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Abstract—This paper considers Distributed Hypothesis Testing
(DHT), in which a source X is encoded given that a side
information Y is available only to the decoder. The decoder’s task
is to make a decision between two hypothesis H0 and H1 related
to the joint probability distribution of X and Y . While most
works on DHT have adopted an information-theoretic approach
by providing generic error exponents for the decision error, we
focus on a specific and practical source model: the Gilbert-Elliot
(GE) model. The later is a two-states hidden Markov model which
describes time-varying correlation between X and Y . Starting
from the generic error exponents, we develop a method for
numerically estimating the error exponent for the GE model. We
provide numerical results to evaluate the impact of the model
parameters on the error exponents and explore the tradeoff
between two types of error events, namely the testing error and
the binning error.

I. INTRODUCTION

Emerging Internet of Things (IoT) networks rely on multi-
sensors architectures, where the destination primary objective
is often to make accurate decisions. In order to minimize
both latency and energy consumption, the decision-making
process can directly use the received data, without need for
reconstructing the original information. This scenario, known
as Distributed Hypothesis Testing (DHT), was initially investi-
gated in [1], [2], and has gained significant interest in the field
of information theory. It falls within the field of goal-oriented
communications, a growing area of study currently under in-
vestigation from both theoretical and practical perspectives [3].

A widely used DHT model assumes that a source X is
encoded given that a side information Y is available only
to the decoder. The receiver’s task is to decide between two
hypotheses, H0 and H1, related to the joint probability dis-
tribution P (X,Y). As in standard hypothesis testing [4], the
objective of DHT is to minimize the Type-II error probability,
defined as the probability of deciding on H0 when H1 is true,
under a constraint on the Type-I error probability, which is the
probability of deciding on H1 when H0 is true. Consequently,
the information-theoretic analysis of DHT provides Type-II
error exponents which can be achieved under rate-limited
communication links [5], [6]. These error exponents are often
expressed as a tradeoff between a binning error and a testing
error.
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Several variations of this problem have been considered in
the literature. For instance, [7] considers a joint setup where
the receiver objective encompasses both data reconstruction
and hypothesis testing, and identifies a tradeoff between the
two objectives. Additionally, [8] analyzes the impact of a noisy
point-to-point channel on the error exponent, and investigates
joint versus separate source/channel coding in the context of
DHT. In these previous works, the sources X and Y are
assumed to generate independent and identically distributed
(i.i.d.) symbol sequences. To alleviate this assumption, [9]
derives an achievable error-exponent for general sources, not
necessarily stationary or ergodic, by employing information-
spectrum tools [10].

The generic information-theoretic error exponents have been
specified for Gaussian models in [5], [9], [11] and for binary
i.i.d. models in [6], [12]. To progress towards the development
of practical DHT coding schemes, it is crucial to investigate
a broader range of source models of interest. Therefore, the
objective of this work is to study the Gilbert-Elliot (GE)
model, which finds applications in many domains such as
video coding [13], link quality estimation [14], or packet loss
analysis [15], and has not been previously investigated in the
context of DHT. The GE model is a non-i.i.d. time-varying
binary model which involves a good state (G) and a bad state
(B) [16]. The transition between these two states is modeled
by a Markov chain, thus accounting for memory in the suc-
cessive state values. For instance, in sensor networks, state G
(respectively state B) represents high correlation (respectively
low correlation) between sensors measurements.

In this paper, we aim to analyze the error-exponent of DHT
for GE models representing the correlation between X and Y.
We assume that each hypothesis corresponds to a distinct set of
parameters for the GE model. To evaluate the error exponent,
we build upon our previous work [9], where the error-exponent
is expressed for general sources as a tradeoff between a
binning error probability and a testing error probability. Since
there does not exist closed-form expressions of the error
exponents related to each of these two error probabilities,
we begin by proposing estimators for these error exponents.
Subsequently, we provide an efficient numerical method to
evaluate these estimators, using forward recursions proposed
for Hidden Markov Models (HMM) in [17]. Although the
focus of this paper is specifically on the GE model, the
proposed approach is generic and can be easily extended to



G B

Figure 1: Gilbert-Elliot model for the correlation noise Z
under hypothesis H0. Under hypothesis H1, the crossover
probabilities become pG and pB , while the parameters g and
b remain the same.

handle more complex source models with memory. To provide
valuable insights for the design of practical coding schemes for
DHT, we present numerical results that explore: (i) the impact
of different GE model parameters on the error-exponent, and
(ii) the tradeoff between the binning error and the testing error.

The outline of the paper is as follows. Section II introduces
our notation as well as the considered GE model. Section III
provides the DHT error-exponent for general sources. Sec-
tion IV presents a new method to numerically evaluate the
terms involved in the error-exponent. Section V shows numer-
ical results.

