
HAL Id: hal-04182289
https://imt-atlantique.hal.science/hal-04182289v2

Preprint submitted on 6 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Neural Koopman prior for data assimilation
Anthony Frion, Lucas Drumetz, Mauro Dalla Mura, Guillaume Tochon,

Abdeldjalil Aissa El Bey

To cite this version:
Anthony Frion, Lucas Drumetz, Mauro Dalla Mura, Guillaume Tochon, Abdeldjalil Aissa El Bey.
Neural Koopman prior for data assimilation. 2023. �hal-04182289v2�

https://imt-atlantique.hal.science/hal-04182289v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

TRANSACTIONS ON SIGNAL PROCESSING 1

Neural Koopman prior for data assimilation
Anthony Frion, Student Member, IEEE, Lucas Drumetz, Member, IEEE, Mauro Dalla Mura, Senior

Member, IEEE, Guillaume Tochon, Abdeldjalil Aı̈ssa El Bey

Abstract—With the increasing availability of large scale
datasets, computational power and tools like automatic differ-
entiation and expressive neural network architectures, sequential
data are now often treated in a data-driven way, with a dynamical
model trained from the observation data. While neural networks
are often seen as uninterpretable black-box architectures, they
can still benefit from physical priors on the data and from
mathematical knowledge. In this paper, we use a neural network
architecture which leverages the long-known Koopman operator
theory to embed dynamical systems in latent spaces where
their dynamics can be described linearly, enabling a number
of appealing features. We introduce methods that enable to train
such a model for long-term continuous reconstruction, even in
difficult contexts where the data comes in irregularly-sampled
time series. The potential for self-supervised learning is also
demonstrated, as we show the promising use of trained dynamical
models as priors for variational data assimilation techniques, with
applications to e.g. time series interpolation and forecasting.

Index Terms—Dynamical systems, self-supervised learning,
Koopman operator, auto-encoder, remote sensing, data assimi-
lation, Sentinel-2.

I. INTRODUCTION

The evergrowing amount of historical data for scientific
applications has recently enabled to model the evolution of
dynamical systems in a purely data-driven way using powerful
regressors such as neural networks. While many of the most
spectacular results obtained by neural networks rely on the
paradigm of supervised learning, this paradigm is limited in
practice by the available amount of labelled data, which can
be prohibitively costly and difficult to obtain. For example, a
number of Earth observation programs that have been launched
in the last decade provide huge amounts of sequential (though
generally incomplete) satellite multi/hyperspectral images cov-
ering the entire Earth’s surface. However, few accurate and
reliable labels exist for land cover classification of the ground
pixels, although some efforts have been made, e.g. for crop
type classification and segmentation [1], [2].

In this context, one can leverage another machine learning
paradigm called self-supervised learning (SSL) [3]. It consists
in training a machine learning model to solve a pretext task
that requires no labels in order to learn informative representa-
tions of the data which can be used to solve downstream tasks.
When dealing with image data, possible pretext tasks include
predicting the relative positions of two randomly selected
patches of a same image [4] and predicting which rotation

A. Frion, L. Drumetz and A. Aı̈ssa El Bey are with IMT Atlantique, Lab-
STICC, UMR CNRS 6285, Brest, France.
M. Dalla Mura is with Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-
lab, Grenoble, France, and Institut Universitaire de France.
G. Tochon is with LRE Epita, Le Kremlin-Bicêtre, France.
This work was supported by Agence Nationale de la Recherche under grant
ANR-21-CE48-0005 LEMONADE.

angle has been applied to an image [5]. Many SSL approaches
can be labelled as contrastive SSL [6], which means that they
aim at learning similar representations for images that are
related by transformations such as rotations, crops and color
transfers. We refer the interested reader to [7] for a review of
self-supervised learning for remote sensing applications.

In our case, since we are dealing with sequential data,
we use a natural pretext task which consists in being able
to forecast the future state of the data from a given initial
condition. This is similar in spirit to recent approaches in
natural language processing where a model is trained on
completing texts and then used to perform various tasks in
zero/few shot, e.g. [8]. Our trained model is used for down-
stream tasks which can be formulated as inverse problems
such as denoising and interpolation. We solve these tasks
by minimising a variational cost which uses a trained model
as a dynamical prior, contrarily to classical data assimilation
techniques [9]–[11] which leverage hand-crafted dynamical
priors that require domain knowledge, and are not always
available. Besides, these priors should be differentiable since
any first order optimisation algorithm tackling such a problem
must be able to differentiate through repeated compositions of
the model, which requires careful implementation [12] and is
out of reach for many operational systems relying on complex
dynamical models [13]. In contrast, neural emulators of the
dynamics are de facto implemented in packages supporting
automatic differentiation, e.g. Pytorch [14], Tensorflow, JAX,
etc. providing effortless access to model derivatives.

For all these reasons, in this paper, we first aim at modelling
dynamical systems from observation data using differentiable
models. We assume that the state of a dynamical system
can be described by a n-dimensional state variable x ∈ D
with D ⊂ Rn. Then, assuming the system is governed by
an autonomous ordinary differential equation (ODE), one can
describe its (discrete) dynamics by a function F : D → D
such that xt+1 = F (xt). Although F might be any non-linear
function, Koopman operator theory [15] tells us that the system
can be described by a linear operator acting in the space of
observation functions. Namely, given an observation function
f : D → R, the so-called Koopman operator K composes f
by a time increment through function F :

Kf(xt) ≜ (f ◦ F)(xt) = f(xt+1). (1)

From this definition, K is linear because of the linearity of the
function space, i.e. for any f, g : D → R:

K(f + g)(xt) = (f + g)(xt+1) = Kf(xt) +Kg(xt). (2)

Yet, the function space being infinite dimensional, the advan-
tage of the linearity of K comes at the cost of an infinite
dimension, which makes it difficult to model in practice.

