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Jérémy Nadal†, Mohamed Yaoumi†, Elsa Dupraz†, Frederic Guilloud†, and François Leduc-Primeau∗
†IMT Atlantique, Lab-STICC, UMR CNRS 6285, F-29238 Brest, France
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Abstract—The objective of this paper is to minimize the
energy consumption of a quantized Min-Sum LDPC decoder,
by considering aggressive voltage downscaling of the decoder
circuit. Since low power supply may introduce faults in the
memories used by the decoder architecture, this paper proposes
to optimize the energy consumption of the faulty Min-Sum
decoder while satisfying a given performance criterion. The
proposed optimization method relies on a coordinate-descent
algorithm that optimizes code and decoder parameters that have
a strong influence on the decoder energy consumption: codeword
length, number of quantization bits, and supply voltage. Optimal
parameter values are provided for several codes defined by their
protographs, and significant energy gains are observed compared
to non-optimized setups. Finally, further gains are obtained when
the supply voltage is optimized per decoding iteration.

I. INTRODUCTION

Energy consumption is an important criterion in the design
of electronic circuits, and can be greatly reduced by aggressive
voltage scaling of the circuit. Low power supply may however
introduce faults in the computation operations and memories
of the circuit [1]. In this paper, we address this issue for low-
density parity-check (LDPC) decoding circuits.

Two energy consumption models are provided in [2] for
non-faulty LDPC decoders: the first model estimates the de-
coding complexity, while the second evaluates the wire length
in the circuit. Then, [3] introduces a method to minimize
the alphabet size of quantized messages exchanged in the
decoder, aiming to lower the memories energy consumption.
Finally, [4], proposes to optimize the code rate and irregular
code degree distribution in order to minimize the decoder
complexity and therefore its energy consumption.

In addition, the performance of LDPC decoders imple-
mented on faulty hardware was widely studied in the literature.
In [5] the authors assume that the LDPC decoder is subject
to both transient and permanent errors. Transient errors make
faulty gates or memory units provide an erroneous output
from time to time with a non-zero probability. Permanent
errors make a fraction of the gates and memories stuck at the
same output. When dealing with energy consumption issues,
we consider process diversity strategies, where the permanent
errors turn into transient error [6]. The authors in [5]–[9]
theoretically investigate the effect of transient errors on various
LDPC decoders, such as Gallager A and B or quantized Min-
Sum. However, none of these works relate the amount of faults
introduced in the decoder to its energy consumption.

In this work, our objective is to optimize key decoding
parameters, such as the code length, the quantization level and

the supply voltage, so as to minimize the energy consumption
of a faulty LDPC decoder while satisfying a given perfor-
mance error rate criterion. For this, we consider protograph-
based LDPC codes and quantized Min-Sum decoders for
their easy hardware implementation [10]. These protograhs
can be designed, for instance, based on one of the methods
presented in [11], [12]. In addition, in [13], it is shown that
memories represent around half of energy consumption of
the decoder. This motivate us to consider that circuit faults
are only introduced by the memory units, while processing
elements are assigned to the nominal (reliable) power domain.

To estimate the LDPC decoder energy consumption, we
update the non-faulty memory energy model of [14], for faulty
decoders. This energy model depends on several code and
decoder parameters, such as the protograph, the noise level, the
number of quantization bits for the messages, the codeword
length, and the number of iterations performed by the decoder.
In order to properly evaluate the energy model, we consider
the method of [14] which relies on Density Evolution (DE)
in order to evaluate the distribution of the number of decoder
iterations required for a given codeword length. Then, for a
fixed protograph, we propose a method to jointly optimize the
codeword length, the number of quantization bits and the noise
level in order to minimize the decoder energy consumption.
This method is based on a coordinate-descent algorithm that
successively optimizes each parameter, assuming that the other
ones are fixed, and repeats the process over several iterations.
In addition, we show how to obtain further energy gain by
optimizing the supply voltage per decoding iteration using the
DE-Gear-Shift algorithm [6]. Simulation results provide the
values of optimized parameters for several protographs, and
show the energy gains compared to non-optimized decoders.

This paper is organized as follows. Section II reviews
LDPC codes and decoders. Section III presents the method we
consider to evaluate the finite-length performance of LDPC
decoders. Section IV, introduces the optimization method.
Section V shows simulation results.

