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ABSTRACT This paper investigates channel coding for DNA data storage, a recent and emerging paradigm
in which both substitution errors and synchronization errors (insertions, deletions) are introduced in the
stored data. The paper first proposes a novel and accurate statistical channel model to represent errors
introduced by the DNA data storage support. The channel model takes the form of a k-order Markov
Model which allows to capture both memory in the sequence of channel errors, and statistical dependency
between errors and input sequence. The model probabilities are inferred on two sets of data: one set of
experimental data, and one set of genomic data. In both cases, we observe a superior accuracy, evaluated
from the Kulback-Leibler divergence, of our channel model compared to existing ones. Second, the paper
investigates the design of error-correction solutions dedicated to the proposed channel model. It considers
a concatenated code construction built from a convolutional decoder which aims to correct synchronization
errors, and from an outer LDPC code which corrects residual substitution errors. While this construction
was already investigated for i.i.d. errors, this paper shows how to include all the knowledge of the proposed
channel model into the convolutional decoder. Numerical results show that the proposed decoding algorithm
significantly improves the decoding performance in terms of BER and FER, at the price of an increased
decoding complexity.

INDEX TERMS DNA storage channel model, coding for DNA data storage, concatenated codes, convolu-
tional decoders, BCJR algorithm.

I. INTRODUCTION
DNA data storage is seen as an emerging and promising
alternative to conventional storage supports, due to higher
density and greater durability. In DNA data storage, informa-
tion is stored by synthesizing a digital sequence into a DNA
molecule built from a sequence of bases A,C,G,T. The orig-
inal information can be retrieved by using a DNA sequencer
such as the Oxford Nanopore Technology (ONT) MinION
sequencer which we consider in this work. Recent progress in
both the synthesis and sequencing technologies pave the way
for the development of cost-effective and competitive DNA
data storage solutions in the next few years.

Unfortunately, sequencing still introduces a large amount
of substitution, insertion, and deletion errors in the read data.

The associate editor coordinating the review of this manuscript and
approving it for publication was Parul Garg.

Insertions and deletions break sequence synchronization, and
they cannot be corrected with conventional error-correction
methods designed for data storage or wireless communi-
cations. Therefore, from a channel coding perspective, two
key challenges should be addressed in order to make DNA
data storage more practical: (i) develop accurate statistical
channel models to represent errors that occur during the DNA
data storage process, (ii) design powerful error-correction
solutions that can handle the three types of errors. This paper
aims to address both of these challenges in a cohesive man-
ner, by first introducing an accurate channel model and then
incorporating the model knowledge into the decoder.

Statistical channel models allow to run extensive in-
silico simulations, before implementing expensive in-vitro
experiments. Regarding DNA data storage, a wide range
of works consider non-uniform independent and identically
distributed (i.i.d.) error models [1], [2], [3], [4]. But it is
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shown in [5] that the error statistics are highly dependent on
the input sequence, and contain memory, making the i.i.d.
assumption unrealistic. To account for these dependencies,
a first set of simulators have employed Deep-Learning (DL)
based approaches, such as DeepSimulator [6], [7], which
utilizes Deep Neural Networks (DNNs), or the approach
of [8] which uses Generative Adversarial Networks (GANs).
However, these simulators are trained for specific sequence
lengths, and the training process is computationally expen-
sive. Furthermore, DL-based simulators are not completely
appropriate in our context, since the channel probabilities are
not explicit and cannot be incorporated into the design of
the decoder. Alternatively, PBSIM2 [9] considers transition
probabilities over a sequence of quality scores, and samples
errors from the quality scores according to a fixed distribution
between error events. But we observed on experimental data
that the event distribution is not fixed and varies with the
input sequence. In addition, BadRead [10] uses transition
probabilities estimated from experimental data to randomly
substitute length-k sequences with other length-k ′ sequences.
However, in Badread, the user has to specifymany parameters
such as the average reads-length or the total amount of errors,
and the channel accuracy heavily depends on the considered
parameters.

This paper introduces a new and accurate statistical chan-
nel model that is defined by a set of probabilities over the
error events and does not require any additional parameter.
Given that the MinION sequencer reads k symbols at a time,
our channel model relies on a k-order Markov Model in
order to take into account both memory in the successive
error events, and statistical dependency between errors and
input sequence. We describe how to train the model using
two different datasets: one smaller dataset of experimental
data passed through the entire DNA storage process, and
one larger dataset of genomic data. Numerical evaluation of
the Kullback-Leibler divergence demonstrates that our model
more accurately represents the actual DNA data storage pro-
cess than existing models [6], [7], [10]. Lastly, we introduce
a dynamic channel model, which allows to smoothly adjust
the channel probabilities inferred from the datasets, in order
to simulate a wider range of error probabilities in numerical
experiments. It is worth mentioning that in our previous
work [11] where the channel model was introduced, only one
dataset was used for training, and the dynamic channel model
was not presented.

Second, this paper addresses the design of efficient
error-correction solutions for DNA data storage. The first
error-correction solutions proposed for synchronization
errors were based onVarshamov-Tenengolts (VT) codes [12],
which can correct only one deletion or one insertion. These
solutions were further extended to correct one burst of inser-
tions and deletions [13], [14], or a few errors [15], [16],
or to consider constrained codes together with the correc-
tion of a single error [17]. While solutions that guarantee
the correction of a fixed number of errors are interesting
from a theoretical perspective, they may not be sufficient

in our context, since our channel model reveals a large
and random amount of errors of the three types. Therefore,
recent works consider either Convolutional Codes (CC) [18],
[19], [20], Low Density Parity Check (LDPC) codes [21],
[22], [23], [24], or Polar codes [25], which use modi-
fied decoders that can correct not only substitutions, but
also insertions and deletions. It is worth mentioning that
the above works only consider non-uniform i.i.d. channel
models.

