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Abstract

This paper investigates channel coding for DNA data storage, a recent and emerging paradigm

in which both substitution errors and synchronization errors (insertions, deletions) are introduced in

the stored data. The paper first proposes a novel and accurate statistical channel model to represent

errors introduced by the DNA data storage support. The channel model takes the form of a k-order

Markov Model which allows to capture both memory in the sequence of channel errors, and statistical

dependency between errors and input sequence. The model probabilities are inferred on two sets of

data: one set of experimental data, and one set of genomic data. In both cases, we observe a superior

accuracy, evaluated from the Kulback-Leibler divergence, of our channel model compared to existing

ones. Second, the paper investigates the design of error-correction solutions dedicated to the proposed

channel model. It considers a concatenated code construction built from a convolutional decoder which

aims to correct synchronization errors, and from an outer LDPC code which corrects residual substitution

errors. While this construction was already investigated for i.i.d. errors, this paper shows how to include

all the knowledge of the proposed channel model into the convolutional decoder. Numerical results

show that the proposed decoding algorithm significantly improves the decoding performance in terms

of BER and FER, at the price of an increased decoding complexity.

Index Terms

DNA storage channel model, Coding for DNA data storage, Concatenated Codes, Convolutional

Decoders, BCJR algorithm

I. INTRODUCTION

DNA data storage is seen as an emerging and promising alternative to conventional storage

supports, due to higher density and greater durability. In DNA data storage, information is stored
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by synthesizing a digital sequence into a DNA molecule built from a sequence of bases A,C,G,T.

The original information can be retrieved by using a DNA sequencer such as the Oxford Nanopore

Technology (ONT) MinION sequencer which we consider in this work. Recent progress in both

the synthesis and sequencing technologies pave the way for the development of cost-effective

and competitive DNA data storage solutions in the next few years.

Unfortunately, sequencing still introduces a large amount of substitution, insertion, and deletion

errors in the read data. Insertions and deletions break sequence synchronization, and they cannot

be corrected with conventional error-correction methods designed for data storage or wireless

communications. Therefore, from a channel coding perspective, two key challenges should be

addressed in order to make DNA data storage more practical: (i) develop accurate statistical

channel models to represent errors that occur during the DNA data storage process, (ii) design

powerful error-correction solutions that can handle the three types of errors. This paper aims to

address both of these challenges in a cohesive manner, by first introducing an accurate channel

model and then incorporating the model knowledge into the decoder.

Statistical channel models allow to run extensive in-silico simulations, before implementing

expensive in-vitro experiments. Regarding DNA data storage, a wide range of works consider

non-uniform independent and identically distributed (i.i.d.) error models [1]–[4]. But it is shown

in [5] that the error statistics are highly dependent on the input sequence, and contain memory,

making the i.i.d. assumption unrealistic. To account for these dependencies, a first set of simula-

tors have employed Deep-Learning (DL) based approaches, such as DeepSimulator [6], [7], which

utilizes Deep Neural Networks (DNNs), or the approach of [8] which uses Generative Adversarial

Networks (GANs). However, these simulators are trained for specific sequence lengths, and

the training process is computationally expensive. Furthermore, DL-based simulators are not

completely appropriate in our context, since the channel probabilities are not explicit and cannot

be incorporated into the design of the decoder. Alternatively, PBSIM2 [9] considers transition

probabilities over a sequence of quality scores, and samples errors from the quality scores

according to a fixed distribution between error events. But we observed on experimental data that

the event distribution is not fixed and varies with the input sequence. In addition, BadRead [10]

uses transition probabilities estimated from experimental data to randomly substitute length-k

sequences with other length-k′ sequences. However, in Badread, the user has to specify many

parameters such as the average reads-length or the total amount of errors, and the channel
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accuracy heavily depends on the considered parameters.

This paper introduces a new and accurate statistical channel model that is defined by a set of

probabilities over the error events and does not require any additional parameter. Given that the

MinION sequencer reads k symbols at a time, our channel model relies on a k-order Markov

Model in order to take into account both memory in the successive error events, and statistical

dependency between errors and input sequence. We describe how to train the model using two

different datasets: one smaller dataset of experimental data passed through the entire DNA storage

process, and one larger dataset of genomic data. Numerical evaluation of the Kullback-Leibler

divergence demonstrates that our model more accurately represents the actual DNA data storage

process than existing models [6], [7], [10]. Lastly, we introduce a dynamic channel model,

which allows to smoothly adjust the channel probabilities inferred from the datasets, in order to

simulate a wider range of error probabilities in numerical experiments. It is worth mentioning

that in our previous work [11] where the channel model was introduced, only one dataset was

used for training, and the dynamic channel model was not presented.

Second, this paper addresses the design of efficient error-correction solutions for DNA data

storage. The first error-correction solutions proposed for synchronization errors were based on

Varshamov-Tenengolts (VT) codes [12], which can correct only one deletion or one insertion.

These solutions were further extended to correct one burst of insertions and deletions [13], [14],

or a few errors [15], [16], or to consider constrained codes together with the correction of a

single error [17]. While solutions that guarantee the correction of a fixed number of errors are

interesting from a theoretical perspective, they may not be sufficient in our context, since our

channel model reveals a large and random amount of errors of the three types. Therefore, recent

works consider either Convolutional Codes (CC) [18]–[20], Low Density Parity Check (LDPC)

codes [21]–[24], or Polar codes [25], which use modified decoders that can correct not only

substitutions, but also insertions and deletions. It is worth mentioning that the above works only

consider non-uniform i.i.d. channel models.