II. SOURCE MODELS

A. Notation

Throughout the paper, we use J1,MK to denote the set of
integers between 1 and M . Sources are denoted by bold capital
letters, e.g., X and they generate infinite sequences of binary
symbols {Xk}+∞

k=1 where source symbols Xk ∈ {0, 1} are
denoted using capital letters, and k is the time index. We use
Xn to denote length-n random source vectors, and we use
xn to denote their realizations. The limit in probability γ of
a sequence of random variables {An}+∞

n=1 is denoted by γ =
p− lim

n→∞
An and it verifies

lim
n→∞

P (|An − γ| > ϵ) = 0 (1)

for all ϵ > 0.

B. Sources definition

We consider two correlated sources, X and Y, where X
is the source to be encoded, and Y is the side information
available at the decoder. The binary sequences generated by
X and Y are denoted as {Xk}+∞

k=1 and {Yk}+∞
k=1, respectively.

We assume that the source X is i.i.d., such that for all k ≥ 1,
Xk follows a Bernoulli distribution Bern(p) with parameter p,
constant across the hypotheses. On the other hand, the source
Y is not i.i.d. and its probability distribution depends on the
hypotheses H0 or H1, as described below:

H0 : Yk = Xk ⊕ Zk (2)

H1 : Y k = Xk ⊕ Zk. (3)

With a slight abuse of notation, we use Y k to denote the
side information symbols generated under H1, to make it clear
that they have a different probability distribution than under
H0. The sources Z and Z which generate sequences of binary
symbols {Zk}+∞

k=1 and {Zk}+∞
k=1, respectively, are independent

of X and follow GE models described below.
Under H0, the source Z follows a GE model [16] with

hidden state S depicted in Figure 1. The sequence output from
the binary hidden states {Sk}+∞

k=1 is such that Sk ∈ {G,B},
and it follows a Markov model described with the following
state transition probabilities:

P (Sk = G | Sk−1 = B) =g, (4)
P (Sk = B | Sk−1 = G) =b. (5)

Due to the Markov property,

P (Sk|Sk−1, Sk−2 · · ·S1) = P (Sk|Sk−1). (6)

Each symbol Zk takes value 0 or 1 depending on the hidden
state value Sk = s such that

P (Zk = 1 | Sk = G) = pG, (7)
P (Zk = 1 | Sk = B) = pB . (8)

where pG and pB are crossover probabilities. We often con-
sider that pG < pB , so that the state G corresponds to high
correlation between X and Y while the state B corresponds
to low correlation. In addition, the GE model assumes that

P (Zk|Z1, · · ·Zn, S1, · · ·Sn) = P (Zk|Sk). (9)

Under hypothesis H1, the source Zk also follows a GE
model, with the same hidden state S described by equations (4)
and (5) and same values g and b as under H0. However,
the crossover probabilities differ from those specified by (7)
and (8). They are now denoted by pG and pB with

P
(
Zk = 1 | Sk = G

)
= pG, (10)

P
(
Zk = 1 | Sk = B

)
= pB . (11)

III. ERROR EXPONENT

In this section, we first introduce the DHT coding
scheme [5], [6], and then restate our result of [9] which
provides an achievable error exponent for general sources.

A. Coding scheme

Definition 1: The DHT coding scheme is defined from an
encoding function fn and a decoding function gn defined as

fn : {0, 1}n −→ J1,MK, (12)
gn : J1,MK × {0, 1}n −→ {H0,H1}, (13)

under a rate constraint R ∈ (0, 1) such that

lim sup
n→∞

1

n
logM ≤ R. (14)



Definition 2: The Type-I and Type-II error probabilities αn

and βn are defined as

αn = P (gn (fn (X
n) ,Yn) = H1 | H0) , (15)

βn = P (gn (fn (X
n) ,Yn) = H0 | H1) . (16)

Definition 3: For given ϵ > 0 and R ∈ (0, 1), a Type-II error
exponent θ is achievable if for large blocklength n, there exists
encoding and decoding functions (fn, gn) such that the Type-I
and Type-II error probabilities αn and βn satisfy

αn ≤ ϵ, (17)

lim sup
n→∞

1

n
log

1

βn
≥ θ. (18)

B. Information-spectrum terms for ergodic GE models

In [9], we derived general expressions for the error-exponent
which are applicable to a large range of sources, neither
necessarily stationary nor ergodic. These expressions rely on
information-spectrum terms [10] which are defined from limits
inferior and limits superior in probability. These information
spectrum terms have simplified expressions in our case, given
that the underlying Markov chain is ergodic, where ergodic
means that it admits a unique stationary distribution as the
sequence length n tends to infinity [18]. The GE model
described in Section II is ergodic given that the conditions
0 < g < 1 and 0 < b < 1 are satisfied [18].