In this work, we start from the concatenated code con-
struction of [19], which is built from an inner CC designed
to re-synchronize the sequence (i.e., eliminate all insertions
and deletions, correct a part of the substitutions), and from
an outer LDPC code which corrects the remaining substi-
tution errors. We consider this construction due to its good
error-correction capabilities for error rates between 1% and
10% (when using an i.i.d. channel), which aligns with the
error rates observed in our model. In this paper, we propose to
modify the convolutional decoder of [19] so as to incorporate
the statistics of our channel model. This involves expanding
the space of states used in the BCJR algorithm, and adapt-
ing the forward recursion, backward recursion, and branch
metric computation based on our model. Numerical results
show that although the modified BCJR decoder has a much
larger complexity than in the i.i.d. case, it leads to significant
performance improvement in terms of Bit Error Rate (BER)
and Frame Error Rate (FER) compared to the decoder of [19].
It is worth noting that a similar work on adapting the con-
catenated code construction for our channel model [11] was
done in [26]. However, [26] only introduced the new space
of states, while we describe the practical implementation
of all the decoding steps. In addition, [26] evaluated the
theoretical performance of the decoder in terms of achievable
information rate, while we present numerical BER and FER
values to evaluate the practical decoder performance.

The outline of the paper is as follows. Section II describes
the DNA data storage workflow. Section III-B introduces the
channel model with memory. Section IV presents the consid-
ered concatenated code construction. Section V explains how
to integrate our channel model into convolutional decoders.
Section VI shows numerical results.

II. DNA DATA STORAGE
This section outlines the main two physical processes
involved in DNA data storage: synthesis and sequencing.
In what follows, we use J1, JK to denote the set of integers
between 1 and J .

A. CHEMICAL SYNTHESIS
DNA synthesis consists of converting digital data into DNA
strands, where each DNA strand is formed by different com-
binations of nucleotides A, C, G, and T [27]. There exists
different synthesis techniques, each with different constraints
(maximum length for the input sequences, costs, etc.). In this
work, we consider chemical synthesis [27], [28], in which
oligonucleotides (short DNA molecules) are synthesized and
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then assembled to form the ordered sequences of nucleotides.
The synthesis produces thousands of DNA molecules, each
representing a copy of the same synthesized sequence. In this
work, we assume that synthesis does not introduce any error,
as observed in [5]. Formally, in what follows, we use x =

(x1, · · · , xN ) to denote the sequence of digits to be syn-
thetized, where each digit xt takes values in a quaternary
alphabet. Depending on the purpose, we either consider that
xt ∈ {A,C,G,T }, or that xt ∈ GF(4), where GF(4) is the
Galois Field of order 4, and there is a one-to-one correspon-
dence between the alphabet {A,C,G,T } and GF(4).

B. NANOPORE SEQUENCING
DNA sequencing consists of reading the DNA strands to
produce a digital signal. In this work, we consider the ONT
MinION sequencer, which has the ability to read at high speed
but with a high rate of error [29]. In the MinION sequencer,
DNA strands pass through a so-called nanopore. For each
group of k successive nucleotides

kmert = (xt−k+1, xt−k+2, · · · , xt ), (1)

called k-mer, the nanopore outputs a specific electrical cur-
rent level ct . The next k-mer

kmert+1 = (xt−k+2, xt−k+3, · · · , xt+1), (2)

produces the current level ct+1. Therefore, two successive
levels ct and ct+1 are produced from two k-mers with
k−1 bases in common. A significant number of DNA strands
are processed by the sequencer, which outputs a large number
of current levels sequences.

Then, a software called basecaller transforms the
sequences of current levels into digital sequences. In this
work, we employed Guppy and Bonito basecallers, which
are both built from Deep-Learning approaches. We use y(j)

to denote the J digital sequences output by the basecaller,
where j ∈ J1, JK, and y(j)t takes values in a quaternary alphabet
{A,C,G,T } or GF(4). The read sequence y(j) is of lengthP(j),
and typically P(j) ̸= N . This is because the sequencer and the
basecaller not only introduce substitutions, but also insertions
and deletions in the read sequences, and error patterns vary
from sequence to sequence [5].

III. CHANNEL MODEL
From an information-theoretic perspective, the successive
three previous steps (synthesis, sequencing, basecalling) can
be modeled as a channel. This section introduces a new chan-
nel model, which turns out to be very useful for the design and
performance evaluation of error-correction codes dedicated to
DNA data storage. The software for the channel simulator is
available online: https://github.com/BHam-1/DNArSim.

A. NOTATION
In what follows, we use Ins, Del, Sub, as abbreviations for
Insertion, Deletion, Substitution, respectively. In addition,
Match stands for ‘‘no error’’. In order to represent the channel

effect, we consider an event sequence e of length N , where
et ∈ {Ins,Del,Sub,Match} is the channel event at position t .
Interestingly, the sequences e and x have the same length N ,
and event et applies to input symbol xt .More into details, et =

Del means that the symbol xt is deleted from the sequence,
and et = Sub means that the base value of xt is replaced by
another base value. In addition, et = Ins means that one or
several symbols are inserted just after xt . We denote by Lt
the insertion length, that is the number of symbols inserted
at position t . To make this notation clear, we introduce the
following example.
Example 1: Consider an input sequence of length N = 7:

x = [A,C,G,A,T ,G,A],

and one output sequence of length P = 8:

y = [A,C,C,C,G,T ,T ,A].

The corresponding sequence of channel events that generated
y from x is the sequence of length N = 7:

e = [Match, Ins,Match,Sub,Match,Del,Match].

The channel inserted two symbols after x2, substituted sym-
bol x4, and deleted x6. In addition the insertion length at
position 2 is L2 = 2.

B. PROPOSED CHANNEL MODEL WITH MEMORY
Our proposed channel model captures the statistical depen-
dency between the event sequence e and the input sequence
x, by considering that event et depends on kmert . This is
consistent with the way the MinION sequencer operates,
by reading one k-mer at a time. The MinION sequencer
typically uses k = 6, but our model is flexible and can be
adapted to different values of k , which will affect the model
accuracy. Thus, our channel can be viewed as aMarkovmodel
of order k . Our model also captures some internal memory in
e, by considering that previous event et−1 can affect current
event et . This allows to represent bursts of errors.