TRANSACTIONS ON SIGNAL PROCESSING 2

Thus, for practical purposes, it is particularly interesting to
study finite sets of linearly independent observation functions
(ϕ1, ..., ϕd) from which the span is invariant by the Koopman
operator: such a span is called a Koopman invariant subspace
(KIS) [16]. A function f from this space may be written in
its basis with a vector a ∈ Rd such that

f(xt) =
∑

1≤i≤d

aiϕi(xt). (3)

Then, the action of the Koopman operator on f can be
summarized in the same basis by a vector b ∈ Rd such that

Kf(xt) = f(xt+1) =
∑

1≤i≤d

biϕi(xt), b = Ka, (4)

where K ∈ Rd×d is the d-dimensional restriction of the
infinite-dimensional K on the KIS spanned by (ϕ1, ..., ϕd).
Writing such a matrix is only possible because the span of
(ϕ1, ..., ϕd) is a KIS, otherwise Kf might not be included in
this span.

There exists a variety of KIS, but one needs to retrieve
nontrivial ones that give information about the dynamics of
the state variable. As a basic example, consider a discrete
n-dimensional linear dynamical system, described by a state
variable xt = (xt,1, ..., xt,n)

⊺ ∈ Rn, and which evolves in
time through

xt+1 = F (xt) = Axt, (5)

with A ∈ Rn×n. In this case, the state observation functions
defined by fi(xt) = xt,i for 1 ≤ i ≤ n form a KIS, and the
associated restriction of K is simply K = A. Moreover, some
nonlinear dynamical systems feature a finite-dimensional KIS
which includes the state observation functions, allowing to re-
formulate them exactly as higher-dimensional linear dynamical
systems: see section 5.1 of [17] for an example.

Once a KIS is found, the associated K can be interpreted
with classical linear algebra tools. Notably, each of the com-
plex eigenvalues of K is associated to an observation function
that is located in the subspace. Let us denote by K = VΛV−1

the complex eigendecomposition of K, with V the complex
eigenvectors and Λ a complex diagonal matrix containing the
associated eigenvalues. Predicting τ steps in the future through
the Koopman operator means multiplying the initial latent
state vector (obtained with the functions from the invariant
subspace) by Kτ = VΛτV−1. Therefore, the eigenvectors
associated with an eigenvalue of modulus higher than one will
have an exponentially growing contribution, while those with
an eigenvalue of modulus smaller than one will exponentially
vanish. Only eigenvalues of modulus very close to one will
approximately preserve the norm of the latent state in the
long run, which might be crucial for time series with clear
seasonality or periodicity.

Our approach fits into the Koopman operator framework to
model dynamical systems from data. More specifically, our
contributions are the following:

1) We perform a synthetic review of the different ap-
proaches that have recently been used to compute data-driven
approximations of the Koopman operator, emphasising on the
limitations of each of the successive categories of approaches.

2) We refine and extend our own approach to learn a neural
Koopman operator, first sketched in [18], with theoretical ar-
guments to support the search for an approximately orthogonal
Koopman operator and extensive evidence that this search is
beneficial for training models that transfer well to new tasks
and data distributions.

3) We present in detail the conditions and methods for
switching our model from a discrete to a continuous for-
mulation and vice versa, in order to train and evaluate on
irregularly-sampled sequential data. To the best of our knowl-
edge, we present the first experiments of training a data-driven
Koopman model on irregular data.

4) We discuss several ways to use our model as a fully-
differentiable dynamical prior in data assimilation in order
to solve inverse problems using automatic differentiation. We
present extensive experiments for forecasting and interpola-
tion, including in hard scenarios such as irregularly sampled
data and transfer to areas unseen during training. We show that
our model is a stronger and more versatile choice as a learned
dynamical prior than classical forecasting models such as long
short-term memory (LSTM) neural networks.

II. BACKGROUND AND RELATED WORKS

A. Koopman operator theory

In short, the Koopman operator theory [15] states that any
dynamical system can be described linearly at the cost of
an infinite dimension. However, some methods seek to find
a finite-dimensional representation of the Koopman operator.
Such a representation can be exact only if it is associated to a
Koopman invariant subspace (KIS) of the dynamical system.

Let us suppose again that we are working with a state
variable x ∈ D with D ⊂ Rn, and that the state observation
functions fi are defined as

x = (f1(x), f2(x), ..., fn(x))
⊺. (6)

Dynamic Mode Decomposition [19] (DMD) consists in finding
a matrix A ∈ Rn×n such that the residual rt in

xt+1 = Axt + rt (7)

is as small as possible in the least squares sense. This
approach has been theoretically linked to the Koopman mode
decomposition in [20], and has known many different variants,
e.g. [21]–[23]. However, it relies on the implicit assumption
that (f1, ..., fn) spans a KIS. Indeed, having no residual error
in equation (7) would bring us to the previously examined case
of (5). This assumption can be useful in regions of the state
space where the dynamics are close to linear, but it is very
unlikely to be generally true. In order to mitigate this short-
coming, the Extended Dynamic Mode Decomposition [24]
(EDMD) uses a manually designed dictionary of observation
functions Φ from the dynamical system. Common choices of
dictionaries include polynomials of the observed variables up
to a given degree and sets of radial basis functions. These
dictionaries all include the identity of the state space, so that
they can be expressed as

