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Abstract

Within the emerging area of goal-oriented communications, this paper introduces a novel end-

to-end transmission scheme dedicated to learning over a noisy channel, under the constraint that no

prior training dataset is available. In this scheme, the transmitter makes use of powerful Spherical

Harmonic Transform and Irregular Hexagonal Quadratic Amplitude Modulation techniques, while the

receiver relies on a Complex-Valued Neural Network (CVNN) so as to realize the learning task onto

the received noisy data. As a main feature of the proposed scheme, the transmitter is fixed and

does not depend on the source statistics, while the receiver is trained from a first data transmission

phase, thus providing an efficient transmission-versus-learning approach under the considered constraint.

The proposed transmission scheme may be adapted to a variety of learning problems, and the paper

specifically investigates clustering and classification, two very common learning tasks. In the last part of

the paper, the source/channel coding rate of the proposed transmission scheme is evaluated theoretically

and from numerical simulations. This analysis shows a clear advantage in terms of coding rate of our

scheme compared to conventional coding approaches, when targeting the same learning performance

level.

Index Terms

Data Transmission, Source Coding, Machine Learning, Neural Networks, Clustering, Classification

I. INTRODUCTION

Conventional schemes for data transmission over a noisy channel are designed so as to

reconstruct the original information sequence without error (lossless transmission) or with a
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residual amount of errors (lossy transmission). However, in many applications, the objective of

the receiver is not to reconstruct the original data, but rather to apply a given learning task onto

the received data. As examples, one may consider health disease detection from human body

sensors [1], [2], underwater activity monitoring [3], or traffic flow prediction with autonomous

vehicles [4]. The problem of learning over data transmitted through a noisy channel falls into

the emerging area of goal-oriented communications, and was identified as a key functionality to

be integrated in the upcoming 6G standard [5].

In this paper, we consider that several sensors transmit their data to a fusion center whose

objective is to apply a certain learning task onto the sensors measurements. In this context,

conventional source/channel coding schemes targeting data reconstruction are known to be

sub-optimal in terms of amount of data to be transmitted so as to achieve a certain learning

performance [6], [7]. An alternative to conventional coding approaches consists of replacing the

transmitter and the receiver by Deep Neural Networks (DNNs) trained so as to realize the learning

task while taking into account the channel effect onto the transmitted data [8], [9]. However,

this approach can only be implemented if an initial training dataset is available for pre-training,

or if there exists some reliable feedback link allowing for significant data transmission from the

receiver to the transmitter. Otherwise, the emitter should have enough resources in terms of data

and power to train the DNN, or the receiver may perform the training, but it should then send

back the weights to the encoder through the feedback link. On the opposite, this paper addresses

the design of a practical coding scheme dedicated to learning, considering that: (i) the sensors

do not have enough resources to perform the training, (ii) no initial training set is available,

(iii) the feedback link only allows for limited data transmission. When considering these three

constraints, the key challenges reside in devising a fixed transmitter able to work by itself with

only a few feedback from the receiver, and in developing a receiver dedicated to learning and

capable of online adaptation to the source and channel statistics.

In the literature, the problem of designing source and channel coding schemes dedicated

to learning was first addressed from the theoretical point of view of Information Theory. In

this field, the most considered learning problem was by far Distributed Hypothesis Testing

(DHT) in which the receiver should decide between two hypothesis related to the statistics

of two sources X and Y [10]–[13]. These works provided error-exponents for DHT under

rate-limited transmission links and under various transmission setups (perfect and non-perfect
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channel, relaying opportunities, etc.). Apart from DHT, [6] identified a trade-off between content

identification and data reconstruction from a noisy database, while [14] addressed parameter

estimation over compressed data. Finally, [15] considered the problem of supervised learning

of a given function f from compressed observations. Although all the above works provide

meaningful insights on how to perform learning over compressed data, they are mostly theoretical

and do not provide any practical code design solution.

On the practical code design side, several works proposed to perform parameter estima-

tion [16], hypothesis testing [17], or clustering [18], [19], from only a small amount of linear

combinations of the input data, following the Compressed Sensing (CS) approach [20]. However,

these works are not directly suitable for digital data transmission, since they produce real-valued

data and do not evaluate the effect of quantization or channel noise onto the learning performance.

As an attempt to develop discrete CS approaches for learning, [21], [22] considered parameter

estimation over Low Density Parity Check (LDPC) codes, and [23] investigated clustering over

LDPC codes. But the above works considered only discrete sources, and they assumed a perfect

(noiseless) transmission channel.

In this paper, we propose a full end-to-end transmission scheme dedicated to learning. The

proposed scheme does not rely on any prior knowledge of the source statistics and can therefore

be adapted online to the collected data. We first introduce a transmitter scheme which can be rate-

adapted so as to ensure a good learning performance. This transmitter is built with Spherical

Harmonic Transforms (SHF) [24] and Irregular Hexagonal Quadratic Amplitude Modulation

(IHQAM) [25]. These two techniques used together allow us to preserve the data structure

after channel transmission, in order to efficiently apply learning after only a few reconstruction

operations at the receiver. We then propose a receiver dedicated to learning and built from a

Complex-Valued Neural Network (CVNN) [26] trained from a first data transmission phase.

One main advantage of the proposed strategy is that the transmitter does not depend on the

considered learning task. Therefore, we consider two learning problems that are clustering and

classification, and provide two versions (both based on CVNN) of the receiver, depending on

the considered problem. We aim to evaluate the effectiveness of the proposed approach for these

two problems.

For that purpose, the second part of the paper is dedicated to the performance evaluation of

our scheme. Since standard performance metrics usually considered for data reconstruction (error
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probability, distortion, etc.) are not suitable in our context, we first identify metrics of interest

which can be used to evaluate the learning performance of the proposed scheme. We then evaluate

the source-channel coding rate of our scheme, as a function of its parameters. Unfortunately,

we cannot compare this coding rate to any available Information-Theoretic achievable coding

rate. Indeed, no such theoretical result exists for clustering or classification, and given the few

learning tasks considered in the literature of Information Theory, this appears to be a difficult

problem. This is why, here, we employ a more pragmatic approach and evaluate the coding rates

of two identified baseline schemes: one theoretical and one more practical, the latter consisting

of a conventional coding scheme. These two baselines will allow to position the performance of

our scheme with respect to other potential approaches.

Finally, we run numerical simulations to evaluate the learning performance of the proposed

scheme, and compare the coding rate of our scheme with respect to the two identified baselines.

As a main result, we observe a significant gain in coding rate compared to conventional coding

schemes, while maintaining the same learning performance.

The outline of the paper is as follows. Section II introduces our notation and assumptions

for the problem of learning over transmitted data. Section III describes the coding scheme at

the transmitter. Section IV introduces the learning scheme at the receiver. Section V evaluates

the coding rate and learning performance of the proposed scheme. Finally, Section VI provides

numerical results.

II. SYSTEM DESCRIPTION

This section introduces the notation and main assumptions of our work, and presents the

problem of learning over data transmitted through a noisy channel. In what follows, J1, NK

denotes the set of integers from 1 to N .