Our statistical channel model is described by the following
set of conditional probability distributions. First, the condi-
tional probability distribution

P(et |kmert , et−1) (3)

of events et ∈ {Ins,Del,Sub,Match}, given kmert and
previous event et−1, captures the error dependency with the
current k-mer, and allows to consider bursts of errors through
the dependency to et−1. Second, given an insertion et = Ins
at position t , the conditional probability distribution

P(Lt |kmert , et = Ins) (4)

of the insertion length Lt ∈ J1,LmaxK depends on the read
kmert . Note that a deletion at position t is always of length
1. Third, given a substitution et = Sub,

P(Bt |kmert , et = Sub) (5)

is the conditional probability distribution to substitute the
last base xt of kmert by the base Bt , where Bt ̸= xt .
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We further assume that the previous three probability distri-
butions (3), (4), (5), do not vary with t ∈ Jk,N − 1K.
For t ∈ J2, kK, since no complete k-mer was observed

already, we consider conditional probability distributions

P(et |xt ), P(Lt |xt , et = Ins), P(Bt |xt , et = Sub), (6)

which only depend on the input value xt . Finally, we observed
from experimental data that the probabilities to get an inser-
tion or a deletion are higher at the first position t = 1 and
at the last one t = N , compared with middle positions
t ∈ J2,N − 1K, and that these probabilities do not depend
much on the input sequence. Therefore, we allow for different
probability distributions

P(e1), P(L1|e1 = Ins) (7)

and

P(eN ), P(LN |eN = Ins), (8)

for t = 1 and t = N , respectively. Given that substitutions
are not affected by the previous remark, we still consider
P(B1|x1, e1 = Sub) and P(BN |kmerN , eN = Sub) at the first
and last position, respectively.

C. MODEL TRAINING
The next step is to estimate all the previous probability dis-
tributions from some sets of data. In this work, we trained
the model using two distinct sets of data, each with specific
characteristics: one set of experimental data, and one set of
genomic data.

1) SET of EXPERIMENTAL DATA (SetE)
We first used a set of experimental data, callet SetE, that
passed through the full DNA data storage process described
in Section II. This set was generated from U = 9 input
sequences x(u) (u ∈ J1,UK), called the reference sequences,
each providing Ju output sequences y(u,j) (u ∈ J1,UK, j ∈

J1, JuK), for a total of J =
∑9

u=1 Ju = 34604 read sequences
obtained after basecalling. In addition, 6 of the reference
sequences have N = 500 nucleotides, and the 3 other ones
have length N = 1000 nucleotides.

As a first step for training, each read sequence y(u,j) was
aligned with its reference sequence x(u). The alignments
were done using the ggsearch36 tool from the FASTA soft-
ware [30]. This tool performs global to global alignments, that
is to say that the whole read (from first to last base) is aligned
against the whole reference. In a second step, we used the
aligned reads to estimate conditional probabilities involving
each k-mer contained in the sequences x(u). For instance,
we estimated the conditional probabilitiesP(et = D|kmert =

β, et−1 = D′) as

N(et = D, kmert = β, et−1 = D′)
N(kmert = β, et−1 = D′)

(9)

where N(.) counts the number of occurences of the event
over all the aligned-read pairs (x(u), y(u,j)), D,D′

∈

{Ins,Del,Sub,Match}, and β is a specific k-mer that can be
any sequence of k bases. The other probability terms were
estimated by following the same approach. At the end, the
overall error probability over this dataset is high, about 10%.

The first advantage of this set of experimental data is
that the reference sequences x(u) are perfectly known, which
makes the comparisons between the reads and the reference
very reliable. On the other hand, this set contains only a
small amount of data, due to high DNA synthesis costs. This
leads to plenty of unobserved combinations (kmert , et−1 =

E), over the 4k+1 possible ones. In our case, when a given
combination (kmert , et−1 = E) was left unobserved, we esti-
mated the corresponding probabilities by averaging over all
observed combinations.

2) SET of GENOMIC DATA (SetG)
Genomic data are much more accessible than experimental
data, as they can be obtained from various genomic databases.
In this work, we considered a set of genomic data called SetG,
that contains U = 7 strains (sub-types) [31] of the Strepto-
coccus thermophilus bacteria [32]. In this case, the reference
sequences x(u) contain about 106 bases, while the reads y(u,j)

correspond to subsequences of x(u), and contain between
103 and 105 bases. This makes it impossible to use global
alignments. In addition, there is no ground truth that states
from which part of the reference x(u) a given read y(u,j)

is produced. Thus, for the genomic dataset, we performed
local alignments with a tool called minimap2 [33], which is
very efficient in performing local alignments of very long
sequences in a timely manner. In addition, we eliminated
from the training set the reads y(u,j) with a low-scoring align-
ment. We then used the same approach described in (9) in
order to estimate all the probability terms. The overall error
probability over this dataset is about 3%, which is signif-
icantly lower than for the experimental dataset. Note that
since for SetE the reference sequences x(u) and the reads y(u,j)

have the same length, global alignment is equivalent to local
alignment.

The main advantage of genomic data is that it offers a sig-
nificantly larger quantity of data. All possible combinations
(et = D, kmert = β, et−1 = D′) were observed, with a
sufficient amount of each. However, this dataset introduces
another type of bias since the training discards low-scoring
alignments, i.e., sequences that have a high amount of errors.
This explains why it gives a lower error probability compared
to the experimental dataset.

D. DYNAMIC CHANNEL MODEL
The two datasets provide two realistic channel models, with
similar underlying characteristics but varying error rates. This
will allow for the evaluation of the proposed error-correction
codes under different conditions. To expand the performance
evaluation even further, we propose a modified version
of our channel model, which enables to consider various
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FIGURE 1. Concatenated coding scheme.

and intermediate levels of errors. This modified channel is
referred to as the dynamic channel model.