Φ(x) = (ϕ1(x), ϕ2(x), ..., ϕd(x)) (8)

TRANSACTIONS ON SIGNAL PROCESSING 3

where, for 1 ≤ i ≤ n, ϕi(x) = fi(x), necessarily d ≥ n,
and the special case d = n is equivalent to a classical DMD.
The idea of the method is to design a dictionary Φ which is
approximately invariant by the Koopman operator. One can
then compute the matrix K that minimizes the residual rt in

Φ(xt+1) = KΦ(xt) + rt (9)

in the least-squares sense. Again, the residual rt can be
reduced to zero for any xt if and only if (ϕ1, ..., ϕd) spans
a KIS of the dynamical system. Since the state observation
functions fi are included in Φ, at inference time one can
trivially project KΦ(xt) onto its first n components in or-
der to get an estimation for xt+1 from xt. Alternatively,
gEDMD [25] approximates the continuous rather than a
discrete formulation of the Koopman operator, also using a
hand-designed dictionary of observation functions. Being a
generalisation of DMD, EDMD can give satisfactory results
when the chosen dictionary of functions is well suited to
the considered dynamical system. However, a hand-designed
dictionary of observables might still not be the most optimal
choice, and it is typically very high dimensional. For these
reasons, subsequent works have focused on finding methods
to obtain lower dimensional dictionaries of observables. For
example, there is a rich literature on leveraging Reproduc-
ing Kernel Hilbert Spaces to obtain approximations of the
Koopman operator with some interpretability and theoretical
guarantees, e.g. [26]–[28].

Other methods [29], [30] jointly learn the parameters of a
neural network which computes a set of observation functions
and a matrix K which is the restriction of the Koopman
operator to this set. Therefore, the main difference between
EDMD and these works is that the dictionary Φ is automati-
cally learned by a neural network rather than hand-designed.
However, to be able to retrieve the evolution of the state
variable from the KIS, they still constrain that ϕi = fi for
1 ≤ i ≤ n. This is a convenient trick, yet it restricts those
methods since it means assuming that there exists a low-
dimensional KIS containing the state functions.

In order not to rely on this assumption anymore, some
other works [18], [31]–[35] do not constrain a trivial link
between the KIS and the state space spanned by (f1, ..., fn).
In this case, it is necessary to train another neural network
to reconstruct the state variables from the learnt observation
functions. Then, the network learning the KIS and the network
that reconstructs the state space from it form an autoencoder
by definition. This framework is theoretically more powerful
than the previous ones since it only assumes a nonlinear
relationship between the KIS and the state space. The model
that we describe in Section III-A and use throughout this work
belongs to this category of approaches.

Of particular interest for this study are [31] and [35],
which we will compare our model against in Section IV. The
model of [31], which we refer to as DeepKoopman, learns
an auxiliary network that outputs eigenvalues as a function of
the encoded state of the system. Therefore, it computes a new
matrix K for each time step, while most Koopman autoencoder
models, including ours, learn a fixed matrix K which is invari-
antly used for advancing any encoded state in time. The model

of [35] learns two distinct matrices K ∈ Rd×d,D ∈ Rd×d for
the forward and backward evolutions. They are respectively
trained with a forward and a backward prediction loss, and
linked through an additional consistency loss term in order to
favor the consistency of the latent dynamics. his consistency
loss is expressed as

d∑
k=1

1

2k
||Kk∗D∗k − Ik||2F +

1

2k
||Dk∗K∗k − Ik||2F , (10)

where Mk∗ and M∗k respectively denote the upper k rows
and leftmost k columns of a matrix M, and ||.||F is the
Frobenius norm. This loss term roughly means that K and
D are encouraged to be close to each other’s inverse. The
computational cost of computing it scales in O(d4), so that it
can only be used with a reasonably small latent dimension d.

For the sake of completeness, we mention works that have
focused on finding matrices K that verify some analytical
properties enabling them to produce asymptotically stable
latent dynamics. The authors of [36] introduced a regularisa-
tion term that promotes the asymptotic stability of the learnt
model in the sense of Lyapunov. In [37], a parameterisation
of stable operators using tridiagonal matrices is proposed.
The authors of [38] leverage a parameterisation of Schur
stable matrices to learn a stable model. The work of [39]
proposes to restrict the search to the set of Hurwitz matrices,
through a parameterisation of this set that enables to solve an
unconstrained optimisation problem.

B. Orthogonality regularisation

The promotion of orthogonality for the weight matrices
of linear layers in neural networks has been long studied.
This idea is related to the well-known vanishing gradient
and exploding gradient issues. Those get more important as
the computational graph gets deeper, e.g. for recurrent neural
networks and for very deep residual neural networks [40].

In [41], it was showed that the initialisation of weights
as a random orthogonal matrix can be much more effective
than the classical random Gaussian initialisation. It was also
advocated that the orthogonality of the weight matrices should
be promoted during the training phase too. The authors of [42]
introduced a soft regularisation term for weight matrices W:

||WWT − I||2F (11)

where ||.||F is the Frobenius norm. This term, which is to
be used in a similar way to weight decay [43], was shown
to improve the performance of neural networks for computer
vision tasks. The authors of [44] compared it with simi-
lar orthogonality-promoting terms, and showed that they all
brought substantial gains to the performance of deep residual
networks.

In our case, constraining the Koopman operator to be or-
thogonal leads to periodic dynamics (see theorem 1), which are
of course stable in the long run and useful to model seasonality
in time series. Yet, working with an exactly orthogonal K may
not always be desirable, for instance when the data are noisy,
or the time series is not exactly periodic (e.g. when there are
interannual variations or slower trends in seasonal dynamics).

