
HAL Id: hal-04183975
https://imt-atlantique.hal.science/hal-04183975

Submitted on 21 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Synchronization Algorithms from High-Rate LDPC
Codes for DNA Data Storage

Belaïd Hamoum, Aref Ezzeddine, Elsa Dupraz

To cite this version:
Belaïd Hamoum, Aref Ezzeddine, Elsa Dupraz. Synchronization Algorithms from High-Rate LDPC
Codes for DNA Data Storage. DSP 2023: 24th International Conference on Digital Signal Processing,
Jun 2023, Rhodes, Greece. pp.1-5, �10.1109/DSP58604.2023.10167916�. �hal-04183975�

https://imt-atlantique.hal.science/hal-04183975
https://hal.archives-ouvertes.fr


Synchronization Algorithms from High-Rate LDPC
Codes for DNA Data Storage

Belaı̈d Hamoum‡, Aref Ezzeddine†, Elsa Dupraz†
‡ Lab-STICC, CNRS UMR 6285, Université Bretagne-Sud, Lorient
† IMT Atlantique, Lab-STICC, UMR CNRS 6285, F-29238, France,

Abstract—Data storage on synthetic DNA is a novel tech-
nique that offers improved durability and density compared
to conventional storage supports. Current challenges in the
practical implementation of DNA data storage include the high
cost of DNA synthesis and the significant amount of errors
introduced during DNA sequencing. These errors are not only
substitutions but also insertions and deletions, which compromise
the sequence synchronization and cannot be corrected using
conventional error correction methods. To overcome these issues,
this paper proposes an error correction scheme that prioritizes
the reduction of DNA synthesis costs through the use of high rate
codes. The proposed solution utilizes a consensus algorithm that
leverages the inherent redundancy in the output data, followed
by a proposed synchronization method for correcting residual
insertions and deletions after the consensus. Numerical results
show the effectiveness of the proposed method at correcting a
large amount of errors, while maintaining a high coding rate.

I. INTRODUCTION

Data storage on synthesis DNA molecules is an emerging
technology that offers substantial enhancements in durabil-
ity and density compared to conventional data storage sup-
ports [1]. DNA data storage relies on two crucial steps:
synthesis, which converts digital data into DNA molecules,
and sequencing, which reads the DNA molecules to retrieve
the original digital data. Although DNA sequencing costs
have significantly decreased over time, DNA synthesis remains
expensive, representing the current main bottleneck in the
development of this technology [2].

Another concern is that modern sequencing devices, such
as the widely used Oxford Nanopore Technology (ONT)
sequencer, still introduce a large amount of errors in the read
sequences [1], with an error-rate of about 10% [3]. These
errors include not just substitutions, but also insertions and
deletions, which conventional error correction codes (ECC)
designed for wireless communications are unable to handle [4].
As a result, it is essential to develop new ECC specifically for
DNA data storage. A crucial aspect to consider is that the
sequencer produces a large number of reads of the same input
sequence, each with distinct error patterns. Leveraging this
inherent redundancy is key for correcting a large number of
errors.

Varshamov-Tenengolts (VT) codes [5] were first proposed
to correct a single deletion or insertion, and later extended

This work was supported by the Labex Cominlabs with funding from the
French National Research Agency (ANR-10-LABX-07-01), and by the PEPR
MolecularXiv.

to correct bursts of errors [6], [7], or a few deletions or
insertions [8]–[10]. However, these approaches cannot correct
substitutions, and they are insufficient for DNA data storage
regarding the high error-rate of the sequencer. Alternatively,
low to medium rate low density parity check (LDPC) codes
with markers [4] or without markers [11] can correct a fair
amount of errors of the three types, from a single sequence.
Further, the concatenated code construction of [12] combines
an inner convolutional Code (CC) with an outer LDPC code,
and it can be applied to multiple reads. This construction can
correct a large amount of errors (around 10%) from a small
number of reads (less than 5), but it relies on coding rates
lower than 1/2, which is costly in terms of synthesis.