A. Source and channel models

We consider a setup in which a potentially large number of sensors collect data to be

transmitted to a fusion center. We assume that each sensor has access to several pieces of

data, each denoted with bold-letter Xs, where s ∈ J1, SK, and we let {Xs}s∈J1,SK be the full

dataset. We consider that each piece of data Xs is a matrix of size N ×M . This corresponds to
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two-dimensional data such as images, although the proposed scheme could be adapted to one-

dimensional data such as measurement vectors or time series. We do not make any assumption

on the source statistics, in order to develop an agnostic coding scheme which can adapt to a

wide range of situations. In addition, we consider that the data is transmitted through an Additive

White Gaussian Noise (AWGN) channel with variance σ2, a common assumption in the study

of communication systems.

B. Learning tasks

The objective of the fusion center is to apply a given learning task over the dataset {Xs}s∈J1,SK

collected by the sensors. Clustering is an unsupervised learning task (e.g. no labelled data is

available for training), while classification is a supervised learning task (labelled data is required

for training). This will allow us to evaluate the performance of the proposed transmission scheme

over two learning tasks which are very different by nature. We now briefly introduce these two

tasks.

1) Clustering: Clustering consists of separating the dataset {Xs}s∈J1,SK into clusters, such that

data in a cluster are similar with each other. In this work, we consider the Euclidian distance

d(Xs,Xs′) as the similarity measure between two data Xs and Xs′ . We further consider the very

popular clustering algorithm K-means [27] since our purpose is not to introduce a new clustering

method, but rather to work on the design of the transmission system. The K-means algorithm

requires the knowledge of the number of clusters K, and aims to minimize the following cost

function:

J =
S∑
s=1

K∑
k=1

cs,kd(Xs,θk) (1)

with respect to cluster assignments cs,k ∈ {0, 1} and to cluster centroids θk ∈ RN×M . K-means

usually suffers from initialization issues and from the fact that the number K of clusters can be

difficult to know in advance. We refer the reader to [28], [29] for methods to solve these two

issues. These methods consist of simple modifications of the K-means algorithm, and could be

easily incorporated in our approach.

2) Classification: Classification consists of assigning data to one of K pre-defined classes. It

is realized in two phases. In the first training phase, a classifier is trained from a set of labelled

data, where labels indicate to which class belongs each data. In the second inference phase,
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the classifier should correctly assign a new unlabelled data to the correct class. Among various

methods that exist for classification, we here consider standard feedforward Neural Networks

(NN) for their efficiency and adaptability [30]. In what follows, and as commonly done in

classification, we will consider that the NN is trained by considering the cross-entropy as loss

function [31].

C. Transmission scheme for learning

When developing our transmission scheme, we will consider that we do not have access to any

prior training dataset, since constructing in advance such a training set is not always possible in

practical transmission scenario. Therefore, in order to develop an efficient transmission scheme

dedicated to learning, we consider two transmission phases. At the first phase, a fraction β of the

dataset {Xs}s∈J1,SK is transmitted to the fusion center by using a conventional lossless or lossy

data transmission scheme. This first data transmission will allow the fusion center to properly

calibrate the learning algorithm. This is of special importance in our context, since we want

the transmission scheme to be as agnostic as possible with respect to the source statistics. The

second phase, which constitutes the main contribution of this paper, will be specifically designed

so as to allow for learning over the transmitted data, without need to reconstruct the original

data. Note that both phases will be taken into account when evaluating the overall source/channel

coding rate of the proposed scheme.

In addition, we consider a feedback channel between the fusion center and the sensors. Through

the feedback channel, the fusion center will get the sensors informed about the amount of data

they should transmit at the second phase so as to achieve a good learning performance. However,

we will pay special attention to only sending a few amount of information through the feedback

channel, since setting up such down-link connection can be very costly in practical applications.

D. Existing approaches for learning over transmitted data

Before describing our proposed transmission scheme for learning over received data, we review

existing approaches for this problem, and identify their limitations.

A first straightforward approach would consist of considering a conventional data transmission

scheme targeting data reconstruction. In this case, it is shown in [32] that there is no need to

completely reconstruct the data before applying the learning task. For instance, [33] proposed to
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train a Deep Neural Network (DNN) dedicated to classification directly in the JPEG transform

domain. This solution is especially appropriate in the case where the data is already compressed

and e.g., stored in a dedicated server. However, in our case, it may be very sub-optimal in

terms of coding rate. As a matter of fact, an information-theoretic analysis carried in [11]

shows that the rate needed for DHT is much lower than the rate needed for data reconstruction.

The same fact was also empirically observed in [23] for clustering over compressed data. In

addition, and perhaps more surprisingly, this approach may also be sub-optimal in terms of

learning performance. For instance, it is shown in [6] that there exists a trade-off in terms of

coding rate between data reconstruction and identification. It is also shown in [34] that the

classification performance after video compression and decompression is poor when low bitrates

are considered. This shows the need to design a coding scheme fully dedicated to learning.

Alternatively, one could consider the use of full end-to-end Deep-Learning techniques, which

were widely investigated in the telecommunication field recently, for data compression [8],

[35], noisy channel transmission [9], [36], or joint source-channel coding [37]–[39]. Some of

these solutions were extended to target learning problems such as image retrieval [40], image

classification [41], or image recognition [42]. Most of these solutions can be seen as Variational

Auto-Encoders (VAEs). VAEs are composed of one encoder, which produces a latent vector,

and of one decoder, which may either perform data reconstruction [8], [9], [35]–[39], or apply

some specific learning tasks [40]–[43] onto the latent vector. Usually, the VAE encoder and

decoder are constructed from NNs. When no training set is available, the emitter may train its

own NN [42], [44], given that it has enough computation and power resources. Otherwise, the

training algorithm should be applied at the receiver, and the updated NN weights or the loss

function for each training sample [9] should be transmitted back to the encoder via a reliable

feedback channel. Therefore, the use of VAEs seems unrealistic in all the applications in which

it is not possible to make such an intensive use of the feedback channel.

This is why in this work we do not consider the Deep-Learning based approach neither.

Instead, we will develop a transmission scheme in which the transmitter scheme is fixed and

does not need to be updated online, while the receiver can make use of a NN dedicated to the

considered learning task. This NN will be trained during the first transmission phase, with no

need to send back any training information to the encoder.

In what follows, we first introduce the proposed transmitter scheme (Section III), and then
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Fig. 1. Transmitter and Receiver scheme for Learning

describe the proposed receiver learning scheme (Section IV).

III. DATA TRANSMISSION SCHEME

In conventional data transmission schemes, the source-channel separation theorem states that

designing the source coding scheme and the channel coding scheme independently from each

other is optimal, at least in the asymptotic regime. However, this result most probably does not

hold anymore when targeting learning. For instance, [10] proposes a joint source-channel code

design for DHT which achieves better performance than the separate design. Intuitively, since

learning algorithms are designed so as to handle the noise within the data, they should also

show some robustness against channel noise. Therefore, it may be irrelevant to put some effort

into completely correcting the channel noise before applying the learning algorithm. Following

this idea, we build-up an unconventional data transmission scheme which avoids both standard

lossless source coding (Huffman, Lempel Ziv, etc.) and standard channel coding (LDPC codes,

Turbo codes, etc.). The proposed scheme is designed so as to preserve the data structure during

channel transmission, so that the learning algorithm can directly handle the additional noise

introduced by the channel. Note that in the context of lossy data reconstruction through a noisy

channel, it was shown in [45] that transmitting uncoded data is optimal for some sets of source

and channel pairs. However, the work of [45] was mostly theoretical and did not address learning.