TRANSACTIONS ON SIGNAL PROCESSING 4

For these reasons, we will resort to a soft penalisation as
in (11) instead of enforcing exactly the orthogonality of K.

C. Variational data assimilation

Data assimilation consists in combining a numerical model
of a physical system with a set of partial observations in
order to infer the full state of the system, accounting for
both uncertainties in the model and in the data. It has been
used in a variety of fields, including numerical weather pre-
diction [45], crop yield estimation [46], surface water quality
modeling [47] and forest inventory [48]. In addition to sequen-
tial data assimilation, represented by Kalman filtering and its
extensions, another frequently used framework is variational
data assimilation, on which we focus in this work. Variational
assimilation techniques consist in minimising a differentiable
cost function which aims at fitting a set of observations and
at the same time follow dynamics specified by the physical
model. This classically includes backpropagating through the
physical model, which has been extensively researched in
so called adjoint methods [49]. In recent years, this has
been made easier thanks to modern automatic differentiation
packages, so long as the physical model is differentiable and
can be easily reimplemented in those packages (which is far
from the case for many intricate operational physical models).

In the case of a discrete dynamical system, one
seeks to approximate an unknown trajectory xtrue =
(xtrue0 ,xtrue1 , ...,xtrueT). To do so, one leverages a noisy and/or
partial set of observations x̃ = (x̃t)t∈H where H ⊂ [[0, T]] is
the set of times on which x̃ is defined. In a remote sensing
context, the reason for the existence of missing time indexes
might be that some observations are removed because they
are obviously corrupted, for example when a cloud blocks
or obfuscates the surface for a satellite sensor. Furthermore,
for indexes t ∈ H , x̃t is often a noisy observation of xtruet ,
which might be due to the imperfection of the sensor or to
a variety of physical phenomena. Making assumptions on the
probability distribution of xtrue can help to design a prior
R on the desired solution. Using R as a regularisation, one
then seeks to find a trajectory x = (x0, ...,xT) which is a
good compromise between the fidelity of x to x̃ and the prior
R(x). This is done by minimising the cost function

C(x) = D(x, x̃) +R(x) (12)

where D is a chosen discrepancy, such as a norm of the
difference between two elements (restricted to times t ∈ H).
Common examples of prior terms R(x) include smoothness
priors, which favor the proximity between consecutive values
of x. In practice, when all terms vary smoothly, the cost can
be minimised by gradient descent or related first order algo-
rithms. The gradient can be obtained either analytically when
tractable, or using automatic differentiation, as made easily
accessible by modern computing frameworks, e.g. Pytorch.

Alternatively, one can restrain the search on a set of tra-
jectories defined by a model M : x0 → x. In this case, one
formulates a cost on the input of the model:

C(x0) = D(M(x0), x̃) +R(M(x0)). (13)

Time

Quantity of
interest

Choice of the
initial condition

Data
samples

Optimal
trajectory

Model
trajectories

Fig. 1. Visual representation of constrained variational data assimilation. It
consists in choosing the initial condition from which the model’s trajectory
minimises the distance to the sampled data. One could also include a prior in
the variational cost on the initial condition, such as the trajectory smoothness.

A conceptual view of this method, called constrained varia-
tional data assimilation, is shown on Figure 1. We refer the
reader to [9] for an extensive review on data assimilation.

While variational data assimilation is traditionally used with
priors R that were constructed from physical knowledge of
the studied dynamical system, recent works [13], [50] have
attempted to leverage machine learning tools to learn a prior
in a completely data-driven way. In the second case, the prior
is jointly learned with a gradient-based optimisation algorithm,
further improving the performance. Other works [51] have
proposed to learn a data-driven surrogate model to predict
the residual error of an existing physics-based model, which
finally results in a hybrid model. Those models have the ad-
vantage of being fully differentiable and natively implemented
in an automatic differentiation framework, which means that
their associated cost can be differentiated automatically via
the chain rule. Overall, linking data assimilation and machine
learning is a very hot topic, which has been recently reviewed
in [52].

III. PROPOSED METHODS

A. Neural network design and training

In this section, we design a data-driven model that, when
properly trained, should produce stable predictions on the
long term. A good indicator for the stability of long run
predictions is that the eigenvalues of the learnt Koopman
matrix should be located on the unit circle, which may
encourage us to look for matrices with such eigenvalues.
Among those are orthogonal matrices, which have many
desirable properties. Most importantly, they constrain the
dynamics to be periodic, as shown in the following result:

Theorem 1 (Discrete linear systems with special orthogonal
matrices lead to periodic dynamics): Let K ∈ SO(d), the
special orthogonal group of real invertible matrices satisfying
KKT = KTK = I and with determinant equal to +1, and
define a discrete-time dynamical system by

zt+1 = Kzt (14)

with any initial condition z0 ∈ Rd. Then there exists a
continuous-time dynamical system

dz

dt
= Lz (15)

TRANSACTIONS ON SIGNAL PROCESSING 5

xt zt K zt+1 xt+1

Fig. 2. Schematic view of our architecture.

with z(0) = z0, and L a skew-symmetric matrix such that
exp(L) = K. Besides, the dynamics are periodic, i.e. ∃τ ∈
R+,∀t ∈ R+, z(t+ τ) = z(t).