In this work, we start from the concatenated code construction of [19], which is built from

an inner CC designed to re-synchronize the sequence (i.e., eliminate all insertions and deletions,

correct a part of the substitutions), and from an outer LDPC code which corrects the remaining

substitution errors. We consider this construction due to its good error-correction capabilities

for error rates between 1% and 10% (when using an i.i.d. channel), which aligns with the error
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rates observed in our model. In this paper, we propose to modify the convolutional decoder

of [19] so as to incorporate the statistics of our channel model. This involves expanding the

space of states used in the BCJR algorithm, and adapting the forward recursion, backward

recursion, and branch metric computation based on our model. Numerical results show that

although the modified BCJR decoder has a much larger complexity than in the i.i.d. case, it

leads to significant performance improvement in terms of Bit Error Rate (BER) and Frame Error

Rate (FER) compared to the decoder of [19]. It is worth noting that a similar work on adapting

the concatenated code construction for our channel model [11] was done in [26]. However, [26]

only introduced the new space of states, while we describe the practical implementation of all the

decoding steps. In addition, [26] evaluated the theoretical performance of the decoder in terms

of achievable information rate, while we present numerical BER and FER values to evaluate the

practical decoder performance.

The outline of the paper is as follows. Section II describes the DNA data storage workflow.

Section III-B introduces the channel model with memory. Section IV presents the considered

concatenated code construction. Section V explains how to integrate our channel model into

convolutional decoders. Section VI shows numerical results.

II. DNA DATA STORAGE

This section outlines the main two physical processes involved in DNA data storage: synthesis

and sequencing. In what follows, we use J1, JK to denote the set of integers between 1 and J .

A. Chemical Synthesis

DNA synthesis consists of converting digital data into DNA strands, where each DNA strand

is formed by different combinations of nucleotides A, C, G, and T [27]. There exists different

synthesis techniques, each with different constraints (maximum length for the input sequences,

costs, etc.). In this work, we consider chemical synthesis [27], [28], in which oligonucleotides

(short DNA molecules) are synthesized and then assembled to form the ordered sequences of

nucleotides. The synthesis produces thousands of DNA molecules, each representing a copy of

the same synthesized sequence. In this work, we assume that synthesis does not introduce any

error, as observed in [5]. Formally, in what follows, we use x = (x1, · · · , xN) to denote the

sequence of digits to be synthetized, where each digit xt takes values in a quaternary alphabet.
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Depending on the purpose, we either consider that xt ∈ {A,C,G, T}, or that xt ∈ GF(4), where

GF(4) is the Galois Field of order 4, and there is a one-to-one correspondence between the

alphabet {A,C,G, T} and GF(4).

B. Nanopore Sequencing

DNA sequencing consists of reading the DNA strands to produce a digital signal. In this

work, we consider the ONT MinION sequencer, which has the ability to read at high speed but

with a high rate of error [29]. In the MinION sequencer, DNA strands pass through a so-called

nanopore. For each group of k successive nucleotides

kmert = (xt−k+1, xt−k+2, · · · , xt), (1)

called k-mer, the nanopore outputs a specific electrical current level ct. The next k-mer

kmert+1 = (xt−k+2, xt−k+3, · · · , xt+1), (2)

produces the current level ct+1. Therefore, two successive levels ct and ct+1 are produced from

two k-mers with k − 1 bases in common. A significant number of DNA strands are processed

by the sequencer, which outputs a large number of current levels sequences.

Then, a software called basecaller transforms the sequences of current levels into digital

sequences. In this work, we employed Guppy and Bonito basecallers, which are both built

from Deep-Learning approaches. We use y(j) to denote the J digital sequences output by the

basecaller, where j ∈ J1, JK, and y
(j)
t takes values in a quaternary alphabet {A,C,G, T} or

GF(4). The read sequence y(j) is of length P (j), and typically P (j) 6= N . This is because the

sequencer and the basecaller not only introduce substitutions, but also insertions and deletions

in the read sequences, and error patterns vary from sequence to sequence [5].

III. CHANNEL MODEL

From an information-theoretic perspective, the successive three previous steps (synthesis,

sequencing, basecalling) can be modeled as a channel. This section introduces a new channel

model, which turns out to be very useful for the design and performance evaluation of error-

correction codes dedicated to DNA data storage. The software for the channel simulator is

available online: https://github.com/BHam-1/DNArSim.
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A. Notation

In what follows, we use Ins, Del, Sub, as abbreviations for Insertion, Deletion, Substitution,

respectively. In addition, Match stands for “no error”. In order to represent the channel effect,

we consider an event sequence e of length N , where et ∈ {Ins,Del,Sub,Match} is the channel

event at position t. Interestingly, the sequences e and x have the same length N , and event et

applies to input symbol xt. More into details, et = Del means that the symbol xt is deleted from

the sequence, and et = Sub means that the base value of xt is replaced by another base value.

In addition, et = Ins means that one or several symbols are inserted just after xt. We denote

by Lt the insertion length, that is the number of symbols inserted at position t. To make this

notation clear, we introduce the following example.

Example : Consider an input sequence of length N = 7:

x = [A,C,G,A, T,G,A],

and one output sequence of length P = 8:

y = [A,C,C,C,G, T, T, A].

The corresponding sequence of channel events that generated y from x is the sequence of length

N = 7:

e = [Match, Ins,Match, Sub,Match,Del,Match].

The channel inserted two symbols after x2, substituted symbol x4, and deleted x6. In addition

the insertion length at position 2 is L2 = 2.

B. Proposed channel model with memory

Our proposed channel model captures the statistical dependency between the event sequence

e and the input sequence x, by considering that event et depends on kmert. This is consistent

with the way the MinION sequencer operates, by reading one k-mer at a time. The MinION

sequencer typically uses k = 6, but our model is flexible and can be adapted to different values

of k, which will affect the model accuracy. Thus, our channel can be viewed as a Markov model

of order k. Our model also captures some internal memory in e, by considering that previous

event et−1 can affect current event et. This allows to represent bursts of errors.
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Our statistical channel model is described by the following set of conditional probability

distributions. First, the conditional probability distribution

P(et|kmert, et−1) (3)

of events et ∈ {Ins,Del,Sub,Match}, given kmert and previous event et−1, captures the

error dependency with the current k-mer, and allows to consider bursts of errors through the

dependency to et−1. Second, given an insertion et = Ins at position t, the conditional probability

distribution

P(Lt|kmert, et = Ins) (4)

of the insertion length Lt ∈ J1, LmaxK depends on the read kmert. Note that a deletion at

position t is always of length 1. Third, given a substitution et = Sub,

P(Bt|kmert, et = Sub) (5)

is the conditional probability distribution to substitute the last base xt of kmert by the base Bt,

where Bt 6= xt. We further assume that the previous three probability distributions (3), (4), (5),

do not vary with t ∈ Jk,N − 1K.