II. LDPC CODES AND DECODERS

We consider a codeword x of length N to be transmitted
over an additive white Gaussian noise (AWGN) channel of
variance σ2, with binary phase-shift keying (BPSK) mod-
ulation. We use yi to denote the i-th channel output, and
xi ∈ {−1, 1} to denote the i−th modulated coded bit. The
channel Signal-To-Noise Ratio (SNR) is defined as ξ = 1/σ2.
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In this section, we introduce protograph-based LDPC codes,
and the considered faulty quantized Min-Sum decoder.

A. Protograph-based LDPC codes

LDPC codes are represented by a sparse M × N parity-
check matrix or equivalently by a Tanner graph with N vari-
able nodes and M check nodes. The code rate is R = K/N ,
where K is the information length. We use Ncj to denote
the set of all variable nodes (VNs) connected to check node
(CN) cj in the Tanner graph , and Nvi to denote the set of
all dvi = |Nvi | CNs connected to VN vi. We consider LDPC
codes constructed from protographs [15]. A protograph S is an
m × n matrix that gives the number of connections between
each VN and CN in the reduced Tanner graph representing
the protograph. We can construct an LDPC code of length
N by first copying the protograph N/n times, and then by
interleaving the edges to get the parity-check matrix.

B. Faulty quantized Min-Sum decoder

In this paper, we consider a quantized offset Min-Sum
decoder [16]. The simulated decoder is based on a bit-true
version of the decoder architecture proposed in [17]. For sim-
plicity, no pipeline stages are considered, which corresponds to
a row-layered scheduling. This enables to use fewer decoding
iterations and reduces the size of the circuit. The decoder
messages are quantized on q bits and between values −Q
and Q, where Q = 2q−1 − 1. We consider the following
quantization function:

∆(x) = sgn(x) min

(
Q,

⌊
|x|+ 1

2

⌋)
, (1)

where sgn(x) = 1 if x ≥ 0, and sgn(x) = −1 if x < 0.
Since memory units are responsible for a large part of

the decoder energy consumption [13], we assume that faults
are introduced during memory read operations in the de-
coder. The error model corresponds to an XOR operation
⊕ between the memory read port output and a noise term
represented by independent and identically distributed (i.i.d.)
random variables B. These random variables can equivalently
be represented on q bits as (b1, · · · , bq). We assume that the
bk’s are i.i.d. Bernoulli random variables with parameter ε.
Note that statistical dependencies among the bits could be
considered easily by using a more general fault model.

In order to initialize the decoder, we compute log-likelihood
ratios (LLR) ri for each received value yi as ri = 2αyi/σ

2,
where α is a scaling parameter. In the architecture proposed
in [17], the a-posteriori-LLRs (AP-LLRs) Λ

(`)
i at iteration ` ∈

J1, LK are updated as

Λ
(`)
i ← Λ

(`)
i +

∑
j∈Nvi

(
γ
(`)
j→i −

(
γ
(`−1)
j→i ⊕ B

(`−1)
j

))
, (2)

with Λ
(0)
i = ∆(ri), γ(`)j→i represents the message sent from

the CN cj to the VN vi at iteration `, and B(`−1)j is the
noise introduced when the messages γ(`−1)j→i are read from their
dedicated memory. The AP-LLRs Λ

(`)
i are quantized on q+qs

bits, with qs = dlog2(max dvi + 1)e, in order to avoid any

saturation issue when writing Λ
(`)
i into the memory. In the

considered architecture, the message λ(`)i→j sent from the VN i
to the CN j, at iteration `, is calculated during the CN update,
which is as follows:

λ
(`)
i→j =

(
Λ
(`)
i ⊕ B

(`)
i

)
−
(
γ
(`−1)
j→i ⊕ B

(`−1)
j

)
(3)

γ
(`)
j→i =

 ∏
i′∈Ncj

\{i}

sgn
(
λ
(`)
i′→j

) (4)

× max

[
min

j′∈Ncj
\{i}

∣∣∣λ(`)i′→j∣∣∣− β, 0
]
,

where β is an offset parameter, and where B(`)i represents
the noise introduced when reading the memory where the
variable-node messages are stored. The decoder stops when a
stopping criterion is satisfied, or when the maximum number
of iterations L is reached.

III. FINITE-LENGTH PERFORMANCE EVALUATION

DE allows to estimate the error probability p
(`)
e∞(ξ) of

an LDPC decoder, for a given protograph S and at given
SNR ξ and iteration number ` [11]. However, DE calculates
p
(`)
e∞(ξ) under the assumption that the codeword length tends to

infinity. As an alternative, [18] provides a method to estimate
the error probability p

(`)
eN (ξ) of an LDPC decoder at finite

length N . This method estimates the Bit Error Rate (BER)
p
(`)
eN (ξ) as

p(`)eN (ξ) =

∫ 1
2

0

p(`)e∞ (x)G
(
x; p0,

p0(1− p0)

N

)
dx. (5)

In this expression p0 = 1
2 −

1
2erf

(√
ξ/2
)

, and p(`)e∞ (x) is the
error probability evaluated with standard DE at SNR value
2(erf−1(1− 2x))2. The function G(x;µ, ν2) is the probability
density function of a Gaussian random variable with mean µ
and variance ν2.