In this paper, we present an alternative ECC solution that
operates at higher rates and leverages the inherent redundancy
across read sequences to correct a substantial number of
errors. We first utilize a consensus algorithm from the field
of bioinformatics [13], which constructs a candidate sequence
using multiple reads. Unfortunately, we observe that a small
number of errors across all three types still persist in the
candidate sequence. To address this, we combine the approach
with a high-rate LDPC code, and propose a synchronization
algorithm to correct the residual insertion and deletions errors.
The proposed algorithm builds upon the one proposed in [3],
which corrected only a single deletion. It attempts to insert
or delete bits at specific positions in the coded sequence,
retaining positions that enable to satisfy the most parity check
equations. The proposed algorithm is evaluated in terms of
complexity and theoretical evaluation of the bit error probabil-
ity after synchronization. It is followed by a standard LDPC
decoders targeting remaining substitution errors. Simulation
results demonstrate the effectiveness of the proposed method
in correcting a large number of errors while maintaining a high
coding rate 3/4, showcasing its potential as a viable solution
in the field of DNA data storage.

The paper outline is as follows. Section II presents the
channel model for DNA data storage. Section III describes the
considered coding scheme and the consensus algorithm. Sec-
tion IV introduces the synchronization algorithm. Section V
shows simulation results.

II. CHANNEL MODEL

This section presents the channel model we consider to
represent the DNA data storage process, encompassing syn-
thesis and sequencing. We consider a sequence x of length



N containing symbols from a quaternary alphabet A. The
sequence x is initially converted into DNA molecules built
from nucleotides A,C,G,T, through a synthesis operation [2].
To read the molecules, we consider the widely used ONT
sequencer [14], which outputs a large number J of digital
sequences y(j). Each sequence y(j) has a length N (j) and
consists of symbols from the alphabet A.

The ONT sequencer reads k symbols of x at a time, referred
to as k-mers, where k = 6. Specifically, the k-mer at time t
involves symbols from x at positions Jt − 5, tK, while the k-
mer at time t+1 involves symbols at positions Jt− 4, t+1K.
Given that the ONT sequencer introduces three types of errors:
insertions (I), deletions (D), and substitutions (S), we define
a set of channel events E = {I,D,S,M}, where a match (M)
means no error. In addition, we consider for each output y(j)

an underlying sequence of events e(j) consisting of N symbols
e
(j)
t ∈ E . Most prior works assume i.i.d. channel models for

the sequences e(j) [4], [11], [12]. Here, instead, we adopt the
more realistic channel model with memory presented in [3]
which provides a set of probabilities P(et|et−1, kmert), where
et, et−1 ∈ E , and kmert is the current k-mer.

The coding solution we propose next is not dependent on
this specific channel model. However, we use this model in
our simulations because it accurately represents the DNA data
storage process, thereby yielding more relevant results from a
practical perspective.

III. CODING SCHEME

This section describes the code construction as well as the
consensus algorithm which we consider in our approach.

A. Code construction

We consider a binary LDPC code [15] represented by a
sparse binary parity check matrix H of dimension m × n,
and by a generator matrix G of dimension k × n, where k =
n −m. Assuming that H is full rank, the code rate is given
by R = k/n. The LDPC code can also be represented as a
bipartite graph between m check nodes (CN) and n variable
nodes (VN), with an edge between a VN and a CN if there is
a 1 at the corresponding position in H . The average VN and
CN degrees are denoted d̃v and d̃c, respectively.

In our scheme, a binary input sequence u of length k is
first encoded into a binary sequence v = GTu of length
n. The binary sequence v is then transformed into a qua-
ternary sequence x of length N = n/2. The sequence x is
passed through the DNA storage channel, which outputs the
J sequences y(j), see Section II. Next, the decoder applies
a consensus algorithm [13] onto m of the output sequences
y(j), as we now describe.

