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Abstract. Longitudinal imaging is able to capture both static anatomical
structures and dynamic changes in disease progression toward earlier and
better patient-specific pathology management. However, conventional
approaches rarely take advantage of longitudinal information for detection
and prediction purposes, especially for Diabetic Retinopathy (DR). In the
past years, Mix-up training and pretext tasks with longitudinal context
have effectively enhanced DR classification results and captured disease
progression. In the meantime, a novel type of neural network named
Neural Ordinary Differential Equation (NODE) has been proposed for
solving ordinary differential equations, with a neural network treated as
a black box. By definition, NODE is well suited for solving time-related
problems. In this paper, we propose to combine these three aspects
to detect and predict DR progression. Our framework, Longitudinal
Mixing Training (LMT), can be considered both as a regularizer and as
a pretext task that encodes the disease progression in the latent space.
Additionally, we evaluate the trained model weights on a downstream
task with a longitudinal context using standard and longitudinal pretext
tasks. We introduce a new way to train time-aware models using tmiz,
a weighted average time between two consecutive examinations. We
compare our approach to standard mixing training on DR classification
using OPHDIAT a longitudinal retinal Color Fundus Photographs (CFP)
dataset. We were able to predict whether an eye would develop a severe
DR in the following visit using a single image, with an AUC of 0.798
compared to baseline results of 0.641. Our results indicate that our
longitudinal pretext task can learn the progression of DR disease and
that introducing tm:, augmentation is beneficial for time-aware models.

Keywords: Disease progression - mix-up training - diabetic retinopathy
- time-aware model - predictive medicine
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1 Introduction

According to the International Diabetes Federation, by 2045, diabetes will impact
700 million individuals globally, with over one-third suffering from Diabetic
Retinopathy (DR) [20]. DR is the leading cause of vision loss worldwide and is
caused by high blood sugar damaging retinal vessels, leading to swelling and
leakage [I5]. Color fundus photographs (CFP) are used clinically to detect DR.
Severity is graded in five classes (0, 1, 2, 3 and 4) using the International Clinical
DR (ICDR) scale: 0 is no apparent DR, 1 is mild non-proliferative DR (NPDR),
2 is moderate NPDR, 3 is severe NPDR, and 4 is proliferative DR (PDR). Early
detection and treatment, particularly in mild to moderate NPDR, may slow DR
progression and reduce blindness incidence. Very few papers try to predict the
progression of DR using a single CFP [I8/2]. Despite its difficulty, this task is
crucial for better patient follow-up management.

Recently, longitudinal pretext tasks (LPT) have emerged to encode disease
progression, such as Longitudinal Self-Supervised Learning (LSSL) introduced
by Rivail et al. [I7] using a Siamese network to predict time lapses between
consecutive retinal Optical Coherence Tomography (OCT) scans. Zhao et al.
[27] proposed a theoretical framework for LSSL using an auto-encoder and an
alignment term that forces the topology of the latent space to change in the
direction of longitudinal changes. An extension was proposed in [I6] to create a
smooth trajectory field and a dynamic graph was computed to connect nearby
subjects and enforce maximally aligned progression directions. Authors in [26]
successfully used LSSL in the context of DR to predict the change from grades
{0,1} to {2,3,4}, referred to as Moderate+, between two consecutive CFPs.
However, since these approaches are self-supervised, it is unclear whether they
learn the disease progression or the longitudinal changes.

Neural Ordinary Differential Equation (NODE) is a new type of neural
networks that parameterizes the continuous dynamics of ordinary differential
equations. It is ideally suited for solving time-related problems. Time-aware mod-
els, including NODESs, have achieved state-of-the-art performance in various tasks
related to irregularly-sampled time series data or disease progression [I/T9J9I25].
However, NODEs remain challenging to train. Authors in [§] proposed a simple
yet efficient technique to regularize NODEs by randomly solving ODE for longer
time points.