The proof is relegated to Appendix A. This theorem shows
that the dynamics of linear dynamical system specified with
a skew-symmetric matrix (when continuous) or with a special
orthogonal matrix (when discrete) leads to periodic dynamics.
Note that this property carries on to any time independent
transformation of zt: for any function ψ, ψ(z(t)) will itself
be periodic with the same period as z(t).

Suppose that we are modeling a dynamical system from
which the state space is D ⊂ Rn. Our architecture for
a neural Koopman operator relies on three components: an
encoding neural network ϕ with a decoder ψ and a matrix
K ∈ Rd×d. It is graphically represented in Figure 2. The idea
is that (ϕ, ψ) learns the relationship between the state space
and a learnt d-dimensional (approximately) Koopman invari-
ant subspace, while K corresponds to the restriction of the
Koopman operator to this space. Therefore, ϕ is expected to
be a set of observation functions which constitute a Koopman
invariant subspace. From now on, we will denote the latent
variable corresponding to a vector xt ∈ D of the state space
as zt = ϕ(xt). Our goal is to be able to make long-term
predictions of the state by successive multiplications of the
encoded initial state, followed by a decoding step to come
back to the original data space. This translates in equations as

ψ(Kτϕ(xt)) = xt+τ (16)

for any initial condition xt and time increment τ . We empha-
size that τ does not necessarily have to be an integer since one
can easily compute noninteger powers of K by using its matrix
logarithm, as explained in section III-B. The time increment τ
could also very well be negative, enabling to predict the past
state of a dynamical system from future states.

Our training data will be constituted from N time series of
length T , which we denote as (xi,t)1≤i≤N,0≤t≤T+1. Note that
these time series could be possibly overlapping cuts of longer
time series. A first processing step is to augment the state
space with its discrete derivatives xi,t − xi,t−1. This means
working with the variable y defined as

yi,t =
(
xi,t+1 xi,t+1 − xi,t

)T
(17)

for index t ∈ [[0, T]]. This reformulation makes it easier to
predict the future state. Indeed, given that the data varies
smoothly, one could expect that xi,t + (xi,t − xi,t−1) is a
good approximation of xi,t+1 (this formally looks like an
explicit Euler scheme to integrate an underlying infinitesimal

representation formulated as an ODE). This intuition is further
theoretically justified by Takens’ theorem [53], which, infor-
mally, states that the evolution of a dynamical system gets
more and more predictable when we know more time lags
from an observed variable of the system. Using this augmented
state is therefore useful when the observed x is not the state
variable of the system. In practice, we work either with x or
with y depending on what is possible and on the considered
dynamical system. Since this choice does not influence our
methods, we will always use the variable x in the following.

We denote by Θ the set of all the trainable parameters of
our architecture. Θ includes the coefficients of K along with
the trainable parameters of ϕ and ψ. In order to obtain the
desired behavior corresponding to equation (16), we train the
architecture using the following loss terms:

• The prediction term Lpred ensures that the long-term
predictions starting from the beginning of each time series
are approximately correct. Some works [32] weigh this
loss with an exponentially decaying factor that gives more
importance to short term predictions, but we choose to
penalize the errors on all time spans equally:

Lpred(Θ) =
∑

1≤i≤N

∑
1≤τ≤T

||xi,τ − ψ(Kτϕ(xi,0))||2.

(18)
• The auto-encoding term Lae is the classical loss for auto-

encoders, making sure that ψ ◦ ϕ is close to the identity:

Lae(Θ) =
∑

1≤i≤N

∑
0≤t≤T

||xi,t − ψ(ϕ(xi,t))||2. (19)

• The linearity term Llin favors the linearity of the learnt
latent dynamics. It is qualitatively similar to the residual
in the formulation of EDMD in equation (9).

Llin(Θ) =
∑

1≤i≤N

∑
1≤τ≤T

||ϕ(xi,τ)−Kτϕ(xi,0)||2. (20)

• The orthogonality term is a regularisation term, prompt-
ing the complex eigenvalues of K to be located close
to the unit circle, which favors the long-term stability of
the latent predictions. It is particularly helpful when the
dynamics are close to periodic, as shown by theorem 1.
||.||F denotes the Frobenius norm.

Lorth(K) = ||KKT − I||2F . (21)

As we will show throughout our experiments, the orthogo-
nality term is very useful in self-supervised learning contexts,
in the sense that it enables to train models that generalise better
to downstream tasks such as interpolation, extrapolation and
backward prediction. However, it has a more limited interest
for supervised learning, and it can even be detrimental when
used for modelling dynamical systems which have no seasonal
component, which is why it should not always be included.

Note that, with our formulation, unlike with some more
classical methods like DMD, it is hard to determine a min-
imal dimension d required to model a dynamical system. In
practice, d should be seen as a hyperparameter of the model,
which will underfit the training data if it is too low and overfit
the training data if it is too large.

TRANSACTIONS ON SIGNAL PROCESSING 6

B. Handling irregular time series

When working with irregular time series, it is not possible
to augment the state with delayed observations as described
in equation (17), so that we necessarily use the input data x
and not the augmented state y. Yet, the training can still be
performed in a way similar to the case of regular time series.
One has to distinguish two cases: (1) the data has a regular
sampling with missing values (i.e. all temporal distances are
multiples of a reference duration) and (2) the time increments
between the sampled points are completely arbitrary.

If the irregular time series result from a regular sam-
pling with missing values, then one can denote these data
by (xi,t)1≤i≤N,1≤t≤T , with the binary observation variable
(Hi,t)1≤i≤N,1≤t≤T being so that Hi,t = 1 if xi,t is actually
observed and 0 otherwise. Then, one can trivially multiply
each term of the prediction, auto-encoding and linearity losses
from equations (18)-(20) by the corresponding binary coeffi-
cient Hi,t to train a model for these irregular data.