For simplicity, we implemented the DE equations by con-
sidering a flooding scheduling. Following [19], we empirically
obtained the same error probabilities as a row-layered schedul-
ing, given that the number of iterations is doubled. In addition,
the DE equations were derived by considering that the memory
faults are introduced after computation of the check-to-variable
messages λ

(`)
i→j , as in [16]. This slightly differs from the

hardware decoder of [17] described in Section II, where the
faults are introduced when the AP-LLRs Λ

(`)
i are read. Despite

this difference, our bit-true simulations confirm that the DE
accurately predicts the BER.

To evaluate the decoder energy consumption, the distri-
bution of the number of decoding iterations is required.
The complementary cumulative distribution function (CCDF)
φ̄N (`) of the number of iterations at codeword length N is
evaluated as

φ̄N (`) =

∫ 1
2

0

R(`−1)
∞ (x)G

(
x; p0,

p0(1− p0)

N

)
dx. (6)

where R
(`)
∞ (x) = 1 − (1 − p

(`)
e∞ (x))N . As for the error

probability p
(`)
eN (ξ) defined in (5), the expression of φ̄N (`)
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takes into account the channel variability, but does not evaluate
the effect of cycles on the decoder performance. However, as
shown in [14], [18], these two formula accurately predict the
finite-length waterfall performance for long codewords.

IV. ENERGY OPTIMIZATION

We now propose an optimization method to minimize the
decoder energy consumption while satisfying a certain perfor-
mance criterion.

A. Faults and energy models

Experimental measurements show that the memory bit fault
rate ε decreases exponentially in V [20] or V 2 [21], depending
on the technology, where V is the supply voltage. We thus
infer the following general model:

ε = min
(

exp (a+ bV + cV 2),
1

2

)
, (7)

where (a, b, c) are positive coefficients that depend on the
circuit technology and min(·, 12 ) ensures that the bit flip prob-
ability is no larger than 1

2 . These coefficients can be obtained
through polynomial regression on measured fault rates. In
this paper, we base our model on the fault rates measured
in [20, Fig.11] for a recent 22nm technology. We then have
(a, b, c) = (22.12,−68.14, 0). The energy for reading one
bit in memory is proportional to V 2. Thus, we define the
normalized energy per memory bit as V 2/V 2

nom, where Vnom
is the nominal supply voltage. Note that the knowledge of the
exact energy value is not required to minimize the energy.

The energy model proposed in [14] estimates the overall
memory energy consumption of a non-faulty quantized Min-
Sum decoder by counting the total number of bits written into
memory during the decoding process. It is evaluated from the
facts that: (i) at a VN, the AP-LLR Λi is stored on q + qs
bits, (ii) since we are using a row-layered scheduling, a VN
updates its messages every time one of its neighboring check
nodes is updated, (iii) at a CN, 1 bit is stored for the sign of
the output message, and two minimum absolute values of q−1
bits each are stored. Hence, according to [14], the number of
memory accesses NMA per information bits and per iteration
can be expressed as

NMA(q) =
q + qs
Rn

n∑
i=1

dvi +
1−R
Rn

m∑
j=1

(
2q + dcj − 2

)
.

It is worth mentioning that, for a given q, NMA only depends
on the code and the decoding algorithm. Therefore, this model
is valid for any row-layered hardware architectures. In order
to properly capture the effect of codeword length N , we
consider the memory energy consumption per information bits.
Thus, the following energy model will be considered in the
optimization:

E(q,VL, N) =
NMA(q)

V 2
nom

L∑
`=1

φ̄N (`)V 2(`) , (8)

where, for the sake of generality, V (`) is the supply voltage
at decoding iteration `, and VL = [V (1), ..., V (L)].