Starting from a set of conditional probabilities obtained
from one or the other training dataset, we introduce a unique
scaling parameter α, and evaluate a new set of probabilities
P̃(α)(et = D|kmert = β, et−1 = D′) defined for D ∈

{Ins,Del,Sub} as

P̃(α)(et = D|kmert = β, et−1 = D′)

= αP(et = D|kmert = β, et−1 = D′), (10)

and for D = Match as

P̃(α)(et = D|kmert = β, et−1 = D′)

= (1 − α)P(et = D|kmert = β, et−1 = D′). (11)

By construction, this new set of probabilities satisfies the
normalization condition. It also allows to consider different
channel error rates by varying the parameter α, as will be
shown in the simulation section. For simplicity, we do not
change other probability terms P(Lt |kmert , et = Ins) and
P(Bt |kmert , et = Sub), given that they have less impact (for
the first one), or no impact (for the second one) on the overall
error probability.

IV. CONCATENATED CODES
This section describes the concatenated code construction
of [19], which we consider in this paper. As outer code,
we consider an LDPC code defined by its parity check matrix
H with rate R0. According to [19], the considered LDPC
code may be either binary or non-binary. In this section as
well as in our numerical simulations, we only consider the
case of a non-binary LDPC code in GF(4) which matches
the channel alphabet. As inner code, we consider a binary
CC with generator polynomial 1 and rate Ri. This inner code
takes k bits as input, provides n bits as outputs, and has m
registers. The CC aims to resynchronize the sequence, which
means correcting all insertions and deletions, and it also
corrects a part of the substitutions. The LDPC code corrects
residual substitution errors. The concatenated coding scheme
is depicted in Figure 1. We now describe its encoding and
decoding steps.

A. ENCODERS
The outer LDPC code takes as input a quaternary sequence
u of length K , and outputs a sequence of symbols in GF(4),

which is then converted into a binary sequencew of lengthN0.
The inner convolutional encoder outputs a binary sequence
v of length Nb, which is then converted into a sequence z
of length N = Nb/2 in GF(4). Finally, the sequence x is
computed as

x = z + r, (12)

where r is a random offset sequence of lengthN with symbols
in GF(4), and where the sum is in GF(4). It was shown in [34]
that the offset sequence r significantly improves the convo-
lutional decoder performance under synchronization errors.
At the end, the sequence x is synthetized as a DNAmolecule.

B. DECODERS
After sequencing, the DNA storage channel outputs the J
sequences y(j) in GF(4). We apply the inner convolutional
decoder to J ′ < J sequences y(j). This decoder consists of
a BCJR algorithm [35] which takes as inputs sequences in
GF(4), and outputs Log Likelihood Ratios (LLRs) over bits.
It also takes into account the offset sequence.We then convert
the LLRs over bits onto LLRs over quaternary symbols, and
pass them to a standard non-binary LDPC decoder, assuming
that the convolutional decoder corrected all insertions and
deletions, and that residual substitution errors are statistically
independent. The LDPC decoder outputs a sequence û of
lengthK . In what follows, we introduce an updated version of
the convolutional decoder of [19] and [34], in order to take all
the knowledge provided by our channel model into account.

V. CONVOLUTIONAL DECODERS
When designing the convolutional decoder, the first difficulty
resides in the fact that insertions and deletions break the
Markov property in the sequence of states [34]. Therefore, the
convolutional decoder of [34] introduces an additional drift
variable that restores the Markov property.

In this section, we first present the decoder of [34] which
assumes an i.i.d. channel model. Then, we adapt this decoder
to account for: (i) the memory in the sequence of error
events, (ii) the dependency between error events and k-mers.
We begin by describing the decoders for a single sequence
y of length P, and later explain how to handle multiple
sequences y(j).

A. STATE-OF-THE-ART DECODER WITH DRIFTS (DEC1)
The decoder of [19] and [34] is referred to as Dec1 in the
remaining of the paper. We provide a detailed description of
this decoder in order to establish notation and ensure that
the paper is self-contained. When introducing the two other
decoders, we will only highlight the differences compared to
Dec1.

1) STATES OF THE DECODER
The successive internal states of the CC are denoted st , where
t ∈ J0,N K. For instance, if the CC has 4 states, st takes values
in {S0, S1, S2, S3}. Further, [34] introduces an additional state
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variable dt , called the drift. The drift dt represents the delay
at time t in the sequence, that is

dt = Nb(INS)t − Nb(DEL)t , (13)

where Nb(INS)t (respectively Nb(DEL)t ) is the number of
insertions (respectively deletions) that occurred before trans-
mitting the symbol xt . Between time instants t and t + 1,
we assume that there is a maximum of Imax insertions and of
1 deletion. As a result, dt+1 lies in the interval Jdt − 1, dt +

ImaxK. Overall, between time instants t = 0 and t = N ,
we assume that dt lies in the interval JDmin,DmaxK. Both Imax,
Dmin, and Dmax, are parameters of the decoder. Overall, the
state of the decoder is denoted by the pair

σ t = (st , dt ). (14)

Figure 2 shows the trellis of the decoder, with state σ t evolv-
ing between successive time instants t = 0, t = 1, and t = 2.

2) A POSTERIORI PROBABILITY COMPUTATION
The CC decoder aims to compute a posteriori probabilities
P(wt |y), where

P(wt |y) =
P(wt , y)

P(y)
(15)

and

P(wt , y) =

∑
(σ t ,σ t+1):wt

P(y, σ t , σ t+1). (16)

During probability computation, the drift variable dt allows
to maintain a Markov property in the sequence of states in
the sense that P(y, σ t , σ t+1) can be decomposed as

P(y, σ t , σ t+1) = αt (σ t )βt+1(σ t+1)γt (σ t , σ t+1) (17)

where

αt (σ t ) = P(y(t−1)n+dn
1 , σ t ) (18)

βt+1(σ t+1) = P(yTtn+d ′n+1|σ t+1) (19)

γt (σ t , σ t+1) = P(ytn+d
′n

(t−1)n+dn+1, σ t+1|σ t ) (20)

are evaluated from a forward recusion, backward recursion,
and branch metric computation, which is the typical approach
used in the BJCR algorithm. In the previous equations and in
what follows, d refers to the current drift value dt , and d ′

refers to the next drift value dt+1. We often use d , d ′ instead
of dt , dt+1, for improved readability of the equations.