For t ∈ J2, kK, since no complete k-mer was observed already, we consider conditional

probability distributions

P(et|xt),P(Lt|xt, et = Ins),P(Bt|xt, et = Sub), (6)

which only depend on the input value xt. Finally, we observed from experimental data that the

probabilities to get an insertion or a deletion are higher at the first position t = 1 and at the last

one t = N , compared with middle positions t ∈ J2, N − 1K, and that these probabilities do not

depend much on the input sequence. Therefore, we allow for different probability distributions

P(e1),P(L1|e1 = Ins) (7)

and

P(eN),P(LN |eN = Ins), (8)

for t = 1 and t = N , respectively. Given that substitutions are not affected by the previous

remark, we still consider P(B1|x1, e1 = Sub) and P(BN |kmerN , eN = Sub) at the first and last

position, respectively.
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C. Model training

The next step is to estimate all the previous probability distributions from some sets of data. In

this work, we trained the model using two distinct sets of data, each with specific characteristics:

one set of experimental data, and one set of genomic data.

1) Set of experimental data (SetE): We first used a set of experimental data, callet SetE, that

passed through the full DNA data storage process described in Section II. This set was generated

from U = 9 input sequences x(u) (u ∈ J1, UK), called the reference sequences, each providing

Ju output sequences y(u,j) (u ∈ J1, UK, j ∈ J1, JuK), for a total of J =
∑9

u=1 Ju = 34604 read

sequences obtained after basecalling. In addition, 6 of the reference sequences have N = 500

nucleotides, and the 3 other ones have length N = 1000 nucleotides.

As a first step for training, each read sequence y(u,j) was aligned with its reference sequence

x(u). The alignments were done using the ggsearch36 tool from the FASTA software [30]. This

tool performs global to global alignments, that is to say that the whole read (from first to last

base) is aligned against the whole reference. In a second step, we used the aligned reads to

estimate conditional probabilities involving each k-mer contained in the sequences x(u). For

instance, we estimated the conditional probabilities P(et = D|kmert = β, et−1 = D′) as

N(et = D,kmert = β, et−1 = D′)

N(kmert = β, et−1 = D′)
(9)

where N(.) counts the number of occurences of the event over all the aligned-read pairs (x(u),y(u,j)),

D,D′ ∈ {Ins,Del,Sub,Match}, and β is a specific k-mer that can be any sequence of k bases.

The other probability terms were estimated by following the same approach. At the end, the

overall error probability over this dataset is high, about 10%.

The first advantage of this set of experimental data is that the reference sequences x(u) are

perfectly known, which makes the comparisons between the reads and the reference very reliable.

On the other hand, this set contains only a small amount of data, due to high DNA synthesis costs.

This leads to plenty of unobserved combinations (kmert, et−1 = E), over the 4k+1 possible ones.

In our case, when a given combination (kmert, et−1 = E) was left unobserved, we estimated

the corresponding probabilities by averaging over all observed combinations.

2) Set of genomic data (SetG): Genomic data are much more accessible than experimental

data, as they can be obtained from various genomic databases. In this work, we considered a set

of genomic data called SetG, that contains U = 7 strains (sub-types) [31] of the Streptococcus
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thermophilus bacteria [32]. In this case, the reference sequences x(u) contain about 106 bases,

while the reads y(u,j) correspond to subsequences of x(u), and contain between 103 and 105

bases. This makes it impossible to use global alignments. In addition, there is no ground truth

that states from which part of the reference x(u) a given read y(u,j) is produced. Thus, for the

genomic dataset, we performed local alignments with a tool called minimap2 [33], which is

very efficient in performing local alignments of very long sequences in a timely manner. In

addition, we eliminated from the training set the reads y(u,j) with a low-scoring alignment. We

then used the same approach described in (9) in order to estimate all the probability terms. The

overall error probability over this dataset is about 3%, which is significantly lower than for the

experimental dataset. Note that since for SetE the reference sequences x(u) and the reads y(u,j)

have the same length, global alignment is equivalent to local alignment.

The main advantage of genomic data is that it offers a significantly larger quantity of data.

All possible combinations (et = D,kmert = β, et−1 = D′) were observed, with a sufficient

amount of each. However, this dataset introduces another type of bias since the training discards

low-scoring alignments, i.e., sequences that have a high amount of errors. This explains why it

gives a lower error probability compared to the experimental dataset.

D. Dynamic channel model

The two datasets provide two realistic channel models, with similar underlying characteristics

but varying error rates. This will allow for the evaluation of the proposed error-correction codes

under different conditions. To expand the performance evaluation even further, we propose a

modified version of our channel model, which enables to consider various and intermediate

levels of errors. This modified channel is referred to as the dynamic channel model.

Starting from a set of conditional probabilities obtained from one or the other training dataset,

we introduce a unique scaling parameter α, and evaluate a new set of probabilities P̃(α)(et =

D|kmert = β, et−1 = D′) defined for D ∈ {Ins,Del,Sub} as

P̃(α)(et = D|kmert = β, et−1 = D′) (10)

= αP(et = D|kmert = β, et−1 = D′),
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Fig. 1. Concatenated coding scheme.

and for D = Match as

P̃(α)(et = D|kmert = β, et−1 = D′) (11)

= (1− α)P(et = D|kmert = β, et−1 = D′).