B. Optimization problem

As a performance criterion for the optimization, we fix
a target error probability p?e to be reached at a target SNR
value ξ?. For simplicity, we assume that the protograph S is
fixed. We propose to minimize the energy consumption E with
respect to the quantization level, the supply voltage, and the
codeword length, while satisfying the performance criterion.
By considering at first that the supply voltage V is fixed for
all iterations (VL = [V, ..., V ])), the optimization problem can
be formulated as

min
V,q,N

E(q, [V, ..., V ], N) s.t. pe,opt(q, V,N) < p?e (9)

where pe,opt(q, V,N) = minα,β p
(L)
eN (q, V,N) gives the min-

imum BER that can be reached by optimizing the scaling
parameter α and the offset parameter β. Note that p(L)eN (q,N)
is calculated from (5) at SNR ξ?.

C. Optimization method

The optimization problem (9) is difficult to solve because
it involves discrete parameters q and N . In addition, it is
computationally expensive to evaluate p(`)e,N for given param-
eters (q, V,N), because this requires to numerically evaluate
integrals. Therefore, we want to lower the number of evalu-
ations of these terms. We first define search intervals for the
parameters (q, V,N) involved in the optimization. According
to Section IV-A, the continuous parameter V lies in the interval
[0, Vnom], and we assume that discrete parameters q and N take
values in the sets Jqmin, qmaxK and JNmin, NmaxK, respectively.

We then perform a coordinate-descent (CD) optimization,
which consists of optimizing alternatively each of the three
parameters V , q, and N , over a number I of iterations.
Since we consider a constrained optimization problem, we
verify at each CD iteration that the selected parameters meet
the performance criterion of the optimization problem. For
this reason, we first initialize our algorithm with the three
parameters V (0) = Vnom, q(0) = qmax, and N (0) = Nmax.
Then, at iteration i ∈ J1, IK, we successively solve the
following three optimization problems:

1) Given V (i−1) and N (i−1), solve

q(i) = arg min
q
E(q) s.t. pe,opt(q) < p?e (10)

2) Given V (i−1) and q(i), solve

N (i) = arg min
N
E(N) s.t. pe,opt(N) < p?e (11)

3) Given q(i) and N (i), solve

V (i) = arg min
V
E(V ) s.t. pe,opt(V ) < p?e (12)

In (10), the parameter q is optimized by exhaustive search
since the search interval is small. Then, for the optimization of
N and V in (11) and (12), we retain the parameters that satisfy
the performance criterion pe,opt and minimize the energy E
among a certain number of values between Nmin and Nmax

and between 0 and Vnom, respectively. To further reduce the
computation time, we first evaluate the performance criterion
pe,opt, and then evaluate the corresponding energy E only if
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the performance criterion is satisfied. Therefore, the proposed
CD method requires to evaluate at most I(∆N + ∆q + ∆V )
times the term pe,opt, where ∆N , ∆q , and ∆V are the number
of times the term pe,opt is evaluated to respectively solve (10),
(11), and (12). By comparison, an exhaustive search method
requires to evaluate this term ∆N∆q∆V times. Since ∆N and
∆V will typically be large, it is clear that the CD method is
much less complex than exhaustive search. Finally, the CD
approach guarantees that the energy criterion is reduced at
each iteration. It also ensures that the final solution satisfies
the performance criterion. However, there is a risk that the
algorithm falls into a local minimum, but as discussed in
Section V, we did not observe this issue in our experiments.

D. Per-iteration voltage optimisation

Although it is generally simpler to supply the whole decoder
with a single voltage level, energy can be further reduced
if the supply voltage V (`) is optimized for each decoding
iteration `. Such scheme can be implemented, for instance,
in unrolled decoder architectures [22]. The major interest of
this scheme is that it adds the necessary degrees of freedom
to adapt the memory reliability to the decoding performance
at each iteration, without much penalty on the final BER. As
shown in Section V, this enables large additional energy gains,
especially for low BER targets.

In this case, solving problem (9) becomes computationally
heavy, since L+4 variables must be optimized instead of 5. In-
stead, we propose to first solve (9) with a fixed voltage supply
V to find the optimal decoder parameters Vopt, qopt, Nopt, αopt
and βopt. Then, the optimal supply voltage vector is obtained
by solving

min
VL

E(qopt,VL, Nopt) s.t. pe,opt(qopt,VL, Nopt) < p?e. (13)

However, the problem is not convex and exhaustive search
is not practical. To solve (13), we propose to adapt the DE-
Gear-Shift dynamic programming method presented in [6].
This method consists in restricting V (`) to a finite set and
finding the path with the lowest cost in a trellis graph that
satisfies a constraint. In our case, each path is associated with
a vector VL and an energy cost, and the constraint is the BER
p?e . To reduce complexity, paths are removed based on rules
presented in [6].