When the data is sampled at arbitrary times, one has to adopt
a continuous formulation. In this case, one does not work with
the discrete K but rather with its continuous counterpart L,
which is related to it through the matrix exponential

K = exp(L) (22)

and can be seen as its corresponding infinitesimal evolution.
A sufficient condition to guarantee the existence of such a
matrix L is that K (always diagonalizable in C) has no real
negative eigenvalue [54]. In our case, we constrain K to be
close to orthogonal and initialize it to the identity. Thus,
the eigenvalues are very unlikely to become real negative.
Indeed, the set of negative real numbers has zero Lebesgue
measure. This means that the next noisy iterate provided by a
stochastic gradient descent (or related algorithms) will perturb
the eigenvalues, and if the associated eigenvalue distribution
admits a density w.r.t. the Lebesgue measure, the eigenvalues
will almost surely avoid this set, unless it is an attractor. At
any rate, this never happened in our experiments.

Under this assumption, we can equivalently switch to a con-
tinuous dynamical system whose evolution can be described
in a Koopman invariant subspace by

dϕ(x(t))

dt
=
dz(t)

dt
= Lz(t). (23)

In this case, it is a well known result that

z(t0 + τ) = exp(τL)z(t0) (24)

for any time increment τ ∈ R. In particular, with τ = 1, we
find the previous definition of K from equation (22).

Let us suppose that we train a model on N irregular time
series. For each index 1 ≤ i ≤ N , we denote the trajectory xi
as a list of Ti time-value pairs (ti,k,xi,k)0≤k≤Ti

. Without loss
of generality, one can suppose that the pairs are ordered by
increasing times, with ti,0 = 0. The set of trainable parameters
Θ now includes the parameters of (ϕ, ψ) and the coefficients
of the infinitesimal evolution matrix L. Then, one can rewrite
the prediction, auto-encoding and linearity loss terms as:

Lpred(Θ) =
∑

1≤i≤N

∑
1≤k≤Ti

||xi,k − ψ(Kti,kϕ(xi,0))||2 (25)

Lae(Θ) =
∑

1≤i≤N

∑
0≤k≤Ti

||xi,k − ψ(ϕ(xi,k))||2 (26)

Llin(Θ) =
∑

1≤i≤N

∑
1≤k≤Ti

||ϕ(xi,k)−Kti,kϕ(xi,0)||2 (27)

where we use the slightly abusive notation Kt = exp(tL)
for any non-integer time increment t. Now, one can use
these rewritten loss terms in conjunction with the unchanged
orthogonality loss to learn from irregularly-sampled data in
the same way as from regularly-sampled ones, although it is
likely to be a more challenging learning problem.

The continuous formulation is the most general one and
it can also be used when the training data are regularly sam-
pled. However, this requires computing the matrix exponential
K = exp(L) after each update of L instead of working on
K directly. We experimentally found that, when training on
regularly-sampled data, the discrete formulation has slightly
better performances than the continuous one. We conjecture
that this is due to the gradient of the loss function being
more complex when performing a matrix exponential, and
we recommend using the continuous formulation only when
necessary. Note however that training a model with a discrete
formulation does not mean giving up on the continuous
modelling. Indeed, when one has a trained discrete matrix of
evolution K at hand, it is possible to switch to continuous
dynamics as soon as a matrix logarithm exists [54]. In that
case, the complex eigendecomposition of K writes

K = VΛV−1 (28)

with V ∈ Cd×d and Λ ∈ Cd×d a diagonal matrix. Then, L
can be obtained by computing the principal logarithm of each
(necessarily not real negative) diagonal coefficient of Λ:

L = V log(Λ)V−1. (29)

One can easily check that L then verifies equation (22), and
use this matrix to query the state of the latent system at any
time from a given initial condition using equation (24).

C. Variational data assimilation using our trained model

Once a model has been trained for a simple prediction
task, it is supposed to hold enough information to help solve
a variety of inverse problems involving the dynamics, like
interpolation or denoising. To leverage this knowledge, we
resort to variational data assimilation, using the trained model
as a dynamical prior instead of a more classical hand-crafted
physical prior. We describe hereafter a general formulation
for inverse problems involving time series of images and
different methods to solve them. Although we consider images
specifically in our experiments, the methods can be used for
any time series by ignoring or adapting the spatial prior.

Suppose that we are working on images containing N
pixels and L spectral bands (L being 3 for RGB images or
higher for multi/hyperspectral images), defined on a set of T
time steps with some missing values. We denote this data by
(x̃t)t∈H with H ⊂ [[0, T]]. For each t ∈ H , x̃t ∈ RN×L.
As is classical in data assimilation, we assume that x̃ is a
noisy and incomplete version of an unknown underlying truth

TRANSACTIONS ON SIGNAL PROCESSING 7

xtrue = (xtrue0 , ...,xtrueT). Our objective is to reconstruct (and
possibly extend) a complete time series x ∈ R(T+1)×N×L that
is expected to approximate xtrue.

The first method that we propose is a weakly-constrained
variational data assimilation, where we minimise a variational
cost on x which is composed of at most three components: a
term of fidelity to the available data, a dynamical prior which
is given by our model, and a spatial prior. The variational cost
on x can thus be expressed as

∑
t∈H

||x̃t − xt||2 + α

T−1∑
t=0

||xt+1 −M(xt)||2 + βS(x) (30)

where M(xt) = ψ(Kϕ(xt)) and S is the spatial prior. In
practice, S can be a classical spatial regularisation leading
to spatially smooth images, such as a Tikhonov regularisa-
tion [55] or the total variation [56]. We emphasize that the
optimised variable here is the whole time series x. The first
term of equation (30) is the data fidelity term (first term of
equation (12)) and the other two terms form together the prior
or regularisation term (second term of equation (12)).