By construction, this new set of probabilities satisfies the normalization condition. It also allows

to consider different channel error rates by varying the parameter α, as will be shown in the

simulation section. For simplicity, we do not change other probability terms P(Lt|kmert, et =

Ins) and P(Bt|kmert, et = Sub), given that they have less impact (for the first one), or no

impact (for the second one) on the overall error probability.

IV. CONCATENATED CODES

This section describes the concatenated code construction of [19], which we consider in this

paper. As outer code, we consider an LDPC code defined by its parity check matrix H with

rate R0. According to [19], the considered LDPC code may be either binary or non-binary. In

this section as well as in our numerical simulations, we only consider the case of a non-binary

LDPC code in GF(4) which matches the channel alphabet. As inner code, we consider a binary

CC with generator polynomial ∆ and rate Ri. This inner code takes k bits as input, provides

n bits as outputs, and has m registers. The CC aims to resynchronize the sequence, which

means correcting all insertions and deletions, and it also corrects a part of the substitutions. The

LDPC code corrects residual substitution errors. The concatenated coding scheme is depicted in

Figure 1. We now describe its encoding and decoding steps.
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A. Encoders

The outer LDPC code takes as input a quaternary sequence u of length K, and outputs a

sequence of symbols in GF(4), which is then converted into a binary sequence w of length

N0. The inner convolutional encoder outputs a binary sequence v of length Nb, which is then

converted into a sequence z of length N = Nb/2 in GF(4). Finally, the sequence x is computed

as

x = z + r, (12)

where r is a random offset sequence of length N with symbols in GF(4), and where the sum is

in GF(4). It was shown in [34] that the offset sequence r significantly improves the convolutional

decoder performance under synchronization errors. At the end, the sequence x is synthetized as

a DNA molecule.

B. Decoders

After sequencing, the DNA storage channel outputs the J sequences y(j) in GF(4). We apply

the inner convolutional decoder to J ′ < J sequences y(j). This decoder consists of a BCJR

algorithm [35] which takes as inputs sequences in GF(4), and outputs Log Likelihood Ratios

(LLRs) over bits. It also takes into account the offset sequence. We then convert the LLRs

over bits onto LLRs over quaternary symbols, and pass them to a standard non-binary LDPC

decoder, assuming that the convolutional decoder corrected all insertions and deletions, and that

residual substitution errors are statistically independent. The LDPC decoder outputs a sequence

û of length K. In what follows, we introduce an updated version of the convolutional decoder

of [19], [34], in order to take all the knowledge provided by our channel model into account.

V. CONVOLUTIONAL DECODERS

When designing the convolutional decoder, the first difficulty resides in the fact that inser-

tions and deletions break the Markov property in the sequence of states [34]. Therefore, the

convolutional decoder of [34] introduces an additional drift variable that restores the Markov

property.

In this section, we first present the decoder of [34] which assumes an i.i.d. channel model.

Then, we adapt this decoder to account for: (i) the memory in the sequence of error events, (ii)

August 21, 2023 DRAFT



12

the dependency between error events and k-mers. We begin by describing the decoders for a

single sequence y of length P , and later explain how to handle multiple sequences y(j).

A. State-of-the-art decoder with drifts (Dec1)

The decoder of [19], [34] is referred to as Dec1 in the remaining of the paper. We provide

a detailed description of this decoder in order to establish notation and ensure that the paper is

self-contained. When introducing the two other decoders, we will only highlight the differences

compared to Dec1.

1) States of the decoder: The successive internal states of the CC are denoted st, where

t ∈ J0, NK. For instance, if the CC has 4 states, st takes values in {S0, S1, S2, S3}. Further, [34]

introduces an additional state variable dt, called the drift. The drift dt represents the delay at

time t in the sequence, that is

dt = Nb(INS)t − Nb(DEL)t, (13)

where Nb(INS)t (respectively Nb(DEL)t) is the number of insertions (respectively deletions)

that occurred before transmitting the symbol xt. Between time instants t and t+ 1, we assume

that there is a maximum of Imax insertions and of 1 deletion. As a result, dt+1 lies in the interval

Jdt − 1, dt + ImaxK. Overall, between time instants t = 0 and t = N , we assume that dt lies in

the interval JDmin, DmaxK. Both Imax, Dmin, and Dmax, are parameters of the decoder. Overall,

the state of the decoder is denoted by the pair

σt = (st, dt). (14)

Figure 2 shows the trellis of the decoder, with state σt evolving between successive time instants

t = 0, t = 1, and t = 2.

2) A posteriori probability computation: The CC decoder aims to compute a posteriori

probabilities P(wt|y), where

P(wt|y) =
P(wt,y)

P(y)
(15)

and

P(wt,y) =
∑

(σt,σt+1):wt

P(y,σt,σt+1). (16)

August 21, 2023 DRAFT



13
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Internal CC state Drift

Fig. 2. Partial trellis diagram for Dec1, for time instants t = 0, t = 1, t = 2, with Imax = 1 and dt+1 ∈ Jdt − 1, dt + 1K

During probability computation, the drift variable dt allows to maintain a Markov property in

the sequence of states in the sense that P(y,σt,σt+1) can be decomposed as

P(y,σt,σt+1) = αt(σt)βt+1(σt+1)γt(σt,σt+1) (17)

where

αt(σt) = P(y
(t−1)n+dn
1 ,σt) (18)

βt+1(σt+1) = P(yTtn+d′n+1|σt+1) (19)

γt(σt,σt+1) = P(ytn+d
′n

(t−1)n+dn+1,σt+1|σt) (20)

are evaluated from a forward recusion, backward recursion, and branch metric computation,

which is the typical approach used in the BJCR algorithm. In the previous equations and in

what follows, d refers to the current drift value dt, and d′ refers to the next drift value dt+1. We

often use d, d′ instead of dt, dt+1, for improved readability of the equations.
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Fig. 3. Lattice structure used to compute branch metrics in Dec1.