3) FORWARD AND BACKWARD RECURSIONS
The forward recursion computes αt (σ t ) for all t ∈ J1,N K as

αt (σ t ) =

∑
σ t−1

αt−1(σ t−1)γt (σ t−1, σ t ) (21)

where α0(σ 0) is initialized as

α0(σ 0) =

{
1, if σ 0 = (0, 0)
0, otherwise.

(22)

FIGURE 2. Partial trellis diagram for Dec1, for time instants t = 0, t = 1,
t = 2, with Imax = 1 and dt+1 ∈ Jdt − 1, dt + 1K.

FIGURE 3. Lattice structure used to compute branch metrics in Dec1.

The backward recursion computes βt−1(σ t ) for all t ∈

J0,N − 1K as

βt (σ t ) =

∑
σ t+1

βt+1(σ t+1)γt (σ t , σ t+1) (23)

where βN (σN ) is initialized as

βN (σN ) =

{
1, if σN = (0,P−N )
0, otherwise.

(24)

4) BRANCH METRIC COMPUTATION
The branch metric γt (σ t , σ t+1) can be expressed as

γt (σ t , σ t+1) = P(wt )P(ytn+d
′n

(t−1)n+dn+1, dt+1|dt , st , st+1)
(25)

where P(wt ) = 1/4. The branch metric is evaluated by using
an efficient algorithm based on a lattice structure [36], see an
example in Figure 3. This lattice allows us to compute the
probability to pass from state σ t to state σ t+1, which corre-
sponds to the emission of a certain symbol ẋ = x tn(t−1)n+1.

We consider the observed sequence Py = ytn+d
′

(t−1)n+d+1, whose
length corresponds to passing from drift dt to drift dt+1.
We recursively compute the probabilities Fi,j at lattice nodes
[i, j], such that ∀i ∈ J0, 1K, ∀j ∈ J0, Imax + 1K,

Fi,j = PdFi−1,j +
1
4

PiFi,j−1 + Q(ẋi|ẏj)Fi,j−1 (26)
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where

Q(ẋi|ẏj) =

 Pm, if ẋi = ẏj
1
3

Ps, otherwise.
(27)

In these expressions, Pd is the probability of a deletion, Pi
is the probability of an insertion, Pm is the probability of a
match, and Ps is the probability of a substitution. Note that in
the decoder of [19], these probabilities come from the i.i.d.
model. The computation is initialized as

Fi,j =

{
1, if i = 0 and j = 0
0, if i < 0 or j < 0.

(28)

Moving vertically on the lattice means that a deletion
occurred, represented by the first term in (26). Moving hor-
izontally on the lattice means that an insertion occurred,
represented by the second term in (26), where the factor 1

4
represents the uniform probability to insert any base A, C,
G, or T. Moving horizontally on the lattice means that either
a match occurred if ẋi = ẏj, or a substitution occurred if
ẋi ̸= ẏj. Both cases are represented by the third term of (26),
where 1

3 represent the uniform probability to substitute the
current base ẋ by any of the three possible ones. Finally, after
computing the last lattice node F1,Imax+1, we get

γt (σ t , σ t+1) =
1
4
F1,dt+1−dt+1. (29)

Note that in our implementation, we first evaluate the lattice
for the largest possible gap Imax + 1 between dt and dt+1,
and we then extract partial values F1,dt+1−dt+1 from the lat-
tice computation, for dt+1 − dt + 1 < Imax + 1. This is
more efficient than generating one lattice per possible value
dt+1 − dt .

B. TAKING PREVIOUS ERROR EVENTS INTO
ACCOUNT (DEC2)
We now extend the previous decoder to consider the memory
between successive error events. This decoder will be referred
to as Dec2 in the following. Note that this decoder is only
presented here in order to next simplify the description of
the third decoder taking into account our full channel model.
Numerical simulation results will show that Dec2 does not
improve the decoding performance compared to Dec1.

1) STATES OF THE DECODER
The state of the decoder is now given by a triplet

σ t = (st , dt , et ), (30)

where et ∈ {Ins,Del,Sub,Match} is the last edition observed
before emitting symbol xt . The edition variable et is added in
order to preserve the Markov property when considering the
previous error event et−1. This results in a larger trellis which
has 4 times more nodes than for Decoder 1, see Figure 4 for
an example. In addition, at time instant t = 0, we assume that
the channel starts with a Match.

FIGURE 4. Partial trellis diagram for Dec2, for time instants t = 0, t = 1,
t = 2, with Imax = 1 and dt+1 ∈ Jdt − 1, dt + 1K.

2) A POSTERIORI PROBABILITY COMPUTATION
With this new state definition, relation (17) remains valid.
To evaluate P(y, σ t , σ t+1), we still use forward, backward
recursions, and branch metric computation, each with modi-
fied expressions.

3) FORWARD AND BACKWARD RECURSIONS
The forward recursion is still evaluated from (21), but the
initialization is modified as

α0(σ 0) =

{
1, if σ 0 = (0, 0,M )
0, otherwise.

(31)

in order to consider the initial edit e0 = M . In the same way,
the backward recursion is still evaluated from (23), but the
initialization is modified as

βN (σN ) =



Pm, if σN = (0,P− N ,M )
Ps, if σN = (0,P−N , S)
Pd , if σN = (0,P− N ,D)
Pi, if σN = (0,P−N , I )
0, otherwise.