Figure 1 shows the generic coding scheme (transmitter + receiver) we propose in this paper.

In Figure 1, we see that the transmitter is composed of three main blocks: transform coding,

scaling, and modulation, which we now describe.
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A. SHF transform coding

As in most source coding approaches, our scheme first employs a transform coding operation.

Here, we consider Spherical Harmonic Functions (SHF’s) [24], which are known to be very good

function approximators, mostly due to their polynomial forms. Transforms usually employed in

source coding, like Discrete Cosine Transform (DCT), are real-valued for easier use. Here, on the

opposite, we choose to employ SHF because it is a 2D complex transform. This will interface

better with the modulation method considered in our scheme, since the constellation of this

modulation is defined in the complex domain.

Consider a given matrix X of size M × N from the dataset {Xs}s∈J1,SK. We use Xm,n to

denote the coefficient at position (m,n) ∈ J0,M − 1K× J0, N − 1K in the matrix X. In order to

apply SHF, Step 1 of Figure 1 converts the Cartesian coordinates Xm,n = (m,n) into a spherical

coordinate system. To do so, we set θm = πm
M

and ϕn = 2πn
N

, where θm is the zenith (polar)

angle such that 0 < θm < π, and ϕn is the azimuthal angle such that 0 < ϕn < 2π.

Then, the SHF is defined from Legendre polynomials P (k)
` : [−1, 1]→ R given as

P
(k)
` (u) =

(−1)k
√

(1− u2)k
2``!

(
d

du

)`+k (
u2 − 1

)`
, (2)

with the convention that P (−k)
` = (−1)k P

(k)
` , and where ` ∈ J0,+∞K and k ∈ J0, `K. Legendre

polynomials define an orthogonal basis. In addition, spherical harmonic functions Y (k)
` (` ∈

J0,+∞K, k ∈ J0, `K) define an orthogonal-basis system that maps the spherical coordinates to

scalar complex values as follow:

Y
(k)
` (θm, ϕn) = N

(k)
` P

(k)
` (cos θm) eikϕn (3)

= N
(k)
` P

(k)
` (cos θm) (cos (kϕn) + i sin (kϕn))

where N (k)
` is a normalization constant defined as

N
(k)
` =

√
(2`+ 1)

4π

(`− k)!

(`+ k)!
. (4)

with the convention that N (−k)
` = N

(k)
` . It can be shown that the functions Y (k)

` : R2 → C satisfy

standard orthonormal conditions restated in [24]. All the expressions of the SHFs Y (k)
` can be

found in [46].
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Finally, in Step 2 of Figure 1, for all ` ∈ J0,+∞K and k ∈ J0, `K, the transform coefficients

C
(k)
` are calculated from the functions Y (k)

` as

C
(k)
` =

1

MN

M−1∑
m=0

N−1∑
n=0

Xm,nY
(k)
` (θm, ϕn). (5)

In order to simplify notation in the following, we re-index the SHFs and transform coefficients

as Y (k)
` := Yp and C

(k)
` := Cp, and retain only P coefficients Cp. To do so, the functions Y (k)

`

are ordered by taking first the function Y
(0)
0 for ` = 0, then all functions Y (k)

1 for ` = 1, then

all functions Y (k)
2 for ` = 2, and so on, until P functions have been taken. As a result, for all

(m,n) ∈ J0,M − 1K× J0, N − 1K, P -order approximations of the matrix coefficients Xm,n are

given by

Xm,n =
P−1∑
p=0

CpYp(θm, ϕn). (6)

Equation (6) shows that the choice of the value of P is critical for the quality of the approxi-

mation. This choice will be discussed later on in the paper.

Since our scheme does not include channel coding, the P transform coefficients Cp are passed

to the modulation step, after an intermediate scaling step.

B. Modulation

For modulation, we consider Irregular Hexagonal QAM (IHQAM) constellation [47, Section

V], which is a very energy-efficient 2D signal constellation method. Here and for the sake of

brevity, we only describe the 64-IHQAM constellation. In our simulations, we only considered

the 64-IHQAM for its high reliability, but our scheme can be straightforwardly adapted to other

constellation orders.

In a 2D signal constellation, the Symbol Error Rate (SER) is mainly affected by the minimum

distance between two neighboring constellation points, and by the average symbol energy which

depends upon the mean squared distance between constellation points and the origin. Therefore,

in the optimum 2D hexagonal lattice based IHQAM constellation [47], constellation points are

situated on concentric discs and the minimum distance separation of any two adjacent points is

2d. Further, according to [47], real (resp. imaginary) coordinates of each constellation point are

integer coefficients of d (resp.
√

3d).
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TABLE I

EQUATIONS OF THE LINES THAT DEFINE DECISION BOUNDARIES IN 64-IHQAM. THE PROPOSED EQUATIONS HERE

CORRECT SOME TYPOS IN TABLE V OF [47].

R9, R8 R10, R7 R11, R6 R12, R5 R13, R4 R14, R3 R15, R2 R16, R1

Im(P1) 11d∓x√
3

9d±x√
3

13d∓x√
3

7d±x√
3

7d±x√
3

– – –

Im(P2) 7d±x√
3

9d∓x√
3

5d±x√
3

11d∓x√
3

3d±x√
3

13d∓x√
3

d±x√
3

d±x√
3

Im(P3) 5d∓x√
3

3d±x√
3

7d∓x√
3

d±x√
3

9d∓x√
3

−d±x√
3

11d∓x√
3

−3d±x√
3

Im(P4) d±x√
3

3d∓x√
3

−d±x√
3

5d∓x√
3

−3d±x√
3

7d∓x√
3

−5d±x√
3

9d∓x√
3

Im(P5) −
(

d±x√
3

)
−
(

3d∓x√
3

)
−
(
−d±x√

3

)
−
(

5d∓x√
3

)
−
(
−3d±x√

3

)
−
(

7d∓x√
3

)
−
(
−5d±x√

3

)
−
(

9d∓x√
3

)
Im(P6) −

(
5d∓x√

3

)
−
(

3d±x√
3

)
−
(

7d∓x√
3

)
−
(

d±x√
3

)
−
(

9d∓x√
3

)
−
(
−d±x√

3

)
−
(

11d∓x√
3

)
−
(
−3d±x√

3

)
Im(P7) −

(
7d±x√

3

)
−
(

9d∓x√
3

)
−
(

5d±x√
3

)
−
(

11d∓x√
3

)
−
(

3d±x√
3

)
−
(

13d∓x√
3

)
−
(

d±x√
3

)
−
(

d±x√
3

)
Im(P8) −

(
11d∓x√

3

)
−
(

9d±x√
3

)
−
(

13d∓x√
3

)
−
(

7d±x√
3

)
−
(

7d±x√
3

)
– – –

At the transmitter, each complex information signal is first mapped to the center of the nearest

hexagon (Step 4 of Figure 1), considering the decision boundaries given in [47, Table V]. More

into details, [47, Table V] provides linear equations that define the boundaries of the hexagons

in the constellation represented in [47, Figure 16]. When implementing our scheme, we noticed

that the table given in [47, Table V] contained some typos in the definitions of the boundaries.