3) Forward and Backward recursions: The forward recursion computes αt(σt) for all t ∈

J1, NK as

αt(σt) =
∑
σt−1

αt−1(σt−1)γt(σt−1,σt) (21)

where α0(σ0) is initialized as

α0(σ0) =

1, if σ0 = (0, 0)

0, otherwise.
(22)

The backward recursion computes βt−1(σt) for all t ∈ J0, N − 1K as

βt(σt) =
∑
σt+1

βt+1(σt+1)γt(σt,σt+1) (23)

where βN(σN) is initialized as

βN(σN) =

1, if σN = (0, P −N)

0, otherwise.
(24)

4) Branch metric computation: The branch metric γt(σt,σt+1) can be expressed as

γt(σt,σt+1) = P(wt)P(ytn+d
′n

(t−1)n+dn+1, dt+1|dt, st, st+1) (25)

where P(wt) = 1/4. The branch metric is evaluated by using an efficient algorithm based on a

lattice structure [36], see an example in Figure 3. This lattice allows us to compute the probability

to pass from state σt to state σt+1, which corresponds to the emission of a certain symbol

ẋ = xtn(t−1)n+1. We consider the observed sequence ẏ = ytn+d
′

(t−1)n+d+1, whose length corresponds

to passing from drift dt to drift dt+1. We recursively compute the probabilities Fi,j at lattice

nodes [i, j], such that ∀i ∈ J0, 1K, ∀j ∈ J0, Imax + 1K,

Fi,j = PdFi−1,j +
1

4
PiFi,j−1 +Q(ẋi|ẏj)Fi,j−1 (26)
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where

Q(ẋi|ẏj) =

Pm, if ẋi = ẏj

1
3
Ps, otherwise.

(27)

In these expressions, Pd is the probability of a deletion, Pi is the probability of an insertion, Pm
is the probability of a match, and Ps is the probability of a substitution. Note that in the decoder

of [19], these probabilities come from the i.i.d. model. The computation is initialized as

Fi,j =

1, if i = 0 and j = 0

0, if i < 0 or j < 0.
(28)

Moving vertically on the lattice means that a deletion occurred, represented by the first term

in (26). Moving horizontally on the lattice means that an insertion occurred, represented by the

second term in (26), where the factor 1
4

represents the uniform probability to insert any base A,

C, G, or T. Moving horizontally on the lattice means that either a match occurred if ẋi = ẏj , or

a substitution occurred if ẋi 6= ẏj . Both cases are represented by the third term of (26), where
1
3

represent the uniform probability to substitute the current base ẋ by any of the three possible

ones. Finally, after computing the last lattice node F1,Imax+1, we get

γt(σt,σt+1) =
1

4
F1,dt+1−dt+1. (29)

Note that in our implementation, we first evaluate the lattice for the largest possible gap Imax +1

between dt and dt+1, and we then extract partial values F1,dt+1−dt+1 from the lattice computation,

for dt+1−dt + 1 < Imax + 1. This is more efficient than generating one lattice per possible value

dt+1 − dt.

B. Taking previous error events into account (Dec2 )

We now extend the previous decoder to consider the memory between successive error events.

This decoder will be referred to as Dec2 in the following. Note that this decoder is only presented

here in order to next simplify the description of the third decoder taking into account our full

channel model. Numerical simulation results will show that Dec2 does not improve the decoding

performance compared to Dec1.
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S0,0,M

S1,0,M

S2,0,M

S3,0,M

S0,-1,M

S0,-1,S

S0,-1,D

S0,-1,I

S0,0,M
...

...

...

t=0 t=1 t=2

Internal CC state
Drift

S2,-1,S

S2,-1,D

S2,-1,I

S2,0,M

S0,0,M

S0,0,S

S0,0,D

S0,0,I

S0,1,M
...Edit

Fig. 4. Partial trellis diagram for Dec2, for time instants t = 0, t = 1, t = 2, with Imax = 1 and dt+1 ∈ Jdt − 1, dt + 1K

1) States of the decoder: The state of the decoder is now given by a triplet

σt = (st, dt, et), (30)

where et ∈ {Ins,Del,Sub,Match} is the last edition observed before emitting symbol xt. The

edition variable et is added in order to preserve the Markov property when considering the

previous error event et−1. This results in a larger trellis which has 4 times more nodes than for

Decoder 1, see Figure 4 for an example. In addition, at time instant t = 0, we assume that the

channel starts with a Match.

2) A posteriori probability computation: With this new state definition, relation (17) remains

valid. To evaluate P(y,σt,σt+1), we still use forward, backward recursions, and branch metric

computation, each with modified expressions.
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Deletion InsertionMatch Substitution

ẋ=
A

M

F0,0,M

F1,Imax+1,D

S

D

I

F0,0,S

F0,0,D

F0,0,I

F1,Imax+1,M

F1,Imax+1,S

F1,Imax+1,I

ẏ=A A C

Fig. 5. 3D Lattice structure used to compute branch metrics in Dec2, for et =M and et+1 = D

3) Forward and Backward recursions: The forward recursion is still evaluated from (21), but

the initialization is modified as

α0(σ0) =

1, if σ0 = (0, 0,M)

0, otherwise.
(31)

in order to consider the initial edit e0 = M . In the same way, the backward recursion is still

evaluated from (23), but the initialization is modified as

βN(σN) =



Pm, if σN = (0, P −N,M)

Ps, if σN = (0, P −N,S)

Pd, if σN = (0, P −N,D)

Pi, if σN = (0, P −N, I)

0, otherwise.

(32)

to take into account the final event eN .
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4) Branch metric computation: Branch metric computation is more impacted by the additional

state variable et. The branch metric γt(σt,σt+1) is now calculated as

γt(σt,σt+1) (33)

= P(wt)P(ytn+d
′n

(t−1)n+dn+1, dt+1, et+1|dt, et, st, st+1),

and it is again evaluated recursively from a lattice. Howerver, now a 3D lattice is needed to

account for the additional paths resulting from the dependency to previous errors. This new

lattice contains four plans, where each plan represents a particular edition et ∈ {M,S,D, I}, as

shown in Figure 5. The moving rules are the same as in the lattice for Decoder 1, except for the

fact that we can now move from a plan to another one, depending on the considered edition et.