B. Consensus Algorithm

The consensus algorithm presented in [13] picks m ≤ J
sequences y(j) as inputs and initially constructs a consensus
graph. The graph’s nodes represent subsequences of length K,
which appear more than T times at the same positions in the
m input sequences. An edge is created between two nodes if

the predecessor’s L-length suffix matches the successor’s L-
length prefix. Moreover, the edge weight is set to K−`, where
` represents the number of common symbols between the two
subsequences. The choice of K is crucial, as smaller values
can lead to loops in the graph, while larger values can result
in disconnected components. Consequently, the consensus
algorithm starts with a large K value and gradually decreases
it until a single-component consensus graph is established.

Once the consensus graph is constructed, a Viterbi-like
algorithm is applied to identify a path between the starting and
ending primers. Unlike the usual Viterbi algorithm, multiple
paths with different lengths are retained for each node. The
algorithm ultimately outputs several sequences of varying
lengths, with the one closest to N being considered as the
candidate sequence w for the subsequent synchronization step.

IV. SYNCHRONIZATION ALGORITHM

We now present our proposed synchronization algorithm,
which is applied to the binary version z of the candidate
sequence w output by the consensus algorithm. We first
describe the process for correcting a single deletion, then t > 1
deletions, and finally t insertions. Note that any channel error
event (insertion, deletion, or substitution) will impact two bits
of z.

A. Correcting 1 deletion

First, we assume that t = 1 deletion remains in the
consensus sequence w, so that z is of length N − 2. The
sequence z is initially divided into bN/Lsc blocks of length
Ls, where Ls is a key parameter of the algorithm. Then, the
algorithm tries to insert two random bits at the start of each
block, one after the other. By adding two random bits at the
beginning of the b-th block, a sequence z(b) of length N is
produced, for which we can evaluate the LDPC code parity
check equations by computing Hz(b). The resulting score cb is
the number of parity check equations satisfied by the sequence
z(b). The sequence z(b) with the highest score is selected
and passed through a standard BP decoder to generate an
estimated sequence x̂. The underlying logic of this algorithm is
to convert deletions into substitutions, which are subsequently
corrected by the LDPC decoder.

B. Correcting t deletions

Now, when t > 1 deletions need to be corrected, we
consider two strategies: greedy and exhaustive. The greedy
approach consists of correcting one deletion after another.
In this method, 2t − 2 random bits are first inserted at the
beginning of the sequence z, to achieve a length of N − 2.
The algorithm described in Section IV-A (without the LDPC
decoder) is then applied to correct one deletion. Then, two
of the random bits are removed from the beginning of the
sequence, and the next deletion is corrected from the algorithm
of Section IV-A. This process is repeated until all t deletions
have been corrected. The final sequence is passed through the
LDPC decoder. It is easy to show that the complexity of the
greedy approach is in O

(
t×
⌊

N
Ls

⌋
×m× d̃c

)
, where

⌊
N
Ls

⌋



is the number of positions that are tested in each round, and
m× d̃c is the cost of evaluating the m parity check equations,
where d̃c � n.

Alternatively, the exhaustive approach consists of correct-
ing the t deletions simultaneously. For a given combination
(without replacement) of t blocks (b1, · · · , bt) of length Ls,
it inserts two random bits at the beginning of each block
and evaluates the code parity check equations. The sequence
z(b1,··· ,bt) with the highest score is passed through the LDPC
decoder. The complexity of the exhaustive approach is higher,
in O

((bN/Lsc
t

)
×m× d̃c

)
, where

(bN/Lsc
t

)
� t × N

Ls
(with

equality for t = 1) is the number of positions that are
evaluated in each round. Although the exhaustive strategy
is more complex, our simulation results will show that it
is far more effective at correcting t deletions. Note that the
previous complexity analyses do not account for the LDPC
decoder, which is the same in both the greedy approach and
the exhaustive approach.