This is why we restated the correct boundaries in Table I of this paper for further clarity and

future use. Note that regular HQAM constellation has comparatively simpler detection. On the

other hand, the irregular HQAM provides improved power efficiency and optimum performance,

at the cost of increased detection complexity [25]. When considering IHQAM, if the modulated

signals are passed through an AWGN channel with a noise variance σ2, then according to [47],

the Signal-to-Noise Ratio (SNR) in dB is equal to

SNRdB = 10log10

(
Es
N0

)
= 10log10

(
35.25d2

2σ2

)
,

where Es is the average energy of each signal, and N0 = 2σ2 is the spectral density of a two-

sided Gaussian noise. Moreover, for a fixed SNRdB, we can apply relations (7), (24), and (25) in

[47] to calculate the Bit Error Probability (BEP) Pb of the 64-IHQAM over an AWGN channel.

Finally, we did not consider channel coding prior to the modulation scheme, since we do

not target data reconstruction. Machine Learning algorithms considered at the receiver have the

ability to handle the noise introduced by the channel.
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C. Scaling

We now describe how the proposed scheme scales and maps the complex-valued trans-

form coefficients Cp onto the IHQAM constellation. For a given s ∈ J1, SK, we use Cs =

(Cs,1, Cs,2, · · · , Cs,P ) to denote the vector of transform coefficients of size P , where Cs,p =

ys,p+ jzs,p is a continuous complex value. For all p ∈ J1, P K, the means of the random variables

ys,p and zs,p are given by µy,p = E [ys,p] and µz,p = E [zs,p], respectively, and their variances

are given by σ2
y,p = Var [ys,p] and σ2

z,p = Var [zs,p], respectively. Given that the number S of

samples is sufficiently large, we can estimate µy,p, µz,p, σ2
y,p, σ

2
z,p, from the empirical means

and variances of the data samples ys,p and zs,p. These empirical means and variances can be

calculated both at the transmitter from the observed data, and at the receiver from the first data

transmission phase. The normalized versions of the components ys,p and zs,p are denoted by

ȳs,p = ys,p−µy,p√
σ2
y,p

and z̄s,p = zs,p−µz,p√
σ2
z,p

, respectively. Then, given a Gaussian random variable U

with mean 0 and variance 1, we introduce the quantity uα such that P (|U | ≤ uα) ≥ α. In other

words, the confidence interval

Iy,α =
[
−uα

√
σ2
y,p + µy,p ≤ yn,p ≤ uα

√
σ2
y,p + µy,p

]
contains α% of the real (resp. imaginary) values of the transform coefficients Cs,p1. The value

of α has an impact on the quality of the signal at the receiver.

Now considering the 64-IHQAM constellation, Step 3 of Figure 1 scales the confidence interval

of real (resp. imaginary) part of each transform coefficients to real (resp. quadrature) axis of 64-

IHQAM constellation. To do so, and given that the real (resp. quadrature) axis of 64-IHQAM is

limited to [−8d, 8d] (resp.
[
−4
√

3d, 4
√

3d
]
) we apply the following transformations, respectively

on the normalized real part ȳs,p and imaginary part z̄s,p of each of the P coefficients Cs,p:

TRe,p : Iy,α → [−8d , 8d]

TRe,p (t) = 16d

3.29
√
σ2
y,p

(
t− uα

√
σ2
y,p − µy,p

)
+ 8d,

(7)

TIm,i : Iz,α →
[
−4
√

3d , 4
√

3d
]

TIm,i (t) = 8
√
3d

3.29
√
σ2
z,p

(
t− uα

√
σ2
z,p − µz,p

)
+ 4
√

3d
(8)

1In our case study, we observed that the random variables ys,p and zs,p have statistical distribution approximately like normal

distribution, hence the choice of the confidence interval of a Gaussian random variable. However, in case of unknown statistical

distributions, the confidence interval could be defined thanks to the Chebyshev’s inequality [48].
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Transforms (7) and (8) map at least α% of the most probable coefficients to the 2-dimensional

region of the 64-IHQAM constellation. Note that the values that might be out of the α%

confidence interval are mapped into the borders of this interval.

After the scaling step, Step 4 of Figure 1 uses the decision boundaries of the 64-IHQAM

modulation to further quantize any continuous 2-dimensional [TRe,p (t) , TIm,p (t)] value to one of

the 64-IHQAM constellation points. Since we do not use channel coding, the scaled values are

directly quantized into constellation points, with no “mapping" strategy.

IV. RECEIVER LEARNING SCHEME

The objective of the receiver is to perform either clustering or classification onto the received

noisy data output by the AWGN channel. For both learning tasks, the receiver starts with the

same two steps: demodulation and descaling.

Step 6 of Figure 1 corresponds to demapping the noisy signal which is distorted by Gaussian

noise. In this phase, we use the decision boundaries of the 64-IHQAM to demap the noisy

signal to the center point of the nearest hexagon. Then, Step 7 corresponds to descaling the

p-th component of the demodulated/demapped vector of size P . This is done by applying the

inverse of the linear transform TRe,p in (7) (resp. TIm,p in (8)) on real (resp. imaginary) part of

the i-th component of the demodulated/demapped vector. Since these components are the center

points of the hexagons in the 64-IHQAM, their corresponding descaled (inverted) points only

take values among 64 discrete possibilities.

The next step of Figure 1 is specific to the considered learning task, although both tasks rely

on a Complex-Valued Neural Network (CVNN) which we now describe.

A. Complex-Valued Neural Networks

In this section, we only provide the salient points of CVNN, and we refer the reader to [49],

[50] for a full description. Given that a CVNN has complex input values, the activation functions

and their derivatives have to be well-defined so that one can apply e.g., a gradient descent

optimization method over complex data. Specifically, [50] relies on Wirtinger derivation in order

to calculate the gradient of the loss function of a CVNN.

In what follows, we consider a CVNN with an input layer of size k0 + 1 nodes, V hidden

layers, kv nodes per layer, and a single-valued output layer. We further consider the Cartesian
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hyperbolic tangent

F (Z) = tanh (Re (Z)) + j tanh (Im (Z)) (9)

as activation function for hidden layers of CVNN, where Z is a complex value, and we consider

the sigmoid-based activation function

G(Z) = sigmoid (Re (Z) + Im (Z)) (10)

for the output layer2. CVNN with the aforementioned materials have been implemented in Python

using Tensorflow and Keras, see [26], [51]. For weight initialization, Glorot uniform (also known

as Xavier uniform) [52] is used, and all biases start at zero as those are Tensorflow’s current

(v2.1) default initialization methods for dense layers.

B. Clustering with CVNN

In our scheme, clustering over the received data is performed in two steps. The first step

consists of reconstructing rough versions of the original matrices Xs using a CVNN shown in

Figure 2. This reconstruction step will allow to efficiently invert the transform operation, while

removing a part of the channel noise. It will also allow to use the standard Euclidean distance

in the cost function (1) of K-means. Indeed, applying K-means without data reconstruction

would require to identify a proper distance adapted to the internal geometric structure of the

demodulated data.