For instance, in the case of an insertion, we should move horizontally from toward the insertion

plan, see green arrows in Figure 5.

The recursive computation is initialized as

Fi,j,e =

1, if i = 0 and j = 0 and e = et

0, if i < 0 or j < 0.
(34)

We now define Pe1→e2 as the probability to observe edition e2 ∈ {M,S,D, I} given that the

previous edition was e1 ∈ {M,S,D, I}. The probabilities at successive nodes in the lattice can

be calculated recursively by using the following formulas:

Fi,j,M = Pm→mFi−1,j−1,M + Ps→mFi−1,j−1,S

+ Pd→mFi−1,j−1,D + Pi→mFi−1,j−1,I

Fi,j,S =
1

3
(Pm→sFi−1,j−1,M + Ps→sFi−1,j−1,S

+ Pd→sFi−1,j−1,D + PsFi−1,j−1,I)

Fi,j,D = Pm→dFi−1,j,M + Ps→dFi−1,j,S

+ Pd→dFi−1,j,D + Pi→dFi−1,j,I

Fi,j,I =
1

4
(Pm→iFi,j−1,M + Ps→iFi,j−1,S

+ Pd→iFi,j−1,D + Pi→iFi,j−1,I) (35)
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S0,-3,M,AAA
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S0,-4,M,TAA
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S0,-4,S,TAA

S0,-4,D,TAA
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S0,-4,I,TAA

...
S2,-4,M,TAT

...

t=4 t=5 t=6

...
...

...

...
...

...

...

...
...

...

......

Internal CC state

Drift

Edit
kmer

Fig. 6. Partial trellis diagram for Dec3, for time instants t = 4, t = 5, t = 6, with Imax = 1 and dt+1 ∈ Jdt − 1, dt + 1K

where Fi,j,S = 0, if ẋi = ẏj

Fi,j,M = 0, if ẋi 6= ẏj.
(36)

At the end, we get

γt(σt,σt+1) =
1

4
F1,dt+1−dt+1,et+1 . (37)

C. Taking K-mers into account (Dec3 )

In the third decoder, in addition to previous error events, we also consider the statistical

dependency between the error event and the current k-mer. This decoder is referred to as Dec3.

1) States of the decoder: The state of the decoder is now given by a quadruplet

σt = (st, dt, et,ηt), (38)

where ηt is a vector of length K which gives the current k-mer. Especially, if

ηt = [η
(t)
1 , η

(t)
2 , · · · , η(t)K ],

then

ηt+1 = [η
(t)
2 , η

(t)
3 , · · · , η(t)K , xt+1],
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where xt+1 is the symbol emitted at time instant t + 1. At time t = 0, this new state variable

is initialized as η0 = ∅. In addition, for t < K, we consider ηt = [η
(t)
1 , η

(t)
2 , · · · , η(t)t−1, η

(t)
t ]. This

results in a larger trellis which has 2k times more nodes than the trellis of Dec2, see Figure 6.

2) A posteriori probability computation: With this new state definition, (17) remains valid. To

evaluate the three terms in P(y,σt,σt+1), we still use a forward recursion, backward recursion,

and branch metric computation, which we now describe.

3) Forward and Backward recursions: The forward recursion is still evaluated from (21),

with initialization given by (31). The backward recursion is still evaluated from (23), but the

initialization is updated as

βN(σN) =



P(M |ηN), if σN = (0, P −N,M)

P(S|ηN), if σN = (0, P −N,S)

P(D|ηN), if σN = (0, P −N,D)

P(I|ηN), if σN = (0, P −N, I)

0, otherwise.

(39)

to take into account the k-mers.

4) Branch metric computation: The branch metric γt(σt,σt+1) is now evaluated as

γt(σt,σt+1) (40)

= P(wt)P(ytn+d
′n

(t−1)n+dn+1, dt+1, et+1,ηt+1|dt, et,ηt, st, st+1)

= P(wt)P(ytn+d
′n

(t−1)n+dn+1, dt+1, et+1|dt, et,ηt+1, st, st+1)

since ηt+1 is entirely determined by ηt and by the transition from internal state st to st+1. The

branch metric is evaluated from the same 3D lattice used for Decoder 2 and shown in Figure 5.

However, compared to Decoder 2, the recursive computation over the lattice now takes into

account the observed k-mer ηt.

We now consider the probability P(et+1|ηt, et) of edit et+1 ∈ {M,S,D, I} conditioned to the

k-mer ηt, and to the previous edit et ∈ {M,S,D, I}. We use the following formula to recursively
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compute the probabilities throughout the lattice:

Fi,j,M =

P(M |ηt+1,M)Fi−1,j−1,M + P(M |ηt+1, S)Fi−1,j−1,S

+ P(M |ηt+1, D)Fi−1,j−1,D + P(M |ηt+1, I)Fi−1,j−1,I

Fi,j,S =

1

3
(P(S|ηt+1,M)Fi−1,j−1,M + P(S|ηt+1, S)Fi−1,j−1,S

+ P(S|ηt+1, D)Fi−1,j−1,D + P(S|ηt+1, I)Fi−1,j−1,I)

Fi,j,D =

P(D|ηt+1,M)Fi−1,j,M + P(D|ηt+1, S)Fi−1,j,S

+ P(D|ηt+1, D)Fi−1,j,D + P(D|ηt+1, I)Fi−1,j,I

Fi,j,I =

1

4
(P(I|ηt+1,M)Fi,j−1,M + P(I|ηt+1, S)Fi,j−1,S

+ P(I|ηt+1, D)Fi,j−1,D + P(I|ηt+1, I)Fi,j−1,I) (41)

At the end, we get

γt(σt,σt+1) =
1

4
F1,dt+1−dt+1,et+1 , (42)

as for Dec2.