For ergodic GE models for some sources U,Y,U,Y, com-
bining the information-spectrum definitions from [10] with
the convergence proofs from [18] allows us to show that the
spectral conditional entropy has expression

Hs(U|Y) = p− lim
n→∞

1

n
log

1

P (Un|Yn)
, (19)

and the spectral divergence has expression

Ds(PU,Y||PU,Y) = p− lim
n→∞

1

n
log

P (Un,Yn)

P (U
n
,Y

n
)
. (20)

C. Achievable error-exponent

We now apply the general expression of the error exponent
of [9] to ergodic GE models. In this case, the error exponent
in [9] reduces to

θ ≤ min {θbin, θtest} , (21)

where

θbin = r − [Hs (U | Y)−Hs (U | X)] (22)

θtest = Ds

(
PUY∥PUY

)
(23)

and r ≤ R.
The proof of [9] is based on an achievability scheme with

the following main steps. The codebook is built from 2nr0

sequences un randomly generated according to a pre-defined
joint distribution PUn|Xn . The sequences un are then assigned
uniformly and randomly to 2nr bins with r < r0. The encoder
seeks for a sequence un that is typical in a certain sense with
xn, and sends the index of the bin to which the sequence un

belongs. The decoder extracts a sequence ûn from the bin

which is typical in a certain sense with the side information
sequence yn. It then checks whether the pair (ûn,yn) belongs
to an acceptance region. If so, it declares H0. Otherwise, or
if there was an error during encoding or decoding, it declares
H1. As a result, two types of errors can occur: the binning
error, which is represented by the term θbin in (22), and the
testing error, which is represented by the term θtest in (23). The
error exponent in (21) results from a tradeoff between these
two terms.

D. Auxiliary source

The previous error exponent depends on an auxiliary source
U which has to satisfy the Markov chain Y → X → U [9]. In
what follows, we assume that this auxiliary source generates
a sequence of symbols {Uk}+∞

k=1 such that

Uk = Xk ⊕ ϕk, (24)

where ϕk ∼ Bern (δ), and Xk and ϕk are independent. The
parameter δ is key at it addresses the tradeoff between the
binning error and the testing error. Indeed, a small value of δ
means that the sequence un selected by the encoder will be
close to xn, which reduces the testing error. But this increases
the binning error at the same time, since this increases the
value of r0 that ensures that the encoding error vanishes
asymptotically, which also increases the number of sequences
in each bin in order to satisfy the rate constraint for a given
R .

We choose definition (24) for the auxiliary source U be-
cause due to the Markov chain, U needs to be expressed from
X which is itself Bernoulli and i.i.d. From this choice of U,
the term Hs(U|X) in (22) can be expressed as

Hs(U|X) = −δ log δ − (1− δ) log(1− δ), (25)

which is the conventional entropy of a Bernoulli source. We
leave to future work the investigation of if (24) is the optimal
choice for the auxiliary source U. However, since there are no
known analytical expressions for the terms Hs (U | Y) in (22)
and Ds

(
PUY|PUY

)
in (23), we now describe our numerical

evaluation procedure for these terms.

IV. STATISTICAL EVALUATION OF THE ERROR EXPONENT

This section provides a statistical method to evaluate the
error exponent for the GE model described in Section II.

A. Estimators of spectral information-theory terms

Given that the spectral conditional entropy in (19) and the
spectral divergence in (20), are both defined from a limit in
probability, the terms

Ĥs (U | Y) =
1

n
log

1

P (un|yn)
, (26)

D̂s(U,Y||PU,Y) =−1
n
log

P (un,yn)

P (un,yn)
, (27)

are consistent estimators [19, Section 1.8] of Hs (U | Y) and
Ds(PU,Y||PU,Y), respectively. To evaluate these estimators,
we propose to use a large value of n, and to randomly generate



samples (xn,yn,un) according to the Gilbert-Elliot model
described in Section II, and to the definition of U in (24).
We then calculate the probability terms P (un|yn), P (un),
P (un,yn), and, P (un,yn) involved in (26) or (27), which
allows evaluating the previous estimators, and then the error
exponent (21).

A similar methodology was employed in [20] to numerically
evaluate the capacity of a Gilbert-Elliot channel, from an
estimator defined as the log-probability of certain random
vectors. In [20], the estimator was defined from the notion
of information-rate, while here, we rely on the definition of
information spectrum terms. Moreover, since the capacity of
a channel only involves computing the mutual information
between the channel input and output, the probability computa-
tion in [20] is simpler. In this paper, we evaluate the probability
terms involved in (26) and (27) from forward recursions which
we now describe.