In the CVNN, we use the activation functions described in Section IV-A. As loss function,

we consider the Mean-Squared Error (MSE), since the aim of the clustering algorithm K-means

is to minimize the MSE between each sample and its closest centroid. The CVNN is trained

from the set of dβSe samples that were transmitted at the first phase. In this first phase, we

take advantage of Data Augmentation (DA), a technique that allows to increase the amount of

training data by adding modified copies of already existing data [53]. This results in a training

set of Nt samples. For a given coefficient Xm,n, the input layer of the NN is fed with the vector(
C̄0Y0 (θm, ϕn) , C̄1Y1 (θm, ϕn) , · · · , C̄PYP (θm, ϕn)

)T
,

2Here, we selected a sigmoid activation function because the dataset we consider in our simulations is composed of gray-scaled

images. But depending on the target, the sigmoid could be replaced by other activation functions, see [50].
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Fig. 2. Dense NN with input vector of size compressed vector, two hidden layers, and output vector of size one. In the figure,

the function cart_tanh refers to the Cartesian hyperbolic tangent defined in (9), and the function real_sigmoid refers to the

sigmoid-based function defined in (10).

see (6), where the coefficients C̄p are the received transform coefficients after demodulation and

descaling. The goal of the NN is to minimize the MSE between the NN output value X̂m,n and

the original value Xm,n, for all (m,n) ∈ J0,M − 1K× J0, N − 1K. The NN is applied MN times

so as to obtain MN components X̂m,n, which will allow to reconstruct a degraded version X̂

of each matrix X.

Then, at the second stage of step 8, the K-means algorithm is applied onto the set of

reconstructed matrices {X̂s}s∈J1,S′K, where S ′ ≤ S is the number of received data. In a practical

system, for more efficiency, the K-means algorithm should be applied onto the set of matrices

received from both the first and the second data transmission phase, so that a part of the matrices

X̂s are in fact given by the original matrices Xs coming from the first step. However, in our

simulations, we will only apply K-means onto the set of data received at the second phase, which

will allow to evaluate with more fairness the performance of the proposed scheme (otherwise,

the K-means algorithm could be positively biased by the first step).
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C. Classification with CVNN

When considering classification instead of clustering, our proposed scheme remains entirely

the same, except for Step 8 in Figure 1. Now, this step is composed of only one stage, since

the CVNN will completely handle the classification. More into details, in the training phase,

we assume that the receiver has access not only to a fraction β of the dataset, but also to the

corresponding true labels. For instance, these true labels may be determined manually by a

human operator, after a clustering step. This human operator should provide such effort for a

small part of the dataset, hoping that the NN will provided labels for the remaining (1 − β)%

of the dataset. Manual labeling should be done anyway in many applications in which no prior

dataset is available. As a result, while for clustering the NN is launched pixel-wise, here on

the opposite the CVNN is fed with the P descaled transform coefficients C̄p. In addition, at

the last layer, the number of NN outputs now equals the number of predefined classes, and the

loss function is now the cross-entropy. However, the activation functions remain the same as for

clustering.

D. Rate-adaption mechanism

Until now, we assumed in our description of the transmission scheme that the parameter P

was fixed. This parameter indicates the number of SHF transform coefficients C(k)
` (5) which are

retained at the transmitter, and it affects both the amount of data transmitted over the channel and

the learning performance. This is why when training the CVNN after the first transmission phase,

we will try different values of P and select the one that provides a sufficient level of learning

performance. The performance criterion considered at this step will be defined in the next section

for both clustering and classification. For classification, this step requires retaining a small part

of the transmitted data into a validation set which will be used only for performance evaluation

and will not be considered during the training. Finally, the retained value of P is sent back to

the transmitter via the feedback link, and it will be used during the second transmission phase.

As a result, the feedback channel should transmit dlog2(P )e bits of data (where P ≤M ×N ),

which is very low compared to the amount of data transmitted through the direct link, see the

next section.
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V. RATE AND LEARNING PERFORMANCE EVALUATION

Usually, the performance of conventional source and channel coding schemes is evaluated from

metrics related to data reconstruction, such as the error probability for lossless source coding, or

the distortion for lossy source coding. Alternatively, this section first identifies metrics of interest

to evaluate the clustering and classification performance of a transmission scheme dedicated to

learning. It then evaluates the source-channel coding rate of the proposed scheme.

A. Clustering performance

We consider two metrics of interest in order to evaluate the clustering performance of the

proposed scheme. The first metric comes from the Confusion Matrix (CM), a square matrix

such that the positive integer coefficient at position (i, j) gives the number of elements of actual

class j which were predicted as belonging to class i. The metric

cm =
tr(CM)∑
i,j CM(i, j)

,

where 0 < cm ≤ 1, and tr(.) is the trace of the matrix, is then calculated from the CM. The

higher cm means the better clustering.

The second metric is the Silhouette score, denoted ss, and defined in [54]. The value of the

Silhouette score varies between −1 and 1. A high ss means that the clusters are dense and

well-separated from other clusters.

The first metric cm is calculated from the ground truth, that is the knowledge of the true

clusters, while the second one ss only evaluates clusters homogeneity. We use these two very

common metrics in our simulations, although many other ones exist (homogeneity score, com-

pleteness score, inertia, etc.), see [55] for an overview.

B. Classification performance

For classification, given the nature of the problem, performance criteria always require the

ground truth. In our simulations, we will consider a very common one which is the accuracy [56].

Accuracy is simply calculated as the proportion of truly predicted labels among all tested samples.
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C. Rate evaluation

We now evaluate the coding rate of the proposed transmission scheme. For the conventional

coding scheme used at the first phase, we use Rsc and Rcc to denote respectively the source

coding rate and the channel coding rate needed to transmit an image without or with loss,

depending on what is needed at the first transmission phase. Then, since the number of input

bits is BMN (assuming B bits per each of the M×N pixels of a gray-scaled image), and since

the number of transmitted bits is 6P (P SHF coefficients are retained, and each one is mapped

onto 26 = 64 constellation points), the overall coding rate Rlearn of our scheme is

Rlearn = β
Rsc

Rcc
+ (1− β)

6P

BMN
, (11)

where β is the proportion of the dataset transmitted at the first phase, and the ratio Rsc
Rcc

is the

joint source-channel coding rate [57]. In addition, while Rsc ∈ [0, 1] and Rcc ∈ [0, 1], the ratio
Rsc
Rcc

does not necessarily belong to [0, 1].

In our simulations, we will assume that Rsc is the source coding rate after JPEG compression

with a very small distortion, and that Rcc is the rate of an error-correction code aiming to correct

most errors introduced by the AWGN channel. In (11), we see that the second transmission phase

of our scheme highly benefits from the fact that no channel coding is employed in this phase.

We also see that at this phase, the quantity to be optimized is the value of P that is the number

of retained SHF’s coefficients. Finally, note that if the learning was already done from a prior

available dataset, we could set β = 0.

D. Coding rates of baseline schemes

In conventional data transmission setups, well-known Information-Theory results [58] state that

the source coding Rsc should be greater than the source entropy (lossless coding) or than a certain

rate-distortion function (lossy coding). These information-theoretic results allow to compare

the performance of a given practical coding scheme with respect to the optimal coding rate.

Unfortunately, no such result exists for the clustering and classification tasks considered in this

paper, although some simpler problems such as DHT were addressed in the literature [10]–[12].

Determining the Information-Theoretic achievable performance for classification or clustering is

out of our scope of this paper. Alternatively, we now provide the coding rates of two baseline

schemes, which will serve as points of comparison with our approach.
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As a first baseline, we consider a scheme in which the dataset is fully transmitted with

conventional source and channel coding techniques, and completely reconstructed at the receiver,

before applying the learning algorithm. This conventional approach has coding rate Rconv given

by

Rconv =
Rsc

Rcc
, (12)

where the terms Rsc/Rcc were introduced in Section V-C. This corresponds to setting β = 1 in

our proposed transmission scheme.