(32)

to take into account the final event eN .

4) BRANCH METRIC COMPUTATION
Branch metric computation is more impacted by the addi-
tional state variable et . The branch metric γt (σ t , σ t+1) is now
calculated as

γt (σ t , σ t+1)

= P(wt )P(ytn+d
′n

(t−1)n+dn+1, dt+1, et+1|dt , et , st , st+1), (33)

and it is again evaluated recursively from a lattice. Howerver,
now a 3D lattice is needed to account for the additional
paths resulting from the dependency to previous errors. This
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FIGURE 5. 3D Lattice structure used to compute branch metrics in Dec2,
for et = M and et+1 = D.

new lattice contains four plans, where each plan represents
a particular edition et ∈ {M , S,D, I }, as shown in Figure 5.
The moving rules are the same as in the lattice for Decoder
1, except for the fact that we can now move from a plan
to another one, depending on the considered edition et . For
instance, in the case of an insertion, we should move hori-
zontally from toward the insertion plan, see green arrows in
Figure 5.
The recursive computation is initialized as

Fi,j,e =

{
1, if i = 0 and j = 0 and e = et
0, if i < 0 or j < 0.

(34)

We now define Pe1→e2 as the probability to observe edition
e2 ∈ {M , S,D, I } given that the previous edition was e1 ∈

{M , S,D, I }. The probabilities at successive nodes in the
lattice can be calculated recursively by using the following
formulas:

Fi,j,M = Pm→mFi−1,j−1,M + Ps→mFi−1,j−1,S

+ Pd→mFi−1,j−1,D + Pi→mFi−1,j−1,I

Fi,j,S =
1
3
(Pm→sFi−1,j−1,M + Ps→sFi−1,j−1,S

+ Pd→sFi−1,j−1,D + PsFi−1,j−1,I )

Fi,j,D = Pm→dFi−1,j,M + Ps→dFi−1,j,S

+ Pd→dFi−1,j,D + Pi→dFi−1,j,I

Fi,j,I =
1
4
(Pm→iFi,j−1,M + Ps→iFi,j−1,S

+ Pd→iFi,j−1,D + Pi→iFi,j−1,I ) (35)

where {
Fi,j,S = 0, if ẋi = ẏj
Fi,j,M = 0, if ẋi ̸= ẏj.

(36)

At the end, we get

γt (σ t , σ t+1) =
1
4
F1,dt+1−dt+1,et+1 . (37)

FIGURE 6. Partial trellis diagram for Dec3, for time instants t = 4, t = 5,
t = 6, with Imax = 1 and dt+1 ∈ Jdt − 1, dt + 1K.

C. TAKING K-MERS INTO ACCOUNT (DEC3)
In the third decoder, in addition to previous error events,
we also consider the statistical dependency between the error
event and the current k-mer. This decoder is referred to as
Dec3.

1) STATES OF THE DECODER
The state of the decoder is now given by a quadruplet

σ t = (st , dt , et , ηt ), (38)

where ηt is a vector of length K which gives the current k-
mer. Especially, if

ηt = [η(t)1 , η
(t)
2 , · · · , η

(t)
K ],

then

ηtC1 = [η(t)2 , η
(t)
3 , · · · , η

(t)
K , xt+1],

where xt+1 is the symbol emitted at time instant t+1. At time
t = 0, this new state variable is initialized as η0 = ∅. In addi-
tion, for t < K , we consider ηt = [η(t)1 , η

(t)
2 , · · · , η

(t)
t−1, η

(t)
t ].

This results in a larger trellis which has 2k times more nodes
than the trellis of Dec2, see Figure 6.

2) A POSTERIORI PROBABILITY COMPUTATION
With this new state definition, (17) remains valid. To evaluate
the three terms in P(y, σ t , σ t+1), we still use a forward recur-
sion, backward recursion, and branch metric computation,
which we now describe.

3) FORWARD AND BACKWARD RECURSIONS
The forward recursion is still evaluated from (21), with ini-
tialization given by (31). The backward recursion is still
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evaluated from (23), but the initialization is updated as

βN (σN ) =



P(M |ηN ), if σN = (0,P− N ,M )
P(S|ηN ), if σN = (0,P− N , S)
P(D|ηN ), if σN = (0,P− N ,D)
P(I |ηN ), if σN = (0,P− N , I )
0, otherwise.

(39)

to take into account the k-mers.

4) BRANCH METRIC COMPUTATION
The branch metric γt (σ t , σ t+1) is now evaluated as

γt (σ t , σ t+1)

= P(wt )P(ytn+d
′n

(t−1)n+dn+1, dt+1, et+1, ηt+1|dt , et , ηt , st , st+1)

= P(wt )P(ytn+d
′n

(t−1)n+dn+1, dt+1, et+1|dt , et , ηt+1, st , st+1)
(40)

since ηt+1 is entirely determined by ηt and by the transition
from internal state st to st+1. The branch metric is evaluated
from the same 3D lattice used for Decoder 2 and shown
in Figure 5. However, compared to Decoder 2, the recur-
sive computation over the lattice now takes into account the
observed k-mer ηt .
We now consider the probability P(et+1|ηt , et ) of edit

et+1 ∈ {M , S,D, I } conditioned to the k-mer ηt , and to
the previous edit et ∈ {M , S,D, I }. We use the following
formula to recursively compute the probabilities throughout
the lattice:

Fi,j,M
= P(M |ηt+1,M )Fi−1,j−1,M + P(M |ηt+1, S)Fi−1,j−1,S

+ P(M |ηt+1,D)Fi−1,j−1,D + P(M |ηt+1, I )Fi−1,j−1,I

Fi,j,S

=
1
3
(P(S|ηt+1,M )Fi−1,j−1,M + P(S|ηt+1, S)Fi−1,j−1,S

+ P(S|ηt+1,D)Fi−1,j−1,D + P(S|ηt+1, I )Fi−1,j−1,I )

Fi,j,D
= P(D|ηt+1,M )Fi−1,j,M + P(D|ηt+1, S)Fi−1,j,S

+ P(D|ηt+1,D)Fi−1,j,D + P(D|ηt+1, I )Fi−1,j,I

Fi,j,I

=
1
4
(P(I |ηt+1,M )Fi,j−1,M + P(I |ηt+1, S)Fi,j−1,S

+ P(I |ηt+1,D)Fi,j−1,D + P(I |ηt+1, I )Fi,j−1,I ) (41)

At the end, we get

γt (σ t , σ t+1) =
1
4
F1,dt+1−dt+1,et+1 , (42)

as for Dec2.