In some cases, it can be useful to consider a more con-
strained optimisation. This is especially true when dealing with
very noisy data, in which case the data fidelity term can lead
to overfitting the noise even if a high weight is put on the
prior terms. In such cases, we do not optimise on x anymore
but rather on the latent initial state z0 of the prediction, so
that only values of x that can be produced by our data-driven
dynamical prior are considered. In this way, we seek to solve

z∗0 = arg min
z0∈RN×d

∑
t∈H

||x̃t − xt(z0)||2 + βS(x(z0)), (31)

where, for time t, xt(z0) = ψ(Ktz0). After finding the
optimal initial condition z∗0, one can simply compute the
associated predictions at any time t using xt(z

∗
0). Note that

z0 belongs to RN×d since we assumed that the input of ϕ is
the reflectance vector of a single pixel of an image, so that
the model forecasts the dynamics of all pixels in parallel.

Although it might seem from equation (31) that the encoder
ϕ of our model is of no use here, it is actually important in two
ways. First, it is necessary for training the other components
ψ and K, and in particular for ensuring that xt(z0) is always a
realistic state of the system. Second, the optimisation problem
is initialised with z0 = ϕ(x0), which is a logical guess
that helps boosting the performance since this problem is not
convex and is solved by automatic differentiation.

The constrained and unconstrained assimilations have dif-
ferent advantages and weaknesses. The unconstrained assimi-
lation is generally useful when x̃ is close to xtrue, i.e. when
the observed data are complete and when the signal-to-noise
ratio is large enough. In this case, it can efficiently provide
small corrections to the noise in the dynamics. The constrained
optimisation, however, is not useful in this case since it is
not able to reconstruct the exact observed data. Therefore,
when the error due to the noise has a magnitude smaller or
similar to the reconstruction error of the model, the constrained
optimisation is not able to perform a relevant denoising. On
the other hand, the constrained assimilation is very effective

to deal with sparse or very noisy observed data. Indeed, any
prediction made by the model should be a possible trajectory
of the dynamical system, which means that the result of
this optimisation can be seen in some way as the plausible
trajectory which best matches the observed data.

Another possibility in our framework is to perform a con-
strained assimilation like in equation (31) but with a joint
optimisation of the initial latent space and of the parameters
of the model. Thus, the optimisation problem becomes

min
z0,K,ψ

∑
t∈H

||x̃t − xt(z0)||2 + βS(x(z0)), (32)

where, again, xt(z0) = ψ(Ktz0). While this problem would
be very difficult to solve when starting with random variable
initialisations, using the parameters of a pretrained model as
initial values gives good results. Notably, adjusting the model
parameters enables to fit the available data much better, which
is especially useful when working on a set of data which
differs from the model training data. This strategy corresponds,
in machine learning parlance, to transfer learning or solving
a downstream task using the self-supervised trained model.
However, one must be careful not to make the model overfit
the assimilated data at the cost of its general knowledge, which
could be related to the well-known catastrophic forgetting [57].
Thus, it is critical to use a very low learning rate as commonly
described in the literature, e.g. [58].

IV. EXPERIMENTS ON SIMULATED DATA

Here, we present a benchmark of our method against the
methods of [31] and [35], which we respectively call Deep-
Koopman and consistent Koopman autoencoder (cKAE) on a
3-dimensional dynamical system arising from fluid dynamics.

The nonlinear fluid flow past a cylinder with a Reynolds
number of 100 has been a fluid dynamics benchmark for
decades, and it was proven by [59] that its high-dimensional
dynamics evolves on a 3-dimensional attractor with the model:

ẋ = µx− y − xz

ẏ = µy + x− yz

ż = −y + x2 + y2.

(33)

This dynamical system is not periodic, yet it exhibits a stable
limit cycle and an unstable equilibrium.

In our experiments, we use the training and test data
from [31], which have been generated by numerically in-
tegrating equations (33). All of our models trained on this
dynamical system have the same architecture: the encoder ϕ
(resp. decoder ψ) is a Multi-Layer Perceptron (MLP) with 2
hidden layers of size 256 and 128 (resp. 128 and 256), with the
dimension of the latent space and matrix K being d = 16. We
use the same hyperparameters for cKAE, which also includes
a backward evolution matrix D of the same size as K. For
DeepKoopman, we use the hyperparameters reported in [31].

A. Interpolation from low-frequency regular data

We first show the ability of our architecture to model a
continuous dynamical system even when trained on discrete
data. As mentioned in subsection III-B, once a model is

TRANSACTIONS ON SIGNAL PROCESSING 8

trained, one can retrieve its learnt Koopman matrix K and
compute its corresponding infinitesimal operator L. Then, one
can analytically compute a new discrete matrix corresponding
to an advancement by any desired time increment. Concretely,
suppose that ω̄ is a chosen target frequency (we choose
ω̄ = 50 Hz here). We train a model on training time series
sampled at a lower frequency ω, obtaining in particular a
Koopman matrix K. Then, we compute the discrete operator
K̄ = exp (ωω̄ logK) = exp (ωω̄L), and use it to perform
predictions at a frequency ω̄ from the initial states of the test
time series. Finally, we compute a mean squared error (MSE)
between the high-frequency groundtruth and predictions, av-
eraged over all time steps and trajectories from the test set.