As a second baseline, we use the result of [59] which states that in theory, K log(K)

coefficients are sufficient to retrieve correct cluster or class assignments, where K is the number

of clusters or classes. This result holds after training, that is when the centroids (for clustering)

or classes (for classification) are already known. Therefore, in this case, we consider the same

first transmission phase as in our scheme, and we assume that K log(K) coefficients per data are

transmitted in the second phase. We further consider that these coefficients are protected with a

channel code of rate Rcc. The coding rate Rideal of this scheme is given by

Rideal = β
Rsc

Rcc
+ (1− β)

K logK

MNRcc
(13)

where K is the number of clusters or classes. This scheme is termed as “ideal" because it relies

on the theoretical result of [59].

At the end, we expect the following rate ordering: Rideal ≤ Rlearn ≤ Rconv to hold when

considering the same level of learning performance among the three schemes. In our simulations,

we will compare the rate-versus-learning performance of our scheme to these two baselines, and

we will check whether the previous rate ordering is satisfied.

VI. SIMULATION RESULTS

In this section, we evaluate the performance of our proposed transmission scheme for clus-

tering and classification. Our evaluation consists of two aspects: 1) the quality of clustering

or classification, 2) the coding rate, given that the parameters of the scheme (number of SHF

coefficients, etc.) are chosen so as to avoid any significant negative impact on the clustering or

classification performance. The metrics considered in this evaluation are described in Section V.

For both learning problems, we consider the MNIST dataset [60] that contains 70, 000 grayscale
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TABLE II

CVNN PARAMETERS FOR CLUSTERING AND CLASSIFICATION, RESPECTIVELY, OVER MNIST

CVNN Parameters

task clustering classification

] nodes in input layer k0 + 1 = 36, 49, 64, · · · k0 + 1 = 16MN, 36MN, 64MN, · · ·

Activation Function 1 Cartesian tangent hyperbolic Cartesian tangent hyperbolic

] nodes in hidden layer 1 k1 + 1 k1 + 1

Activation Function 2 Cartesian tangent hyperbolic Cartesian tangent hyperbolic

] nodes in hidden layer 2 k2 + 1 k2 + 1

Activation Function 3 Real-Sigmoid Real-Softmax

] nodes in output layer 1 number of classes (10 for MNIST)

batchsize 200 200

epochs 10 10

loss function mean squared error categorical cross entropy

Optimizer method Gradient descent Adam (rate 0.001) Gradient descent Adam (rate 0.001)

images of size 28 × 28 of handwritten digits. The parameters of the considered CVNN are

provided in Table II, both for clustering and classification.

A. Clustering

1) Simulation parameters: In order to evaluate the clustering performance of the proposed

transmission scheme, we consider that β = 1% of MNIST samples are transmitted at the first

phase, which represents 700 samples. The set of samples transmitted in the first phase is then

expanded into Nt = 2000 samples by applying Data Augmentation (DA) techniques [61]. The

considered DA technique includes a maximum of 20 degrees of rotation and up to 3 pixels

left/right/up/down shifts. Next, the CVNN used at the receiver contains V = 2 layers, with

k1 + 1 = 120 nodes in its first hidden layer, and k2 + 1 = 784 nodes at the second layer,

which is equal to the number of pixels in each MNIST image. The CVNN is trained with

200 batch, 10 epochs, and a learning rate of 0.001. For the modulation scheme, we consider

the 64-IHQAM constellation with parameter d = 1. In our simulations, we will evaluate the

clustering performance for values P ∈ {36, 49, 64}. For the AWGN channel, we set a noise

variance σ2 = 0.56, which corresponds to a SNR around 15dB, and to a bit error probability

Pb = 0.062 [47], [62].
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TABLE III

PERFORMANCE EVALUATION OF THE K-MEANS CLUSTERING OVER ORIGINAL, BINARY, AND COMPRESSED DATA, WHERE

COMPRESSED DATA ARE TRANSMITTED OVER AWGN CHANNEL WITH SNR ≈ 15DB AND Pb = 0.062.

K-means over:

metrics
cm ss Counter σ2

Cout R (bits/pixel)

original MNIST 0.529 0.068
{0 : 242, 5 : 240, 8 : 226, 1 : 225, 9 : 194,

7 : 190, 3 : 189, 4 : 166, 6 : 165, 2 : 163}
963 Rconv = 0.33

binary MNIST

(quantization: 1 bit per pixel)
0.506 0.067

{1 : 275, 3 : 240, 2 : 233, 6 : 224, 4 : 180,

9 : 179, 5 : 175, 8 : 168, 0 : 165, 7 : 161}
1569Rconv = 0.083

NN outputs, with P = 64

AWGN (σ2 = 0.56) & 64-IHQAM (d = 1)
0.526 0.081

{7 : 243, 0 : 232, 2 : 225, 8 : 213, 4 : 200,

9 : 198, 1 : 189, 6 : 184, 3 : 174, 5 : 142}
898 Rlearn = 0.064

NN outputs, with P = 49

AWGN (σ2 = 0.56) & 64-IHQAM (d = 1)
0.506 0.078

{5 : 256, 8 : 226, 6 : 219, 9 : 212, 4 : 204,

7 : 197, 2 : 195, 1 : 180, 3 : 178, 0 : 133}
1082Rlearn = 0.050

NN outputs, with P = 36

AWGN (σ2 = 0.56) & 64-IHQAM (d = 1)
0.460 0.095

{7 : 258, 6 : 243, 2 : 241, 0 : 209, 5 : 197,

1 : 188, 4 : 186, 3 : 185, 8 : 173, 9 : 120}
1630Rlearn = 0.037

After completing the first transmission phase, and in order to evaluate the performance of the

proposed transmission scheme, we consider the transmission of 2000 new samples in MNIST.

In our scheme, for the clustering, we use the K-means algorithm initialized with K-means++,

with 20 random initializations, a maximum of 300 iterations, and a tolerance value of 10−4. The

K-means function is imported from the Scikit.Learn Python library and for evaluation purpose,

it is applied only on the samples transmitted at the second phase. In our simulations, we assume

that the number K = 10 of clusters is known by the algorithm.

2) Clustering performance: In our simulations, we evaluate the clustering performance from

the metrics ss and cm described in Section V-A. For further refinement, we also provide an

array “Counter" which lists the number of samples assigned to each class. Since images in the

MNIST dataset are uniformly distributed across clusters, a successful clustering should output

almost an equal number of data points in each cluster. In this sense, for MNIST, a lower sample

variance σ2
Count for Counter means a better clustering quality.

We now present our simulation results for two sets of simulations. The first set of simulations

aims to position our scheme with respect to K-means clustering on the original MNIST data, and

on binary MNIST (one-bit quantization of each pixel). In other words, the K-means algorithm is

applied directly on 2000 samples of these two datasets (original and binary), without considering
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our transmission scheme and without adding any channel noise. Table III shows the metrics cm,

ss, and σ2
Count obtained for original and binary versions of MNIST images, and also by applying

the proposed scheme (referred to as “NN output images" in the table) with P = 64, 49, and

36. We observe from Table III that the aforementioned metrics are almost similar for clustering

over original and binary versions of MNIST images, except for the variance σ2
Count which is

meaningfully smaller for original MNIST images. Then, when applying our scheme with P = 64

and P = 49, the metrics are all reasonably close to the ones for original MNIST images.