C. Correcting deletions and substitutions

The previous synchronization algorithms which corrected
t deletions can also be applied without any change in case
the consensus sequence also contains substitutions. These
substitutions will be corrected by the LDPC decoder, together
with the ones introduced by the synchronization method. In
this case, assuming that the synchronization process correctly
retrieved the t blocks in which the deletions occured, the bit-
error probability after synchronization can be expressed as
follows.

Proposition 1. When the synchronization algorithm correctly
retrieved the t blocks in which the t deletions occured, and
the probability of bit substitution in the consensus sequence
is psub, the bit error probability Pe after synchronization (and
before applying the LDPC decoder) is

Pe = psub +
t

n

(
1 +

Ls

2

)(
1

2
− psub

)
. (1)

The proof is omitted due to the lack of space. In the previous
Proposition, the number of deletions is expressed with a fixed
number t, while we consider a probability of bit substitution
psub. This is because t is a parameter of the algorithm, which is
assumed to be known and can be inferred from the consensus
sequence length. On the opposite, we do not have any insights
on the number of substitutions in the consensus sequence, and
therefore represent its average number by psub (obtained e.g.
from numerical simulations).

At the end, Proposition 1 is useful to evaluate the effect of
key parameters, especially t and Ls onto the synchronization
performance. In our simulations, we will also use the error
probability Pe in (1) to initialize the LDPC decoder. Note that
this error probability does not take into account the case where
the algorithm outputs incorrect blocks for the t deletions,
although the probability of this event is low when Ls and t
are small. This will be discussed into details in the simulation
section.

D. Correcting insertions and substitutions

The algorithms of Sections IV-A and IV-B can be adapted
to correct 1 insertion and t insertions, respectively. In this
case, the synchronization process will try to remove one pair
of bits in the beginning of each block. For a combination
of insertions and substitutions, the bit-error probability after
synchronization can be expressed as follows.

Proposition 2. When the synchronization algorithm correctly
retrieved the t blocks in which the t insertions occured, and
the probability of bit substitution in the consensus sequence
is psub, the bit error probability Pe after synchronization (and
before applying the LDPC decoder) is

Pe = psub +
t

n

(
1

2

(
Ls

2
− 1

)
− psub

(
Ls

2
+ 1

))
(2)

The proof is omitted due to the lack of space. Finally, both
the complexity analysis and the expressions of Pe show that
the parameter Ls is key in our algorithm, as it addresses a
tradeoff between complexity and performance.

E. Synchronization after consensus

We now describe how the previous algorithms are applied
to the consensus sequence z. The actual number of deletions
and insertions in the consensus sequence is unknown, but we
assume that only deletions and substitutions occured, or only
insertions and substitutions occured, and we use the length of
the consensus sequence to infer the number of insertions or
deletions. Therefore, we apply the following rules, depending
on the length Nc of the consensus sequence w:

- If Nc = N , we directly apply the LDPC decoder onto z,
and the LDPC decoder is initialized with Pe = psub

- If Nc < N , we apply the synchronization algorithm to
correct t deletions, where t = N

2 −Nc, followed by the
LDPC decoder initialized with Pe in (1).

- If Nc > N , we apply the synchronization algorithm to
correct t insertions, where t = Nc − N

2 , followed by the
LDPC decoder initialized with Pe in (2).

For simplicity, we do not consider the case where both inser-
tions and deletions remain in the consensus algorithm, leaving
this case for future works. We now evaluate the performance
of this approach from numerical simulations.