In recent years, mixing augmentation training has been successful in computer
vision [22J24I12]. Mix-up [22] performs on the training set linearly, mixing a
random pair of examples and their corresponding labels. Manifold Mix-up [24]
extends such principle to linear interpolation to the hidden representation. Based
on two one-hot labels, the mix-up training generates soft labels that model
the relationship between two classes. One-hot labels describe the intra-class
relationship, while Mix-up labels describe the inter-class relationship.

These soft labels modulate the learned decision boundaries, providing the
model with more information. In this sense, Mix-up training can be seen as a
pretext task. Going further, longitudinal-based Mix-up can be considered as a
pretext task that captures the disease’s (presumed) linear progression. Motivated
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by that, we propose a LPT using Manifold Mix-up (MM) [24], which we consider
to be more suitable form of Mix-up training for our objective because manifold
Mix-up has proven to provide more informative hidden representations. In order
to learn feature representations embedded with disease progression that can be
reapplied in tackling longitudinal-based problems, especially for the challenging
task of prediction the disease progression based on a single image. We introduce
tmie an intermediate time in the course of the disease progression, t,,;, is the
weighted average time between two consecutive examinations. t,,;, is used to
obtain soft labels based on a severity profile. Additionally, it acts as a data
augmentation for training time-aware models. To the best of our knowledge, this
work is the first to automatically assess DR and forecast its progression using
Mix-up training and time-aware models, using only one CFP.

2 Methods

2.1 Preliminary

Let V be the set of consecutive patient-specific image pairs for the collection of
all CFP images. V contains all (zy,,%,,,) that are from the same patient where
xy, is scanned before xy, ., with i € [0,m — 2], m being the number of visits for
a given eye. Figure [I] displays a simplified architecture for clarity. We define
backbone gi., with n layers, where gi1.; denotes the part of the neural network
mapping the input data to the hidden representation at layer k. h; represents
a classification or regression head I, (y,y’) one-hot labels, Beta (a, ) the Beta
distribution and £(.) the Binary Cross-Entropy (BCE) loss. We define the mixing
operator by Mixy(a,b) = A-a+ (1 — A) - b with A ~ Beta (a, &) where A € [0,1].
Mix-up was introduced in [22] as a simple regularization method to minimize
overfitting in deep neural networks. It linearly interpolates a mini-batch of random
examples and their labels to transform the training set.

Manifold Mix-up is an extension of Mix-up to hidden representations [24].
During training, a random layer k from a set of eligible layers S in a neural
network is selected. It processes two random data mini-batches (z,y) and (2, /'),
until reaching layer k. The Mix-up is then performed on these two intermediate
mini-batches (g () ,y) and (gx (z') ,y’), continuing the forward pass with the
mixed representation until the ending layer n. These mixed representations are
then fed to the classification head h; and projected to the number of classes.
Neural Ordinary Differential Equations (NODESs) approximate unknown
ordinary differential equations by a neural network [5] that parameterizes the
continuous dynamics of hidden units z € R™ over time with t € R. NODEs are
able to model the instantaneous rate of change of z with respect to t using a
neural network u with parameters 6.

. Zith —Zt @ o
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Fig. 1: Illustration of Longitudinal Mixing Training in a) and time-aware model training
using tmq, in b). Fig) and Figb) can be trained simultaneously or independently.

The analytical solution of Eq[l]is given by:

t1
20, = 7, + / u(t, 2, 0)dt = ODESolve(z(ty), u, to, 1, 0) @)

to

where [to,t1] represents the time horizon for solving the ODE, u being a neural
network, and 6 is the trainable parameters of u. By using a black-box ODE solver
introduced in [5], we can solve the Initial Value Problem (IVP) and calculate the
hidden state at any desired time using Eq[2] We can differentiate the solutions of
the ODE solver with respect to the parameters 6, the initial state z;, at initial
time ¢y, and the solution at time ¢. This can be achieved by using the adjoint
sensitivity method [5]. Through the latent representation of a given image, we
define an IVP that aims to solve the ODE from ¢; to a terminal time ¢;41:

