
1

T 2
sN

δ[(αTs)mod1]

N−1∑
n=0

N−1∑
n′=0

bp
∗

n b
p
n′G

(
ν − n′

Ts

)
G∗
(
ν − n

Ts
− α

)∑
k∈Z

δ

(
ν − k

Ts

)
.

(73)
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(a) (b)

(c) (d)

Fig. 20: Illustration of the cyclostationary features of a ZP-OFDM signal with Ts = Ts/4, N = 32

and a rectangular window. (a) Autocorrelation function, (b) cyclic autocorrelation function, (c)

spectral correlation function, (d) cyclic spectrum.

C. DSSS

Most DSSS signals used for underwater acoustic communications can be expressed as [16]–

[18]

x(t)
∆
=
∑
k∈Z

Nc−1∑
n=0

bkcng (t− nTc − kTs) , (74)

where bk denotes the zero-mean i.i.d. data symbols, cn is the Nc-length deterministic spreading

sequence and g(·) is the real-valued pulse-shaping filter. Ts denotes the symbol duration and Tc
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is the chip period such that Ts = NcTc. Such a signal is often referred to as a short-code DSSS

signal as opposed to long-code signals which use a spreading sequence longer than a single

symbol.

Short-code DSSS signals are known to be cyclostationary with period Ts. They satisfy the

following results [68]:

• Autocorrelation function:

Rx(t, u) = E
{
|bk,n|2

}∑
k∈Z

Nc−1∑
n=0

Nc−1∑
n′=0

c∗ncn′g (t− nTc − kTs) g (t+ u− n′Tc − kTs) . (75)

• Cyclic autocorrelation function:

Rα
x(u) = E

{
|bk,n|2

}
δ[(αTs)mod1]r

α
g (u) ~ γαc (u) (76)

where

rαg (u)
∆
=

1

Ts

∫
R
g(t)g(t+ u)e−i2παtdt (77)

and

γαc (u)
∆
=

Nc−1∑
n=0

Nc−1∑
n′=0

c∗ncn′e
−i2παnTcδ (u− (n′ − n)Tc) . (78)

• Spectral correlation function:

Sx (ν1, ν2) =
E {|bk,n|2}

Ts

∑
`∈Z

N−1∑
m=0

G (ν2)G∗
(
ν2 −

`

Ts

)
× C (ν2)C∗

(
ν2 −

`

Ts

)
δ

(
ν1 − ν2 +

`

Ts

) (79)

where C (ν) =
∑Nc−1

n=0 cne
−i2πνnTc .

• Cyclic spectrum:

Sαx (ν) =
E {|bk,n|2}

Ts
δ[(αTs)mod1]G (ν)G∗ (ν − α)C (ν)C∗ (ν − α) . (80)

As illustrated in Fig. 21, DSSS signals can be easily distinguished from PSK/QAM signals

by their cyclic properties. As discussed previously, PSK/QAM signals have only three cycle

frequencies (α = −1/Ts, 0, 1/Ts) whereas DSSS signals have many more. This difference comes

from the pulse shaping filter g. For DSSS, it is equal to the spreading sequence shaped by the

chip pulse which is designed with respect to the duration Tc rather than Ts. Therefore, the larger

Nc is, the higher the number of cycle frequencies will be.
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(a) (b)

(c) (d)

Fig. 21: Illustration of the cyclostationary features of a DSSS signal with a maximum-length

spreading sequence, Nc = 7, root-raised-cosine filter g with ξ = 0.5. (a) Autocorrelation function,

(b) cyclic autocorrelation function, (c) spectral correlation function, (d) cyclic spectrum.

APPENDIX B

RELATIONSHIPS BETWEEN Rα
x(u) AND Ry`(t, u)

From Eqs. (1), (2) and (7), Ry`(t, u) can be expressed as function of a Rα
x(u) as follows

Ry`(t, u) = ei2πfc(ψ`(t+u)−ψ`(t)−u)E {x∗(ψ`(t)− τ`)x(ψ`(t+ u)− τ`)}

= ei2πfc(ψ`(t+u)−ψ`(t)−u)
∑
α∈A

Rα
x(ψ`(t+ u)− ψ`(t))ei2πα(ψ`(t)−τ`)

= ei2πfc(φ`(t,u)−u)
∑
α∈A

Rα
x(φ`(t, u))ei2πα(ψ`(t)−τ`) (81)
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with φ`(t, u)
∆
= ψ`(t+ u)− ψ`(t).