Clustering over NN output images with P = 36 however leads to a performance degradation as

it results in values of cm smaller and of σ2
Count variance meaningfully larger than the ones for

original MNIST. As a result, for MNIST and with the parameters considered in our simulations,

setting P to any value greater than or equal to 49 seems sufficient to apply the K-means algorithm

with a sufficient level of performance.

Finally, we notice that the Silhouette coefficient ss gives inconsistent results on our different

setups. The metric ss does not rely on the ground truth, and instead evaluates clusters homogene-

ity. But here, the space in which the data evolves varies with the value of P , which may mislead

the computation of ss and makes it improper to compare the schemes performance. Despite this,

we provide the ss values, since the Silhouette criterion is widely considered in the literature.

Then, as the output of the second set of simulations, Table IV compares the clustering perfor-

mance after two transforms: DCT and SHF. In this Table, we first show the clustering performance

for a first scenario referred to as “reconstructed MNIST images" in which the considered two

transforms are applied to the original data, but the transform coefficients pass neither through

the transmission scheme nor through the noisy channel (no quantization, modulation, channel

noise, etc., is applied to the data) and are reconstructed with the corresponding inverse transform.

As a second scenario, we also restate the clustering performance of the proposed transmission

scheme, referred to as “NN output images", for P = 36 and P = 49. From the metrics cm and

σ2
Count of Table IV, we see that clustering over direct DCT reconstruction is meaningfully better

than with SHF. On the opposite, we observe that clustering after our transmission scheme and

with SHF is far better than direct DCT and SHF reconstructions. This shows the efficiency of the

CVNN in handling all the non-linear effects of the transmission scheme (quantization, channel

noise, etc.). Finally, in Table IV, we notice that the methods which consider smaller values of P

always have higher ss values. This confirms that the structure of the data has a strong influence
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TABLE IV

COMPARISON OF THE K-MEANS CLUSTERING WITH DCT AND WITH SHF. K-MEANS IS APPLIED ON NN OUTPUT DATA,

WHERE THEY ARE TRANSMITTED OVER AWGN CHANNEL WITH SNR ≈ 15DB AND Pb = 0.062.

K-means over:

metrics
cm ss Counter σ2

Cout

reconstructed MNIST images

(using size= (7, 7) DCT sub-matrix)
0.465 0.112

{2 : 266, 5 : 266, 0 : 255, 4 : 237, 8 : 199,

7 : 176, 1 : 162, 6 : 157, 3 : 146, 9 : 136}
2665

reconstructed MNIST images

(using size= (6, 6) DCT sub-matrix)
0.397 0.116

{1 : 320, 4 : 306, 6 : 282, 7 : 217, 2 : 217,

9 : 180, 3 : 152, 5 : 147, 0 : 103, 8 : 76}
7026

reconstructed MNIST images

(using first 49 complex-valued SHF coefficients)
0.405 0.114

{8 : 283, 4 : 250, 2 : 246, 9 : 209, 6 : 208,

0 : 206, 7 : 204, 1 : 151, 5 : 125, 3 : 118}
2939

reconstructed MNIST images

(using first 36 complex-valued SHF coefficients)
0.366 0.127

{6 : 271, 1 : 262, 0 : 231, 5 : 231, 4 : 230,

7 : 181, 2 : 161, 3 : 160, 9 : 155, 8 : 118}
2659

NN outputs, with P = 49

AWGN (σ2 = 0.56) & 64-IHQAM (d = 1)
0.506 0.078

{5 : 256, 8 : 226, 6 : 219, 9 : 212, 4 : 204,

7 : 197, 2 : 195, 1 : 180, 3 : 178, 0 : 133}
1082

NN outputs, with P = 36

AWGN (σ2 = 0.56) & 64-IHQAM (d = 1)
0.460 0.095

{7 : 258, 6 : 243, 2 : 241, 0 : 209, 5 : 197,

1 : 188, 4 : 186, 3 : 185, 8 : 173, 9 : 120}
1630

on the Silhouette values.

3) Rate evaluation: We now evaluate the rate of the proposed scheme, as well as the rates

of the baseline schemes of Section V-C, for a given set of parameters. For MNIST, we have

M = N = 28, and K = 10 clusters. As before, we consider a proportion β = 1% of data

transmitted at the first phase. We consider a source coding rate Rsc = 1/4, since we observed

that JPEG compression on MNIST with rate Rsc = 1/4 allows to reconstruct the original images

almost without loss. And we consider a channel coding rate Rcc = 3/4, which is sufficient to

correct errors with a bit error probability Pb = 0.062, as considered in our previous simulations.

The coding rates Rconv and Rlearn obtained with these parameters are shown in the last column of

Table III, where the latter was evaluated for the three values P = 36, 49, 64. In the Table, we also

indicated the coding rate Rconv for binary MNIST, and evaluate this coding rate by considering

Rcc = 3/4 as before, Rsc = 1/16. This value of Rsc comes from the fact that one bit per pixel

gives a compression ratio of 1/8, and we observed that lossless Huffman coding allows to further

divide this ratio by two. We observe that our scheme has a clear gain in coding rate compared

to the considered two conventional coding schemes. Especially, the case P = 49 which was
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Fig. 3. Examples of MNIST images reconstructed by the CVNN before applying clustering. These images were encoded by the

full transmitter scheme (including SHF and 64-IHQAM modulation), by considering a perfect channel: (a) Image reconstruction

from 16 SHF coefficients, (b) Image reconstruction from 32 SHF coefficients.

identified as allowing for a sufficient clustering performance has a coding rate Rlearn = 0.05

bit/symbol which is better than Rconv = 0.083 bit/symbol obtained for binary MNIST, while also

allowing for a slightly improved clustering performance. In addition to the rates provided in

Table III, we also get Rideal = 0.032 bit/symbol for the ideal scheme described in Section V-C.

We observe that the rate Rlearn for P = 49 is not too far from the rate Rideal of the ideal scheme,

although there is still some space for a bit of improvement.

4) Data reconstruction: In the receiver designed for clustering, the CVNN first performs a

reconstruction of the data, before applying the clustering algorithm. In Figure 3, we show some

examples of MNIST images reconstructed by the CVNN, for 16 transmitted SHF coefficients

(left figure) and for 32 transmitted SHF coefficients (right figure). These figures were obtained by

considering the full emitter scheme with SHF and 64-IHQAM modulation, but without channel

noise. The CVNN was trained over β = 2.85% of the dataset transmitted at the first phase.

While data reconstruction is not the main purpose of our scheme, these figures also illustrate

the generic aspect of our transmission scheme and the fact that it coud be employed in various

applications.

B. Classification

1) Simulation parameters: We now evaluate the classification performance achieved by the

proposed transmission scheme for various sets of parameters. The considered metric for classifi-
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cation performance evaluation is the accuracy. We consider the 64-IHQAM modulation with dis-

tance values d ∈ {1, 2} in the constellation scheme, a number of SHF’s coefficients P ∈ {16, 36},

and values β ∈ {2.85%, 5.71%}, for the proportion of MNIST samples transmitted at the first

phase. We then evaluate the classification performance over a test set of 2000 MNIST images

transmitted at the second phase of our scheme. We also consider several variance values for the

channel noise, ranging from σ2 = 0 to σ2 = 16.