A(t)

u(z(t),t,0), with the initial value z(t;) = 2, (3)

2.2 Longitudinal Mixing Training (LMT)

We denote s, the severity grade of image x,. I(t) is the severity interpolation
function between two consecutive longitudinal pairs. In the linear case, between
training, the labels are mixed. Instead, we propose to mix the time between
consecutive pairs t,,;, = Mizy(t;,t;+1), then used this t,,,, to evaluate I(t) and
uses this signal as supervision. Motivated by the assumption that the progression

of DR is a slow process, we tested another monotonic disease progression profile

xy, and x¢,,, we have I, (t) — 8¢,)+ St,. In conventional Mix-up
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t—t;
expressed as Ieqp(t) = stb(sts%) fi+1=% . During training, we one-hot encode the
value of interpolation at t,,;, to get our soft label. Depending on the mix-up

method, we have as latent representation of the mixed pair:

P g1 (Mixy (24, @, ) for Mix-Up (@)
e ngrl:n(MiX)\ (glzk(xti)a gl:k(xti+1))) fOT' Manifold MiX—up

During the training of our LMM, we add a time consistency loss, as follows:
Ltpiw =l tmiz — Emix ”% (5)

with €y = ho(zmiz), where hgo is regression head that predicts the value of the
current t,,;, for a given pair. This term is inspired by [I7] and motivated by
authors in [I3], who used Manifold Mix-up coupled with SSL loss to enhance the
quality of the feature extraction. For the training of the LMM, the total loss is:

L= E E E ¢(h iz ) L (tmi L . 6
(xe,.0e, 1)~V A~Beta(o,a) k~S (h1(2mia ), I (tmiz)) + Lty (6)

Concerning the use of t,,;, for the NODE; instead of solving the ODE from
t; to a terminal time t; 1 using Eq we solve to the intermediate time ¢,,;, (see
Fig[l]b) then use this t,,;, to evaluate I(t) and take this signal as supervision
for training. Note that this approach could be applied to any time-aware model.

3 Experiments and results

Dataset. The proposed models were trained and evaluated on OPHDIAT [I4], a
large CFP database collected from the Ophthalmology Diabetes Telemedicine
network consisting of examinations acquired from 101,383 patients between 2004
and 2017. Out of 763,848 interpreted CFP images, 673,017 were assigned a DR
severity grade, and the others were non-gradable. Patients range in age from
9 to 91, and image sizes vary from 1440 x 960 to 3504 x 2336 pixels. Each
examination includes at least two eye images. To limit consecutive pairs without
progression, 10412 patients were selected with at least one severity change. Each
patient had 2-5 scans, averaging 3.43, spanning an average interval of 4.86 years.
This dataset was further divided into training (60%), validation (20%), and
test (20%) based on patients. We randomly selected one image per eye for each
examination, resulting in 49578 pairs. Our longitudinal downstream task is to
predict whether an eye without DR at the initial visit was later graded as having
Mild+ DR within two years. 8,111 patients and 13,936 eyes fit this criterion
for the training. For the DR assignment, a specific test set consisted of patients
assigned the same grade from two ophthalmologists, resulting in 9,734 eyes of
4,996 patients. Except for the registration, we followed the same image processing
performed in [26]. All the timestamp were normalized by 2x365.

Implementation details. In our basic architecture, we employed a stack of 2
pre-activated residual blocks (ReLu+BN). In each residual block, the residual
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feature map was calculated using a series of three 3x3 convolutions, the first of
which always halves the number of the feature maps employed at the present
scale. Our encoder comprised seven levels; the first six levels are composed of two
residual blocks and the latter deals with only one residual block. This provides a
final latent representation of size 64 x 4 x 4. The last three layers of our backbone
were used for the eligible layers S. The different networks were trained for 200
epochs by the AdamW optimizer, OneCycleLR as a scheduler, weight decay of
104, and a batch size of 128, using an NVIDIA A6000 GPU with the PyTorch
framework. A grid search was performed for several key hyper-parameters of all
Mix-up algorithms and SSL, including o €{0.2,0.5,1.0,2.0,3.0,5.0,10.0}, learning
rate € {1072,1073,10~%} and three different seed values. Concerning the NODE,
we used the Pytorch package Torchdiffeq [4]. This library provides ODE solvers,
and backpropagation through ODE solutions and a support of the adjoint method
for constant memory cost. Our NODE is a combination of dense layers followed
by the tanh activation function and the adjoint method with "dopri5" as a
solver. The loss in each task was used to monitor the model’s performance on
the validation set, the best one was kept.