Rα
x(u) can also be expressed as a function of Ry`(t, u). First, let

ψ−1
` (t) =


c
a`

(
1− v`

c
±
√
−2ta`

c
+
(
1− v`

c

)2
)

if a` 6= 0,

ct
c−v`

otherwise
(82)

be the inverse function of ψ`(t) and

ρ(t, t+ u)
∆
= Ry`(t, u)e−i2πfc(φ`(t,u)−u). (83)

Using Eq. (81), we obtain ρ
(
ψ−1
` (t), ψ−1

` (t+ u)
)

=
∑

β∈AR
β
x(u)ei2πβ(t−τ`). Therefore,

lim
T→∞

ei2πατ`

T

∫ T
2

−T
2

ρ(ψ−1
` (t), ψ−1

` (t+u))e−i2παtdt =
∑
β∈A

Rβ
x(u)ei2π(α−β)τ` lim

T→∞

1

T

∫ T
2

−T
2

e−i2π(α−β)tdt.

(84)

Since
1

T

∫ T
2

−T
2

e−i2π(α−β)tdt =

 1 if α = β,

sinc (πT (α− β)) otherwise,
(85)

we conclude that

lim
T→∞

ei2πατ`

T

∫ T
2

−T
2

ρ
(
ψ−1
` (t), ψ−1

` (t+ u)
)
e−i2παtdt = Rα

x(u). (86)

APPENDIX C

SPECTRAL CORRELATION FUNCTION IN MSML CHANNELS WITH NO ACCELERATION

The Fourier transform of y`(t) satisfies

Y`(ν) =

∫
R
x(ψ`(t)− τ`)ei2πfc(ψ`(t)−τ`)e−i2πt(ν+fc)dt. (87)

If a` = 0, the spectral correlation function of y`(t) exists and can be expressed as

Sy`(ν1, ν2) =

∫∫
R2

E {x∗(ψ`(t1)− τ`)x(ψ`(t2)− τ`)} ei2πfc(ψ`(t2)−ψ`(t1))

×e−i2π(t2(ν2+fc)−t1(ν1+fc))dt1dt2

=

∫∫
R2

∑
α∈A

Rα
x

((
1− v`

c

)
u
)
ei2πα((1− v`

c
)t−τ`)ei2πfc((1− v`

c
)u)

= ×e−i2π((t+u)(ν2+fc)−t(ν1+fc))dudt

=

∫∫
R2

∑
α∈A

Rα
x

((
1− v`

c

)
u
)
e−i2πu(ν2+fc

v`
c )ei2πα((1− v`

c
)t−τ`)e−i2πt(ν2−ν1)dudt

=
c

|c− v`|
∑
α∈A

Sαx

(
cν2 + fcv`
c− v`

)
δ
(
ν1 − ν2 + α

(
1− v`

c

))
e−i2πατ` . (88)
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Eq. (17) then results from the WSS channel and WSS noise assumptions, as well as from the

combination of Eqs (6) and (88).

APPENDIX D

IMPLEMENTATION OF THE DOPPLER SCALE ESTIMATOR

In practice, the received signal r(t) is sampled at a frequency fs so that Nobs discrete-time

samples are available over the duration Tobs. The sampling frequency fs must be chosen to

avoid aliasing in both cyclic and spectral frequency domain. For any band-limited signal with

monolateral bandwidth B, a sufficient condition to avoid this aliasing is to choose fs ≥ 4B [2,

Eq. (3.112)]. The discrete-time estimate of the cost function (23) is

Ĵr(µ1, µ2) =
1

Nobs

∣∣∣∣∣
Nobs−1∑
k=0

|r(k/fs)|2e
−i 2π

Tsf
2
s

(µ1kfs+µ2k2)

∣∣∣∣∣
2

. (89)