D. Decoding with several sequences

The previous three decoders consider only one output sequence y, while the DNA storage

channel produces J sequences y(j). In [19], it is proposed to decode each sequence y(j) inde-

pendently and separately, and to aggregate the results a posteriori by relying on the following

formula:

P(wt|y(1),y(2), · · · ,y(J)) =

∏J
j=1 P(wt,y

(j))

P(wt)J−1
. (43)

Note that such aggregation could be realized at different levels of the decoding, but it was shown

in [19] that it is more efficient to do it after applying the inner CC decoder. Note that [19] also

proposed an alternative technique that is more efficient but also more complex to take into account
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(Previous) INS DEL SUB

Match 687 1579 1830

INS 12 12 4072

DEL 0 4096 0

SUB 42 3 4051

TABLE I

FOR THE MODEL TRAINED ON SETG, OVER 4096 k-MERS WITH k = 6, NUMBER OF TIMES THE LARGEST PROBABILITY IS

FOR EVENT EITHER INS, DEL, OR SUB (COLUMNS) WITH RESPECT TO THE PREVIOUS ERROR EVENT (ROWS). FOR

INSTANCE, WHEN THE PREVIOUS ERROR EVENT IS A MATCH (FIST ROW), FOR 687 OF THE k-MERS, THE PROBABILITY OF

AN INSERTION IS LARGER THAN THE PROBABILITY OF A DELETION OR A SUBSTITUTION.

multiple sequences directly within the CC decoder. Given that Dec2 and Dec3 are already very

complex, we leave for future works the investigation of this other technique.

VI. SIMULATION RESULTS

In this section, we first present numerical results for the channel models. We then investigate

the performance of the proposed convolutional decoder.

A. Channel models

We first evaluate the proposed channel model against existing ones. In [11], we compared

the edit maps of different models, and found that our model was visually the most similar to

experimental data. Here, alternatively, we first provide statistics of error events in order to justify

the assumptions of our model. We then use a more systematic approach which is based on the

Kulback-Leibler (KL) divergence [37], [38] to evaluate the similarity between the simulated

sequences for each model and the reference sequences.

1) Channel statistics: We now show some statistics of our model trained from the set of

genomic data SetG. Indeed, in SetG, all k-mers appear a sufficient amount of time, which

avoids any bias that could be introduced by unobserved k-mers. In this part, we consider k = 6,

which is in accordance with the way the MinION sequence works.

First, Figure 7 shows the repartition of probabilities over k-mers for each event INS, DEL,

SUB, depending on the previous event. For instance, we see that when the previous event is
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Fig. 7. Boxplots of error event probabilities depending on the previous event. This shows the probability repartition over k-mers

for each event.

(Previous) A C G T

A × 0.149 0.675 0.176

C 0.351 × 0.173 0.476

G 0.756 0.076 × 0.168

T 0.328 0.424 0.248 ×

TABLE II

WHEN THERE IS A SUBSTITUTION ERROR, PROBABILITY THAT THE SYMBOL IN THE ROW IS REPLACED BY THE SYMBOL IN

THE COLUMN. FOR INSTANCE, THE PROBABILITY THAT BASE C IS SUBSTITUTED BY BASE A IS 0.35. NOTE THAT PASSING

FROM e.g., BASE A TO A IS NOT AN ERROR, THIS IS WHY THERE ARE NO VALUES SPECIFIED IN THE DIAGONAL.

a substitution (bottom left figure), the average insertion probability is around 0.02, while the

average deletion probability is around 0.25. This allows to conclude that event probabilities

depend on both the current k-kmer, and the previous error event, as we consider in our model.

Then, Table I shows the number of k-mers for which the probability of a given error event is the

largest among all error events, depending on the previous event. For instance, when the previous

event is a Match, 1830 k-mers have a larger substitution error probability, while 687 k-mers
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have a larger insertion probability. This confirms the observations made from Figure 7. Finally,

Table II shows the probability to replace a base by another one, under a substitution error. For

instance, the probability to substitute a G by an A is 0.756, while the probability to substitute a

G by a C is only 0.0755. This shows that substitution probabilities are non-uniform over bases,

as we consider in our model.

Note that the channel simulator PBSIM2 [9] considers probabilities over quality scores, where

probabilities depend on the current k-mer as in our model. However, PBSIM2 considers a

fixed ratio between error event probabilities, and samples errors first from the quality scores,

and second from the predefined ratio. This is in contradiction with the statistics of Table I,

which instead show that there is no fixed ratio between error events (e.g. for some k-mers,

insertion probability is larger than deletion probability, and for other k-mers, this is the opposite).

In addition, PBSIM2 considers uniform substitution probabilities over bases, which enters in

contradiction with the statistics of Table II.

We next investigate the accuracy of our channel model against other models, for which the

underlying assumptions do not enter into direct contradiction with the statistics shown in this

section.

2) KL divergence: We now compare our model against three different existing models: (i)

the i.i.d. model, (ii) DeepSimulator, as a representative of DL-based methods, (iii) BadRead, for

which event probabilities directly depend on the k-mers, as in our model. We here consider the

two datasets, namely SetE and SetG, given that they have some different characteristics.

Starting with the set of experimental data SetE, Figure 8 shows the KL divergence with

respect to the memory order k for the i.i.d. channel, DeepSimulator, BadRead, and our model.

The channel models were all trained on SetE, except for DeepSimulator. Then, the KL divergence

was averaged over the sequences of SetE. First note that only the curve for our model varies

with k, because this is a parameter of our model only. Second, we observe that our model has

the lowest KL divergence, while the i.i.d. model surprinsingly comes second. We see that for

our model, k = 1 gives a better KL divergence than the i.i.d. model, because it still takes into

account memory in successive events et, and dependency with the input symbol xt. In addition,

we see that for our model, when k is large enough, the KL divergence is close (but not equal)

to 0, which means that our model trained on SetE represents accurately the dataset SetE, even

for a value of k as small as 9 or 10.
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Fig. 8. KL divergence for different channel models compared with SetE. Except for DeepSimulator, all the other channel

models were trained on SetE.