Experiments for DR severity assessment using mixing training. Usually,
a new permutation is applied in mixing training at each batch. Since we only
use fixed consecutive pairs, the network looks at fewer examples. To perform
fair comparisons, we tried multiple permutations that matched the distribution
of longitudinal pairs. We report the Quadratic-weighted Kappa for different
scenarios of mixing training in Tab.1.

Experiments to evaluate the quality of feature extraction. For the down-
stream task, we provided the results from both linear evaluation and fine-tuning.
The performance was evaluated with the Area Under the receiver operating
characteristic Curve (AUC) and reported Tab.2. The linear evaluation was con-
ducted by training a linear layer on top of the pre-trained and frozen encoder
and trained using the same set-up that was tried with LMM. For the classical
feature extractor, we used AE, VAE [I1]], and SimCLR [6]. For longitudinal SSL,
we used longitudinal Siamese [17], LSSL [27], and LNE [I6].

AUC ( Mild+ DR within 2 years)
Kappa| @ Weights Frozen Fine-tuned

Mix-up * 0.7646 [0.2 Random - 0.584
Manifold Mix-up x 0.7747 |2.0 MM [24] (o = 2.0)  |0.564 0.595
Mix-up 0.7314 [0.2 AE 0.531 0.569
Manifold Mix-up 0.7342 2.0 VAE [11] 0.510 0.575
Longitudinal Mix-up (LM) + I, (£) 0.7339 (0.2 SimCLR [G] 0.544 0.558
Longitudinal Manifold Mix-up (LMM) + Ij;,,(¢) 0.7511|2.0 L-Siamese [17] 0.562 0.593
Longitudinal Mix-up (LM) + e, (t) 0.5595 (0.5 LSSL P71 0.579 0.602
Longitudinal Manifold Mix-up (LMM) + I.,,,(t)[0.7350|2.0 LNE [I6] 0.570 0.595

Ours (LMM o = 2.0)|0.613 0.627

Table 1: Comparison of the best Kappa for
Mix-up training for DR severity assessment. Table 2: Results on linear evaluation and
fine-tuning of pre-trained model using AUC

Experiments using t¢,,;, for time-aware models. Another time-aware model
T-LSTM, introduced in [I], was used for this experiment in order to demonstrate
the effectiveness of t,,;,. Both time-aware model take as input the latent rep-
resentation z;, and the time difference between z;, and z,, (4;) in order to
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predict the latent representation of z,,,. For the NODE, it was performed by

the mean of IVP defined in EqJ3| while for T-LSTM [1], the LSTM gates were

modulated by A; to produce the future z;, . We tested three training set-ups:

1. Using one image and the time of the next examination, we trained the model
presented in Figb) with the loss £(h3(z,. ,, St4+1))-

2. Similarly to (1), we used image z; but instead of giving the time of the next
examination, t,,;, was used and trained with the loss ¢(hs(zt,,,., I (tmiz))-

3. We used (2) with our LMM, i.e., we use (a) and (b) simultaneously (Fig[I).

AUC AUC AUC Best a
Mild-+DR|moderate+DR/|severe - DR
(1) NODE [5] 0.584 0.617 0.641
(1) T-LSTM [1] 0.608 0.646 0.677 -
(2) NODE + tpip (ours) | 0.632 0.695 0.725 2.0
(2) T-LSTM + tix (ours)| 0.610 0.661 0.725 0.5
(3) NODE+LMM (ours) 0.657 0.721 0.798 2.0

Table 3: Comparison of AUCs for the next visit for time-aware model training with
and without t,,;, with linear progression assumption.