D. DECODING WITH SEVERAL SEQUENCES
The previous three decoders consider only one output
sequence y, while the DNA storage channel produces J
sequences y(j). In [19], it is proposed to decode each sequence

FIGURE 7. Boxplots of error event probabilities depending on the
previous event. This shows the probability repartition over k-mers for
each event.

y(j) independently and separately, and to aggregate the results
a posteriori by relying on the following formula:

P(wt |y(1), y(2), · · · , y(J )) =

∏J
j=1 P(wt , y(j))
P(wt )J−1 . (43)

Note that such aggregation could be realized at different
levels of the decoding, but it was shown in [19] that it is
more efficient to do it after applying the inner CC decoder.
Note that [19] also proposed an alternative technique that is
more efficient but also more complex to take into account
multiple sequences directly within the CC decoder. Given that
Dec2 and Dec3 are already very complex, we leave for future
works the investigation of this other technique.

VI. SIMULATION RESULTS
In this section, we first present numerical results for the
channel models. We then investigate the performance of the
proposed convolutional decoder.

A. CHANNEL MODELS
Wefirst evaluate the proposed channel model against existing
ones. In [11], we compared the edit maps of different models,
and found that our model was visually the most similar to
experimental data. Here, alternatively, we first provide statis-
tics of error events in order to justify the assumptions of our
model. We then use a more systematic approach which is
based on the Kulback-Leibler (KL) divergence [37], [38] to
evaluate the similarity between the simulated sequences for
each model and the reference sequences.

1) CHANNEL STATISTICS
We now show some statistics of our model trained from the
set of genomic data SetG. Indeed, in SetG, all k-mers appear
a sufficient amount of time, which avoids any bias that could
be introduced by unobserved k-mers. In this part, we consider
k = 6, which is in accordance with the way the MinION
sequence works.

First, Figure 7 shows the repartition of probabilities over
k-mers for each event INS, DEL, SUB, depending on the
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TABLE 1. For the model trained on SetG, over 4096 k-mers with k = 6,
number of times the largest probability is for event either INS, DEL,
or SUB (columns) with respect to the previous error event (rows). For
instance, when the previous error event is a Match (fist row), for 687 of
the k-mers, the probability of an insertion is larger than the probability of
a deletion or a substitution.

TABLE 2. When there is a substitution error, probability that the symbol
in the row is replaced by the symbol in the column. For instance, the
probability that base C is substituted by base A is 0.35. Note that passing
from e.g., base A to A is not an error, this is why there are no values
specified in the diagonal.

previous event. For instance, we see that when the previ-
ous event is a substitution (bottom left figure), the aver-
age insertion probability is around 0.02, while the average
deletion probability is around 0.25. This allows to conclude
that event probabilities depend on both the current k-kmer,
and the previous error event, as we consider in our model.
Then, Table 1 shows the number of k-mers for which the
probability of a given error event is the largest among all
error events, depending on the previous event. For instance,
when the previous event is a Match, 1830 k-mers have a
larger substitution error probability, while 687 k-mers have
a larger insertion probability. This confirms the observations
made from Figure 7. Finally, Table 2 shows the probability to
replace a base by another one, under a substitution error. For
instance, the probability to substitute a G by an A is 0.756,
while the probability to substitute a G by a C is only 0.0755.
This shows that substitution probabilities are non-uniform
over bases, as we consider in our model.

Note that the channel simulator PBSIM2 [9] considers
probabilities over quality scores, where probabilities depend
on the current k-mer as in our model. However, PBSIM2 con-
siders a fixed ratio between error event probabilities, and
samples errors first from the quality scores, and second
from the predefined ratio. This is in contradiction with
the statistics of Table 1, which instead show that there
is no fixed ratio between error events (e.g. for some k-
mers, insertion probability is larger than deletion probabil-
ity, and for other k-mers, this is the opposite). In addition,
PBSIM2 considers uniform substitution probabilities over
bases, which enters in contradiction with the statistics of
Table 2.
We next investigate the accuracy of our channel model

against other models, for which the underlying assumptions
do not enter into direct contradiction with the statistics shown
in this section.

2) KL DIVERGENCE
We now compare our model against three different existing
models: (i) the i.i.d. model, (ii) DeepSimulator, as a represen-
tative of DL-based methods, (iii) BadRead, for which event
probabilities directly depend on the k-mers, as in our model.
We here consider the two datasets, namely SetE and SetG,
given that they have some different characteristics.

Starting with the set of experimental data SetE, Figure 8
shows the KL divergence with respect to the memory order
k for the i.i.d. channel, DeepSimulator, BadRead, and our
model. The channel models were all trained on SetE, except
for DeepSimulator. Then, the KL divergence was averaged
over the sequences of SetE. First note that only the curve
for our model varies with k , because this is a parameter of
our model only. Second, we observe that our model has the
lowest KL divergence, while the i.i.d. model surprinsingly
comes second.We see that for our model, k = 1 gives a better
KL divergence than the i.i.d. model, because it still takes
into account memory in successive events et , and dependency
with the input symbol xt . In addition, we see that for our
model, when k is large enough, the KL divergence is close
(but not equal) to 0, which means that our model trained on
SetE represents accurately the dataset SetE, even for a value
of k as small as 9 or 10.