V. SIMULATION RESULTS

Throughout this section, we consider short sequences of
length N = 256, which is a typical length given the synthesis
constraints [16]. We use a regular LDPC code of rate R = 3/4,
with fixed degrees dv = 3 and dc = 12 [15]. We first
evaluate the ability of the synchronization algorithm proposed
in Section IV-B to correct t deletions. Figure 1 shows the Bit
Error Rate (BER) after the synchronization algorithm with
respect to the number t of deletions. We consider both the
greedy approach with Ls = 2, and the exhaustive approach
with Ls = 2, 4, 16. We observe that the exhaustive approach
is far more efficient than the greedy approach, although it is
more complex. We also observe a clear gain at considering



1 2 3 4 5

10
- 3.0

10
- 2.5

10
- 2.0

10
- 1.5

10
- 1.0

10
- 0.5

t (nb.deletions)

B
E

R

Greedy (Ls = 2)
Greedy (Ls = 2) + LDPC dec
Exhaustive (Ls=16)
Exhaustive (Ls=16) + LDPC dec
Exhaustive (Ls=4)
Exhaustive (Ls=4) + LDPC dec
Exhaustive (Ls=2)
Exhaustive (Ls=2) + LDPC dec

Fig. 1. BER after synchronization, for t deletions, for various values of Ls,
for the greedy algorithm and the exhaustive algorithm. BER before LDPC
decoding (dashed lines) and after LDPC decoding (plain lines) are provided.

Fig. 2. Comparison between the BER measured from simulations after the
synchronization algorithm, and the error probability provided in Proposition 1,
for various values of Ls, for the exhaustive algorithm.

the smallest value Ls = 2, as well as the positive effect of
the LDPC decoder. Note that the behavior of the algorithm
for correcting insertions is very similar to the algorithm for
correcting deletions.

Next, we aim to evaluate the accuracy of the error prob-
ability provided in Proposition 1. For psub = 0 and for the
exhaustive approach, Figure 2 shows the BER with respect
to t and Ls, both calculated from Pe in (1) and measured
from Monte Carlo (MC) simulations. We observe that for the
smallest considered values Ls = 2, 4, the error probability Pe

predicts accurately the BER measured from MC simulations
up to t = 3 deletions, which shows the ability of the
synchronization algorithm to retrieve the correct positions
of the t deletions when Ls is small. On the other hand,
when Ls increases, a clear gap between Pe and the measured
BER appears, showing the effect of incorrect identification of
deletions positions.

To finish, we aim to compare the performance of the
proposed approach (consensus + synchronization + LDPC
decoding) against existing ones, by considering the realistic
DNA storage channel model with memory proposed in [3]. We
consider our approach summarized in Section IV-E used with

Fig. 3. FER of several solutions with varying rates, with respect to m (number
of sequences used to decode).

the exhaustive algorithm and Ls = 2, and we evaluate three
existing solutions which were also developed to correct the
three types of error: (i) the consensus algorithm of [13] alone,
without coding, (ii) the CC code and decoder proposed in [12],
with coding rate R = 1/2, (iii) the concatenated construction
of [12], built from a CC code of rate 1/2 and a regular LDPC
code of rate 3/4, resulting in a rate R = 3/8. These solutions
are compared in Figure 3 in terms of Frame Error Rate (FER)
with respect to the number of sequences m which are used for
the decoding. First, we observe a clear gain of the proposed
approach compared to the consensus algorithm alone. Then,
the CC code alone can be applied to a smaller number m
of sequences, but it exhibits a high error floor around 10−1,
while our proposed solution allows to reach FER levels of
about 10−3. Finally, the concatenated code construction of [12]
allows to achieve very low FER from a very small number of
sequences m = 3. However, this construction has a code rate
R = 3/8, which means that over the N = 256 stored bits, only
k = 96 bits convey useful information. On the opposite, in our
approach, the number of information bits is k = 192, which
is much higher. We conclude that given that the sequencer
outputs anyway a large number of sequences m, our proposed
solution represents a better tradeoff in terms of synthesis cost.

VI. CONCLUSION

In this paper, we proposed a complete solution to correct
insertions, deletions, substitutions, introduced by the DNA
data storage channel. Our solution used a consensus algo-
rithm [13] followed by a proposed synchronization algorithm
which corrects residual insertions or deletions. The proposed
solution shows improved performance compared to the con-
sensus alone, while requiring more input sequences than the
concatenated code construction of [12]. However, our solution
operates at much higher coding rates, which represents an
interesting tradeoff in terms of synthesis costs. Future works
will aim to improve the synchronization algorithm to correct
combinations of insertions and deletions that could remain in
the consensus sequence.