The best results for the longitudinal task are obtained with LMM (Tab.2), indi-
cating that it effectively captures disease progression. Moreover, the longitudinal
task performed better than classical feature extraction methods, which is aligned
with [TT6IT7I27)26/25]. Concerning the use of t,,,, results in Tab indicate that
it is beneficial for both time-aware models. We believe t,,;, plays the role of data
augmentation in the context of disease progression for Time-Aware models and is
regarded as a method to regularize the training of NODE like [§]. The fact that
the set-up (3) performs better than other configurations supports the idea that
LMM and t,,;, are beneficial to solve time-related problems.

— Beta(02,02)
06 + 4 Beta(05,05)
— Beta(10,10)

Mix strategy 3 Beta(30.30)

o ifold
2 o manio ‘ | beatin0n00)
3 \ |
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Interpolation e\
03 .

z
PDF

* B

4 &
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Fig. 3: Beta distribution for alpha val-

. d.
Fig. 2: Best value of Kappa when alpha 1es use

varies for LM and LMM for the two profiles.

Only LMM adapts Ieqp(t) (Fig, indicating that with LMM, other types of
severity profiles could be used. We suspect that LM suffers from manifold intrusion
[10]. Mixing longitudinal pairs create an existing severity grade in the dataset,
making training more challenging when using Mix-up. LMM performs better
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than regular MM, according to Tab.1, when the profile of severity progression
was supposed to be linear between two consecutive exams, suggesting that
longitudinal pairs are more informative than random pairs with the same label
distribution. The more « increases, the more the severity interpolation is taken
into consideration because when A < 0.1 = t,,;, ~ t1 and A = 0.5 = ¢, = %
and finally A\ > 0.9 = t,,;, ~ o, as illustrated by the Beta distribution in Fig[3]
In FigP2 for MML, we found that as alpha increases, Kappa differences between
severity profiles increase. This could indicate that I.;,(t) is sub-optimal for
DR progression. In addition, for &« = 10, the LMM is almost trained with the
center of the severity interpolation I(¢) as a label and yet, according to Fig
is able to assign DR with a Kappa of 0.75 (second best value of Kappa in all
experiments). This could suggest, like in the original MM [24], that the LMM is
able to disentangle factors of variations, such as the one responsible for encoding
the disease progression. When alpha is low, there is a higher chance of sampling
values of A closer to either 0 or 1 from the Beta distribution. Time-aware models
are then practically trained for two tasks: 1- predict the severity grade of the
current image (tmiz ~ t; = Iin(tmiz) > St;) and 2- predict the next visit grade
based on the last exam (tmie ~ tit1 = liin(tmiz) > St,,, ). As a result, the model
receives more information, which could explain the increase in performance.
However, according to our experiments, T-LSTM does not perform well when «
is high. Only the NODE gains from having diverse time point t,,;» € [ti, tit1]
during training, showing that it can successfully change its hidden dynamic when
time varies, in line with the conclusions of [5/19].

4 Discussion and conclusion

In this paper, we proposed straightforward modifications to Manifold Mix-up
training. This adaptation aims to enhance training of time-aware models for
disease progression by introducing t,,;,. The results are encouraging and may help
clinicians to choose the best DR screening intervals. Our framework is general
and could be easily extended to other Mix-up training [12J23] and time-aware
models [T93] or to other diseases. However our work has some limitations. We
did not register images between consecutive examinations. Image registration is
a critical step, as mentioned in [21], and could enhances our results. To overcome
the lack of grade diversity for a given pair during training, we could train with
all potential pairs of a patient in a follow-up, as done in [7]. We made a strong
assumption on the disease progression by supposing one common severity profile,
yet observing good results. Since we can access the full examination, we could use
a more accurate interpolation function to better fit the DR progression. We hope
this work will benefit the fields of longitudinal analysis and disease progression.
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