Then, in Figure 9, BadRead and DeepSimulator were taken
from their own knowledge (from the online code), while our
model as well as the i.i.d. model were trained on SetG. The
KL divergence values were then calculated over SetE. One
first important remark is that in this case, the KL divergence
values are much higher than in Figure 8, because the models
were trained on a dataset and evaluated on another one. Inter-
estingly, our model again shows the lowest KL divergence
over all the models, and the i.i.d. model still comes second.
It is worth noting that this time, the value k = 6 is the one that
provides the lowest KL divergence, while the KL values start
increasing again from k = 7. This suggests that k = 6 leads
to a better generalization capability for our model, which is
consistent with the way the MiniON sequencer works (with
k = 6). Therefore, in what follows, we only consider our
model with k = 6.

B. CC DECODERS PERFORMANCE
We now evaluate the performance of the three CC decoders,
by running Monte-Carlo simulations over our memory chan-
nel model. We consider the two versions of our memory
channel model, i.e., the one trained on the experimental
data SetE, and the one trained on the genomic data SetG.
Both versions are considered because the overall error rates
differ between the two models, as explained in Section III.
Each simulation run generates a random binary sequence
w, uniformly at random. Then w is encoded with a (kc =

1, nc = 2,Kc = 3) CC of rate 1/2, which uses the generator
polynomial δpoly = [δ2 + 1, δ2 + δ + 1], and outputs a binary
encoded sequence x of a certain lengthN . We consider values
N ∈ {54, 204}, which falls in the range of length of DNA
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FIGURE 8. KL divergence for different channel models compared with
SetE. Except for DeepSimulator, all the other channel models were
trained on SetE.

FIGURE 9. Kullback-Leibler divergence between channel models
simulation results and SetE. BadRead and DeepSimulator use their own
knowledge. Our channel model and the i.i.d channel model were trained
on SetG.

molecules produced by current synthesis techniques [39].
The sequence x is then passed through our memory channel
model, and the CC decoder takes as input J sequences output
by the channel. For each considered value J , we perform a
maximum of 50000 simulation runs to evaluate the FER and
BER of each decoder, and stop the evaluation after 100 frames
in error.

Figure 12 shows the FER and BER with respect to J ,
of the three decoders over the memory channel model trained
onto SetE, for N = 54. We observe that Dec3 has the best
performance both in terms of FER and BER, with a clear
performance gain compared to Dec1 of [19]. This can be
explained by the fact that Dec3 fully takes into account the
channel model. The performance gain is even more signifi-
cant when the number of sequences J increases.More surpris-
ingly, we also observe that Dec2 performs worst, most prob-
ably because this decoder only partially takes into account
our channel model. Note that we also observed that the
decoder that considers partial channel model through the state

FIGURE 10. FER and BER with respect to the number of sequences J , over
the memory channel model trained onto SetE, for N=54. Dashed lines
represent the BER and plain lines represent the FER.

FIGURE 11. FER and BER with respect to the number of sequences J , over
the memory channel model trained onto SetG, for N=204. Dashed lines
represent the BER and plain lines represent the FER.

σ t = (st , dt , ηt ) (e.g., et is replaced by ηt ) also performs
worst than Dec1.

In addition, Figure 11 shows the FER andBERwith respect
to J , of the three decoders over the memory channel model
trained onto SetG, for N = 204. In this setup as well,
we observe that Dec3 has a better performance than Dec1,
and that Dec2 still performs poorly. Note that the FER and
BER values are lower in Figure 11 than in Figure 10, because
the overall error probability on SetG is lower than on SetE.

C. CONCATENATED CODES PERFORMANCE
In order to evaluate the concatenated code construction,
we now consider the dynamic channel model introduced in
Section III-D. Starting with the set of probabilities obtained
from the genomic data, we consider various parameters α

which provide different channel error rates. The channel error
rate for a given α was numerically evaluated from Monte
Carlo simulations. Table 3 provides the measured error rates
for each considered value of α.
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TABLE 3. Error probability with respect to the value of α for the dynamic channel model starting from the set of probabilities estimated from SetG. The
error probabilities were estimated from Monte-Carlo simulations.

FIGURE 12. FER with respect to the overall error rate for the dynamic
channel model, for the CC Dec3, and for the concatenated code
construction with Dec3 and a NB-LDPC decoder, with N = 50.

FIGURE 13. BER with respect to the overall error rate for the dynamic
channel model, for the CC Dec3, and for the concatenated code
construction with Dec3 and a NB-LDPC decoder, with N = 50.

We now consider the concatenated code construction intro-
duced in Section IV, with the same CC considered in the
previous simulation results, used together with a regular
non-binary LDPC code of rate R = 4/5 in GF(4), and with
N = 50. In the decoding part, we consider Dec3 followed by a
standard BP decoder in GF(4). Figure 12 shows the FER with
respect to the channel error probability, for various values of
J for the CC alone, and for J = 1 for the full concatenated
code construction. Figure 13 shows the same curves but in
terms of BER. In both cases, we observe a significant gain
of the concatenated construction with J = 1 compared to
the CC alone with J = 1. In addition, in terms of FER, the
concatenated constructions with J = 1 and J = 2 outperform
the CC decoder alone with J = 3. For the BER, while the

concatenated construction with J = 2 is best, the same con-
struction with J = 1 is not as good as the CC decoder alone
with J = 3. One explanation is that the CC decoder alone is
known to perform poorly in terms of FER, while it already
has a fairly good BER performance. This also illustrates the
tradeoff between the coding rate and the number of sequences
used for decoding.

VII. CONCLUSION
This paper introduced a new channel model for DNA data
storage, which can be seen as a Markov model of order k
and was trained on experimental and genomic datasets. The
proposed model was shown to be more accurate than existing
ones through numerical evaluation of the KL divergence.
Additionally, this work improved the CC decoder of [19] by
incorporating the knowledge of the channel model, resulting
in better BER and FER performance. Future works will focus
on reducing the complexity of the proposed decoder.
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