2) Classification performance: Table V shows the classification performance in terms of

accuracy over the MNIST dataset using the proposed scheme. The same results are also repre-

sented graphically in Figure 4 for easier comparison between the different sets of parameters.

As expected, we observe that the accuracy increases with P and d for fixed values of β and

σ2. Also, given P and d, the accuracy slightly increases with β. Finally, the parameters P and

d seem to have a higher impact on the classification performance than β. Another deduction

from Table V is that P ≥ 36 is sufficient for our transmission scheme to achieve at least 90%

accuracy when considering channel noise variance 0 ≤ σ2 ≤ 9. In addition, considering P = 64

instead of P = 36 does not improve much the accuracy. We also remark that we need a larger

value β compared to when the transmission scheme was designed for clustering.

3) Rate evaluation: For conventional coding schemes, in order to obtain a fair rate comparison

with our scheme, we considered classification of MNIST and binary MNIST from a standard

Multilayer Perceptron (MLP) classifier, built from the same parameters as our CVNN (two layers,

k1 + 1 = 120, k2 + 2 = 784). When trained on β = 5.71% of the original MNIST dataset, the

MLP classifier returned an accuracy of 92% on a test set of 2000 MNIST samples. With the

same value of β and training over binary MNIST, the MLP obtained an accuracy of 90%. In

addition, for these two datasets (original and binary MNIST) with conventional coding schemes,

the coding rates needed for classification are the same as the coding rates shown for clustering

in Table III, that is Rconv = 0.33 bit/symbol for original MNIST, and Rconv = 0.083 bit/symbol

for binary MNIST, given that we still consider Rcc = 3/4.

To obtain equivalent accuracy levels with our scheme, we can for instance consider P = 36

and β = 5.71%, which gives accuracy larger than 90% for SNR values larger than 12.46dB. For

these parameters, our scheme gives Rlearn = 0.051 bit/symbol, which is still better than the coding

rate of the conventional coding scheme for binary MNIST. In addition, considering a smaller

value β = 2.82% with the same value P = 36 (at the price of a small accuracy degradation)

August 21, 2023 DRAFT



26

TABLE V

CLASSIFICATION PERFORMANCE OVER MNIST DATA (WITH K = 10 CLASSES) OF THE PROPOSED SCHEME, FOR AN

AWGN CHANNEL. THE ACCURACY IS MEASURED OVER 2000 SAMPLES.

P d β%σ2SNRdBaccuracy% P d β%σ2SNRdBaccuracy% P d β%σ2SNRdBaccuracy%

16 1 2.85 0 ∞ 85 36 1 2.85 0 ∞ 91 64 1 2.85 0 ∞ 93

16 1 2.85 1 12.46 80 36 1 2.85 1 12.46 90 64 1 2.85 1 12.46 91

16 1 2.85 4 6.44 73 36 1 2.85 4 6.44 83 64 1 2.85 4 6.44 88

16 1 2.85 6 4.68 70 36 1 2.85 6 4.68 76 64 1 2.85 6 4.68 86

16 1 2.85 9 2.91 67 36 1 2.85 9 2.91 75 64 1 2.85 9 2.91 84

16 1 2.8512 1.67 62 36 1 2.8512 1.67 69 64 1 2.8512 1.67 74

16 1 2.8516 0.42 55 36 1 2.8516 0.42 64 64 1 2.8516 0.42 72

16 1 5.71 0 ∞ 87 36 1 5.71 0 ∞ 92 64 1 5.71 0 ∞ 94

16 1 5.71 1 12.46 82 36 1 5.71 1 12.46 90 64 1 5.71 1 12.46 93

16 1 5.71 4 6.44 76 36 1 5.71 4 6.44 86 64 1 5.71 4 6.44 90

16 1 5.71 6 4.68 70 36 1 5.71 6 4.68 80 64 1 5.71 6 4.68 88

16 1 5.71 9 2.91 68 36 1 5.71 9 2.91 79 64 1 5.71 9 2.91 86

16 1 5.7112 1.67 62 36 1 5.7112 1.67 69 64 1 5.7112 1.67 76

16 1 5.7116 0.42 58 36 1 5.7116 0.42 65 64 1 5.7116 0.42 76

16 2 2.85 0 ∞ 85 36 2 2.85 0 ∞ 91 64 2 2.85 0 ∞ 92

16 2 2.85 1 18.48 83 36 2 2.85 1 18.48 91 64 2 2.85 1 18.48 92

16 2 2.85 4 12.46 80 36 2 2.85 4 12.46 88 64 2 2.85 4 12.46 91.5

16 2 2.85 6 10.7 80 36 2 2.85 6 10.7 84 64 2 2.85 6 10.7 85

16 2 2.85 9 8.93 76 36 2 2.85 9 8.93 83 64 2 2.85 9 8.93 84

16 2 2.8512 7.7 75 36 2 2.8512 7.7 82 64 2 2.8512 7.7 83

16 2 2.8516 6.44 73 36 2 2.8516 6.44 82 64 2 2.8516 6.44 82

16 2 5.71 0 ∞ 87 36 2 5.71 0 ∞ 93 64 2 5.71 0 ∞ 94

16 2 5.71 1 18.48 85 36 2 5.71 1 18.48 92 64 2 5.71 1 18.48 94

16 2 5.71 4 12.46 80 36 2 5.71 4 12.46 90 64 2 5.71 4 12.46 93

16 2 5.71 6 10.7 80 36 2 5.71 6 10.7 90 64 2 5.71 6 10.7 92

16 2 5.71 9 8.93 79 36 2 5.71 9 8.93 89 64 2 5.71 9 8.93 92

16 2 5.7112 7.7 77 36 2 5.7112 7.7 83 64 2 5.7112 7.7 84

16 2 5.7116 6.44 74 36 2 5.7116 6.44 82 64 2 5.7116 6.44 84

gives a coding rate Rlearn = 0.042 bit/symbol, which is even closer to the rate of the ideal scheme

Rideal = 0.038 bit/symbol. This allows to conclude that the proposed transmission scheme permits

to obtain a better coding rate than conventional coding.

August 21, 2023 DRAFT



27

Fig. 4. Accuracy of our proposed classification scheme applied on compressed MNIST data transmitted over an AWGN channel

with noise variance σ2

VII. CONCLUSION

In this paper, we introduced a practical transmission scheme for efficient learning over received

data at the output of an AWGN channel. The proposed scheme consists of a transmitter built

from SHF transform and IHQAM modulation, and of a receiver that makes use of a CVNN to

perform the considered learning task. We also provided the source/channel coding rate of this

scheme, and evaluated its learning performance from numerical simulations. Numerical results

showed a clear gain in terms of coding rate compared to conventional coding approaches, at

the same learning performance level. These promising results were obtained given that no prior

training dataset is needed by our scheme, and that only a small feedback was allowed between the

receiver and the transmitter. Although generic, the proposed scheme was specified and evaluated

for two standard learning tasks that are clustering with K-means and classification. Future works

will be dedicated to specifying the proposed scheme to other learning tasks such as regression or

clustering from other techniques. We will also investigate other channel models like the fading

channel.
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