V. NUMERICAL RESULTS

In this section, we consider four different protographs given
in Table I, all with parameters m = 2, n = 4, and code
rate R = 0.5. The protographs S17 and S36 were constructed
using a genetic algorithm called Differential Evolution [11]
that optimizes protographs for performance only. When using
this method, the protographs were optimized by considering a
large quantization level q = 8 in order to get a performance
very close to the non-quantized decoder. We also consider
the protographs Sm and Sc that were obtained in [14] by
optimizing the decoder energy consumption.

For the four protographs, we set two BER targets of
p?e = 10−3 (Case 1) and p?e = 10−6 (Case 2) at respectively
ξ? = 1.45 dB and ξ? = 1.7 dB SNR, with L = 25 layered
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Fig. 1. Normalized energy values and optimal parameters obtained with the
proposed optimisation methods, for different SNR and BER targets and when
considering the protograph S17.

decoding iterations. First, the minimum normalized energy Efix
is obtained by finding the optimum parameters qopt, Vopt and
Nopt using the method proposed in Section IV-C, configured to
I = 3 CD iterations. Then, the voltage supply is optimized for
each decoding iteration according to the method presented in
Section IV-D, providing Evar. Results are reported in Table I.
For the sake of comparison, the nominal energy Enom is
provided where the supply voltage is fixed to its nominal value,
i.e., Vnom = 0.8V. To verify the accuracy of the proposed CD
algorithm, we solved by exhaustive search the optimization
problem (9) for Case 1 and protograph S17, and found the
same optimal values given in Table I.

Compared to the nominal energy, a reduction of 53% to
60% is obtained for all protographs when V is fixed for all
iterations. As expected, when V is optimized at each iteration,
the energy can be further reduced. For instance, depending on
the protograph, an additional 20% to 30% energy reduction is
obtained for Case 2, where p?e is lower. We further observe
that, for all cases, the optimal code length Nopt strongly
depends on the considered protograph whereas the optimal
supply voltage does not change much.

We now focus on the protograph S17 to study the effect of
the SNR on the optimization performance. Figure 1 shows
the obtained normalized energy when the optimization is
performed on different SNR values, for p?e = 10−3 and
p?e = 10−6 BER targets. Both optimization results where
V is either fixed or varying at each iteration are shown.
Two main observations can be made. First, only code length
N is significantly reduced when the SNR increase, while
the other parameters q and V remain constant. Second, the
energy is always reduced when changing the supply voltage
per iteration. This reduction is also more important when the
target BER is lower.

Finally, Figure 2 shows the BER with respect to SNR for
protograph S17, evaluated both from the finite-length method
of Section III and from Monte-Carlo simulations. Based on
the optimal parameters reported in Table I − Case 1, three
cases are considered, corresponding to the following decod-
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TABLE I
NORMALIZED ENERGY VALUES AND OPTIMAL PARAMETERS FOR EACH PROTOGRAPH WHEN CONSIDERING DIFFERENT BER AND SNR TARGETS.

Protograph Case 1: p?e = 10−3, ξ∗ = 1.45 dB Case 2: p?e = 10−6, ξ∗ = 1.7 dB
Vopt qopt Nopt Efix Evar Enom Vopt qopt Nopt Efix Evar Enom

S17 = [2 3 1 1 ; 0 1 4 1] 0.497 5 3060 342.4 315 845.2 0.532 7 6490 303.2 210.4 710.8
S36 = [2 1 2 3 ; 1 4 0 1] 0.493 5 6170 377.13 347.1 931.1 0.539 6 7220 326.6 263.2 714.7
Sm = [3 2 1 2 ; 0 1 1 4] 0.491 5 7700 347.73 318.77 869.9 0.533 5 7410 270.48 214.7 606.8
Sc = [3 2 1 2 ; 0 1 1 4] 0.497 5 4070 365.93 332.74 890.2 0.533 6 5560 333.08 236.35 710.8
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Fig. 2. BER with respect to SNR of the protograph S17, evaluated from the
finite-length DE method and from Monte Carlo simulations.

ing parameters: i) (qopt, Vopt, Nopt), ii) (qopt, Vnom, Nopt) iii)
(qopt, Vnom, N = 104). Both α and β are optimized using DE
for each SNR value. The finite-length method of Section III
accurately predicts the decoder BER in all cases.

VI. CONCLUSION

In this paper, we introduced an energy model for faulty
quantized Min-Sum decoders. We then proposed a method
to optimize the number of quantization bits, the code length,
and the memory fault probability, in order to minimize the
energy consumption while satisfying a given decoding per-
formance criterion. Simulation results show that using the
optimal parameters greatly reduces the energy consumption
while satisfying the performance criterion.
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