B. Forward recursions
In this section, we describe the computation of all the

probabilities involved in the estimators (26) and (27). We
first calculate the joint probability p(un,yn) by evaluating for
s ∈ {G,B}, α(u,y)

n (s) = P (un,yn, Sn = s). This probability
can be computed efficiently from the HMM forward recursion
described in [17]. This recursion is initialized for s ∈ {G,B}
as

α
(u,y)
1 (s) = P (S1 = s)P (y1 | S1 = s)P (u1 | y1, S1 = s) ,

and then defined for all k ∈ J2, n− 1K as

α
(u,y)
k+1 (s) =

 ∑
s′∈{G,B}

α
(u,y)
k (s′)P (Sk+1 = s | Sk = s′)

 . . .

P (yk+1 | Sk+1 = s)P (uk+1 | yk+1, Sk+1 = s) .

We them compute

p(un,yn) =
∑

s∈{G,B}

α(u,y)
n (s). (28)

The marginal probability p(yn) can also be evaluated from a
forward recursion initialized as

α
(y)
1 (s) = P (S1 = s)P (y1 | S1 = s) ,

and defined for all k ∈ J2, n− 1K as

α
(y)
k+1(s) =

 ∑
s′∈{G,B}

α
(y)
k (s′)P (Sk+1 = s | Sk = s′)

 . . .

P (yk+1 | Sk+1 = s) .

Then,
p(yn) =

∑
s∈{G,B}

α(y)
n (s). (29)

This allows us to calculate the conditional probability
p (un | yn) using the formula

p (un | yn) =
p (un,yn)

p (yn)
=

∑
s∈{G,B} α

(u,y)
n (s)∑

s∈{G,B} α
(y)
n (s)

. (30)

We apply a similar recursion to calculate the joint probability
P (ūn | ȳn) which appears in (27). To avoid numerical issues,
we compute all the previous terms in log.

V. NUMERICAL RESULTS

In this section, we aim to numerically evaluate the DHT
error exponents with the GE model, by applying the method
described in Section IV. We first investigate the convergence
of the proposed estimators with respect to the sequence length
n. Figure 2 shows the estimated error-exponents θbin and θtest
as functions of n, for a set of parameters given in the caption
of the figure. We consider a maximum value n = 15000,
and represent two types of curves: one obtained from a single
set of source vectors (xn,yn,un), and the other obtained by
averaging over K = 15 realizations of the source vectors. It is
clear that averaging improves the estimation quality, especially
for the testing error.

Next, we consider a large value of n = 70000, and
investigate the effect of the model parameters onto the error
exponent. First of all, Figure 3 shows the two error exponents
θbin and θtest as functions of pG with pB values as a parameter,
where pG and pB are the crossover probabilities under the
hypothesis H0. All other parameters are fixed, and indicated
in the caption of the figure. We see that both error exponents
decrease as pG and pB increase, due to the fact that increasing
these parameters makes the source closer to uniform. This, in
turn, causes H0 and H1 to become more similar, making it
challenging for the decoder to accurately distinguish between
them. In addition, Figure 4 shows the two error exponents with
respect to a parameter µ = 1− b− g. While the binning error
only slightly varies with µ, the testing error varies with large
values of µ, especially when b is fixed.

Finally, we aim to investigate the tradeoff between the
testing error and the binning error. Figure 5 shows the error
exponents θbin and θtest as function of δ, which is the parameter
that defines the auxiliary source U. The other parameters are
fixed and indicated in the figure. It is found that for a small
value range of δ, the binning error is smaller than the testing
error, and therefore is a dominating factor of the Type-II error.
However, when δ increases, the testing error tends to become
the dominant error event. Finally, as pointed out in [6] for i.i.d.
binary sources, the best tradeoff between the two error events
is provided by the value δ at which the two curves intersect,
e.g, δ ≈ 0.25 for this set of parameters.

VI. CONCLUSION

In this work, we have considered the DHT coding scheme
and represented the correlation between the sources X and Y
by a GE model. We developed an efficient method to estimate
the error-exponent of the Type-II error for this model, which
utilizes the forward recursion of HMMs. Our numerical results
have evaluated the effects of the model parameters onto the
error-exponent, as well as the tradeoff between the testing error
and the binning error. Future works will be dedicated to the
analysis of more generic Hidden Markov Models as well as



Figure 2: Estimated error exponents as functions of n for pG =
0.05, pB = 0.03, p̄G = 0.3, p̄B = 0.5, g = 0.001, b = 0.002,
p = 0.2, δ = 0.15, R = 0.4. The red and purple curves are
averaged over K = 15 sequence realizations.

Figure 3: Error exponents as functions of pg , for various values
of pb and for p̄G = 0.3, p̄B = 0.5, g = 0.001, b = 0.002,
p = 0.2, δ = 0.001.

Figure 4: Error exponents as functions of µ = 1 − g − b, for
p̄G = 0.3, p̄B = 0.5, p = 0.2, δ = 0.15.

Gauss Markov models, and to the design of practical coding
schemes for DHT.
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