REFERENCES

[1] R. Heckel, G. Mikutis, and R. N. Grass, “A Characterization of the DNA
data storage channel,” Scientific Reports, vol. 9, no. 1, p. 9663, 2019.

[2] C. K. Lim, S. Nirantar, W. S. Yew, and C. L. Poh, “Novel modalities
in dna data storage,” Trends in Biotechnology, vol. 39, no. 10, pp. 990–
1003, 2021.

[3] B. Hamoum, E. Dupraz, L. Conde-Canencia, and D. Lavenier, “Channel
model with memory for DNA data storage with nanopore sequencing,”
in 11th International Symposium on Topics in Coding (ISTC), 2021, pp.
1–5.

[4] F. Wang, D. Fertonani, and T. M. Duman, “Symbol-level synchronization
and LDPC code design for insertion/deletion channels,” IEEE transac-
tions on communications, vol. 59, no. 5, pp. 1287–1297, 2011.

[5] R. R. Varshamov and G. M. Tenengol’ts, “A code that corrects single
unsymmetric errors,” Avtomatika Telemekhanika, vol. 26, no. 2, pp. 288–
292, 1965.

[6] V. Levenshtein, “Asymptotically optimum binary code with correction
for losses of one or two adjacent bits,” Problemy Kibernetiki, vol. 19,
pp. 293–298, 1967.

[7] C. Schoeny, A. Wachter-Zeh, R. Gabrys, and E. Yaakobi, “Codes
correcting a burst of deletions or insertions,” IEEE Transactions on
Information Theory, vol. 63, no. 4, pp. 1971–1985, 2017.

[8] V. I. Levenshtein et al., “Binary codes capable of correcting deletions,
insertions, and reversals,” in Soviet physics doklady, vol. 10, no. 8.
Soviet Union, 1966, pp. 707–710.

[9] A. Helberg and H. Ferreira, “On multiple insertion/deletion correcting
codes,” IEEE Transactions on Information Theory, vol. 48, no. 1, pp.
305–308, 2002.

[10] S. K. Hanna and S. El Rouayheb, “Guess & check codes for deletions,
insertions, and synchronization,” IEEE Transactions on Information
Theory, vol. 65, no. 1, pp. 3–15, 2018.

[11] R. Shibata, G. Hosoya, and H. Yashima, “Design of irregular LDPC
codes without markers for insertion/deletion channels,” in 2019 IEEE
Global Communications Conference (GLOBECOM). IEEE, 2019, pp.
1–6.

[12] A. Lenz, I. Maarouf, L. Welter, A. Wachter-Zeh, E. Rosnes, and A. G.
i Amat, “Concatenated codes for recovery from multiple reads of DNA
sequences,” in IEEE Information Theory Workshop (ITW), 2021, pp.
1–5.

[13] D. Lavenier, “Constrained consensus sequence algorithm for DNA
archiving,” CoRR, vol. abs/2105.04993, 2021. [Online]. Available:
https://arxiv.org/abs/2105.04993

[14] Y. Wang, Y. Zhao, A. Bollas, Y. Wang, and K. F. Au, “Nanopore se-
quencing technology, bioinformatics and applications,” Nature biotech-
nology, vol. 39, no. 11, pp. 1348–1365, 2021.

[15] T. J. Richardson and R. L. Urbanke, “The capacity of low-density parity-
check codes under message-passing decoding,” IEEE Transactions on
information theory, vol. 47, no. 2, pp. 599–618, 2001.

[16] D. Lavenier, “DNA Storage: Synthesis and Sequencing Semiconductor
Technologies,” in IEDM 2022 - 68th Annual IEEE International
Electron Devices Meeting. San Francisco, United States: IEEE, Dec.
2022, pp. 1–4. [Online]. Available: https://hal.science/hal-03902786