Then, in Figure 9, BadRead and DeepSimulator were taken from their own knowledge (from

the online code), while our model as well as the i.i.d. model were trained on SetG. The KL

divergence values were then calculated over SetE. One first important remark is that in this case,

the KL divergence values are much higher than in Figure 8, because the models were trained

on a dataset and evaluated on another one. Interestingly, our model again shows the lowest KL

divergence over all the models, and the i.i.d. model still comes second. It is worth noting that this

time, the value k = 6 is the one that provides the lowest KL divergence, while the KL values

start increasing again from k = 7. This suggests that k = 6 leads to a better generalization

capability for our model, which is consistent with the way the MiniON sequencer works (with

k = 6). Therefore, in what follows, we only consider our model with k = 6.

B. CC decoders performance

We now evaluate the performance of the three CC decoders, by running Monte-Carlo simu-

lations over our memory channel model. We consider the two versions of our memory channel

model, i.e., the one trained on the experimental data SetE, and the one trained on the genomic

data SetG. Both versions are considered because the overall error rates differ between the two

models, as explained in Section III. Each simulation run generates a random binary sequence w,
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Fig. 9. Kullback-Leibler divergence between channel models simulation results and SetE. BadRead and DeepSimulator use

their own knowledge. Our channel model and the i.i.d channel model were trained on SetG.

uniformly at random. Then w is encoded with a (kc = 1, nc = 2, Kc = 3) CC of rate 1/2, which

uses the generator polynomial δpoly = [δ2 +1, δ2 +δ+1], and outputs a binary encoded sequence

x of a certain length N . We consider values N ∈ {54, 204}, which falls in the range of length of

DNA molecules produced by current synthesis techniques [39]. The sequence x is then passed

through our memory channel model, and the CC decoder takes as input J sequences output by

the channel. For each considered value J , we perform a maximum of 50000 simulation runs to

evaluate the FER and BER of each decoder, and stop the evaluation after 100 frames in error.

Figure 10 shows the FER and BER with respect to J , of the three decoders over the memory

channel model trained onto SetE, for N = 54. We observe that Dec3 has the best performance

both in terms of FER and BER, with a clear performance gain compared to Dec1 of [19].

This can be explained by the fact that Dec3 fully takes into account the channel model. The

performance gain is even more significant when the number of sequences J increases. More

surprisingly, we also observe that Dec2 performs worst, most probably because this decoder

only partially takes into account our channel model. Note that we also observed that the decoder

that considers partial channel model through the state σt = (st, dt,ηt) (e.g., et is replaced by

ηt) also performs worst than Dec1.
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Fig. 10. FER and BER with respect to the number of sequences J , over the memory channel model trained onto SetE, for

N=54. Dashed lines represent the BER and plain lines represent the FER.

In addition, Figure 11 shows the FER and BER with respect to J , of the three decoders over

the memory channel model trained onto SetG, for N = 204. In this setup as well, we observe

that Dec3 has a better performance than Dec1, and that Dec2 still performs poorly. Note that

the FER and BER values are lower in Figure 11 than in Figure 10, because the overall error

probability on SetG is lower than on SetE.

C. Concatenated codes performance

In order to evaluate the concatenated code construction, we now consider the dynamic channel

model introduced in Section III-D. Starting with the set of probabilities obtained from the

genomic data, we consider various parameters α which provide different channel error rates.

The channel error rate for a given α was numerically evaluated from Monte Carlo simulations.

Table III provides the measured error rates for each considered value of α.

We now consider the concatenated code construction introduced in Section IV, with the same

CC considered in the previous simulation results, used together with a regular non-binary LDPC

code of rate R = 4/5 in GF(4), and with N = 50. In the decoding part, we consider Dec3

followed by a standard BP decoder in GF(4). Figure 12 shows the FER with respect to the

channel error probability, for various values of J for the CC alone, and for J = 1 for the full
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Fig. 11. FER and BER with respect to the number of sequences J , over the memory channel model trained onto SetG, for

N=204. Dashed lines represent the BER and plain lines represent the FER.

α 0.13 0.28 0.52 0.8 1.05 1.25 1.55 1.85 2.12 2.4 2.7

Error probability 0.005 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

TABLE III

ERROR PROBABILITY WITH RESPECT TO THE VALUE OF α FOR THE DYNAMIC CHANNEL MODEL STARTING FROM THE SET

OF PROBABILITIES ESTIMATED FROM SETG. THE ERROR PROBABILITIES WERE ESTIMATED FROM MONTE-CARLO

SIMULATIONS.

concatenated code construction. Figure 13 shows the same curves but in terms of BER. In both

cases, we observe a significant gain of the concatenated construction with J = 1 compared to the

CC alone with J = 1. In addition, in terms of FER, the concatenated constructions with J = 1

and J = 2 outperform the CC decoder alone with J = 3. For the BER, while the concatenated

construction with J = 2 is best, the same construction with J = 1 is not as good as the CC

decoder alone with J = 3. One explanation is that the CC decoder alone is known to perform

poorly in terms of FER, while it already has a fairly good BER performance. This also illustrates

the tradeoff between the coding rate and the number of sequences used for decoding.
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Fig. 12. FER with respect to the overall error rate for the dynamic channel model, for the CC Dec3, and for the concatenated

code construction with Dec3 and a NB-LDPC decoder, with N = 50.

VII. CONCLUSION

This paper introduced a new channel model for DNA data storage, which can be seen as a

Markov model of order k and was trained on experimental and genomic datasets. The proposed

model was shown to be more accurate than existing ones through numerical evaluation of the

KL divergence. Additionally, this work improved the CC decoder of [19] by incorporating the

knowledge of the channel model, resulting in better BER and FER performance. Future works

will focus on reducing the complexity of the proposed decoder.
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