Following an analysis similar to the one presented in [69], it can be shown that a consistent

estimator of (µ1, µ2) is obtained by maximizing Ĵr. As illustrated in Fig. 4, this cost is not

convex. A two-step optimization procedure is therefore applied. First, a coarse maximization

is performed using a grid search. The search interval is based on physical considerations of

maximum velocity and acceleration. For instance, by assuming a maximum velocity of 10 m.s−1,

a maximum acceleration of 1 m.s−2 and by considering that the sound speed is around 1500

m.s−1, from Eq. (7), we get the following bounds: µmin
1 ≤ µ1 ≤ µmax

1 , with µmin
1 = 1− 2/3.10−2

and µmax
1 = 1 + 2/3.10−2, and |µ2| ≤ 1/3.10−3. The choice of the grid step mostly depends on

Tobs. For larger Tobs, the mainlobe of Ĵr gets sharper and the step must be smaller. Eq. (89) can

be implemented very efficiently by representing it as a chirp Z-transform [70]. More specifically,

for any µ1,n = µmin
1 + n∆µ1 , n = 0, · · · , Nµ1 − 1, where ∆µ1 is the grid step for µ1 and Nµ1 is

the number of grid points, we have

Ĵr(µ1,n, µ2) =
1

Nobs

∣∣∣∣∣
Nobs−1∑
k=0

sµ1,µ2(k)z−kn

∣∣∣∣∣
2

, (90)

where sµ1,µ2(k) = |r(k/fs)|2e
−i 2π

Tsf
2
s

(µmin
1 fs+µ2k2)

and zn = ei
2π∆µ1
Tsfs

n. Therefore, for a fixed value

of µ2, the Nµ1 values of Ĵr(µ1,n, µ2) can be computed in O (Nobs log(Nobs)) operations using an

FFT-based implementation.
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After the coarse-grid search, a gradient-ascent approach can be applied to get more precise

results. Let µ ∆
= [µ1, µ2]T and ∇µ

∆
= [∂/∂µ1 , ∂/∂µ2 ]T , it can be shown that the gradient of the

cost function (23) satisfies

∇µJr(µ) =
2

T 2
obs
<
{∫ Tobs

0

|r(t)|2ei
2π
Ts

(µ1t+µ2t2)dt

∫ Tobs

0

|r(t)|2
(
−i2π

Ts
[t, t2]T

)
e−i

2π
Ts

(µ1t+µ2t2)dt

}
.

(91)

At iteration j + 1, the estimate of µ is obtained as

µ̂(j+1) = µ̂(j) + κ(j)∇̂µJr(µ)|µ=µ̂(j) , (92)

where ∇̂µJr(µ) is the discrete-time approximation of (91) and κ(j) is the step size at iteration

j. µ̂(0) is the result of the coarse-grid search and κ(j) is computed using the Barzilai Borwein

approach [71]

κ(j) =

∣∣∣∣(µ̂(j) − µ̂(j−1)
)T (
∇̂µJr

(
µ(j)

)
− ∇̂µJr

(
µ(j−1)

))∣∣∣∣∥∥∥∇̂µJr (µ(j))− ∇̂µJr (µ(j−1))
∥∥∥2 . (93)

APPENDIX E

IMPLEMENTATION OF THE APPROXIMATED DE-WARPED CYCLOSTATIONARY STATISTIC

Using the same notations and assumptions as in Appendix D, the discrete-time implementation

of cost function (35) is

ĴADCS
r = max

(µ1,µ2)

1

Nobs

∑
(u,α)∈S

∣∣∣∣∣
Nobs−1∑
k=0

r∗ (k/fs)r

(
k +

⌊
fsψ

−1
µ1,µ2

(u/fs)
⌉

fs

)

× e−i2π(αψµ1,µ2 (k/fs)+2µ2ufck/fs)

∣∣∣∣∣
2

,

(94)

where b·e rounds towards the nearest integer (zero-order interpolation) so that (94) does not

require any resampling. Similarly to the Doppler scale estimator, the maximization over µ1 and

µ2 can be based on physical considerations of maximum velocity and acceleration.
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