Note that, for this experiment, our models are trained
without the orthogonality loss term from equation (21) since
the considered dynamical system at hand, having no quasi-
periodic component, is not well adapted for this regularisation.
We compare our results against DeepKoopman and cKAE
models trained on the same data and for which we similarly
computed K̄. This was not proposed in their original papers,
but a more naive interpolation method, such as a linear
interpolation in the latent space, yields unsatisfactory results.
Note that both cKAE and our model feature a single matrix
K, and therefore only one matrix K̄ needs to be computed
for these models. In contrast, DeepKoopman computes a new
matrix K for each state and time increment, and one must
compute a new K̄ for each of those, leading to a far greater
amount of computation at inference. In addition, training the
DeepKoopman model is significantly more costly than the
other models due to the necessity to compute a new matrix K
through the auxiliary network at each time step. cKAE is itself
slower to train than our model because of its consistency loss
from equation (10), which requires computing 2d additional
matrix multiplications for each training step. Concretely, in our
configuration, the duration of a training epoch in frequency
ω = 50 Hz is approximately 3.4 seconds for DeepKoopman,
1 second for cKAE and 0.9 second for our model.

We report in Table I the results obtained with various
training frequencies ω. All trainings are repeated 5 times
with different initialisations of the model’s parameters, and
we report the mean and standard deviation of the errors over
these 5 runs. The results show that the quality of the high-
frequency predictions of our model depends very little on the
training frequency. The MSE for DeepKoopman and cKAE are
similar to ours for the highest training frequencies but increase
faster as the training frequency decreases. We emphasize that
all instances of all models excel at predicting in their training
frequency, with DeepKoopman being the best model for any
frequency. The main difficulty in this experiment is to obtain
models that are also good at interpolating to a high frequency.
In this regard, at training frequencies 5 Hz and 2.5 Hz, some
instances of DeepKoopman achieve a relative success with a
MSE in the order of 10−6 while some remarkably fail with
a MSE in the order of 10−3 or 10−4 (hence the very high
standard deviations). Note however that none of the instances
is as good as the mean performance of our model for these
frequencies. cKAE, in contrast, consistently fails to interpolate
in the lowest frequencies. The main reason for this failure

1.000.750.500.250.00 0.25 0.50 0.75 1.00 1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

1.06
1.08
1.10
1.12
1.14
1.16
1.18

Our prediction
DeepKoopman prediction
cKAE prediction
Groundtruth (training frequency)
Groundtruth (high frequency)

0.0 0.5 1.0 1.5 2.0
Time (seconds)

7

6

5

4

3

Sq
ua

re
d

er
ro

r (
lo

ga
rit

hm
ic

sc
al

e)

Our prediction
DeepKoopman prediction
cKAE prediction
Times corresponding to the training frequency

Fig. 3. Upsampling experiment on fluid flow data. We learn a model on low-
frequency data and then use the continuous representation to make a high-
frequency prediction which we compare to the groundtruth on test trajectories.
Top: the three tested models compared to a groundtruth trajectory. Bottom:
corresponding mean squared errors over time, in a logarithmic scale.

seems to be the absence of a linearity term in their loss
function. Indeed, a quick (unreported) experiment enabled us
to obtain an error in the order of 10−6 with training frequency
2.5 Hz by training a cKAE instance with an additional forward
linearity loss term.

Our model, however, successfully combines the information
of many low-resolution time series to construct a faithful con-
tinuous representation of the dynamics. On Figure 3, we show
the interpolation by the best instance trained at ω = 2.5 Hz
for each of the three models on a test trajectory. It appears
that, although all models are able to fit the groundtruth points
corresponding to the low training frequency, they are not all
able to interpolate to a higher frequency. Only our model
performs as well for interpolating than for fitting the points
corresponding to its training frequency.

B. Learning to predict forward and backward

Here, we investigate the ability of our model to perform
backward predictions after being trained on forward predic-
tion. In theory, one can simply invert the learnt matrix K.
This is not a possibility of the DeepKoopman framework since
it computes a new matrix K as a function of the input at

TRANSACTIONS ON SIGNAL PROCESSING 9

TABLE I
MEAN SQUARED ERRORS (×10−6) FOR 50 HZ INTERPOLATION OF FLUID

FLOW DYNAMICS WITH VARIOUS TRAINING FREQUENCIES

Training DeepKoopman cKAE Our method
frequency

50 Hz 1.16± 0.05 1.31± 0.23 1.51± 0.19
25 Hz 1.30± 0.09 1.84± 0.57 1.20± 0.13
10 Hz 1.59± 0.01 2.92± 1.01 1.42± 0.19
5 Hz 37.4± 44.2 18.7± 6.25 1.56± 0.03

2.5 Hz 294± 578 971± 403 2.02± 0.42

each iteration, and one would need to invert the matrix of
the preceding state (which one does not have access to) to
predict backwards. We test the performance of our models in
this context and study the influence of using the regularising
orthogonality loss term from equation (21) against not using
it (we remind that we did not use it in the interpolation
experiment above).Table II reports our mean squared errors:
in this table, ”HF” means that the model was trained on high-
frequency data (50 Hz) while ”LF” means that it was trained
on low-frequency data (2.5 Hz). One can see that the backward
predictions have significantly higher errors in average than
forward predictions. This matches the observation by [35] that
naively inverting a learnt Koopman matrix is generally not
effective. In particular, our model trained on low-frequency
forecasting with no orthogonality term quickly diverges from
the groundtruth when performing backward predictions. How-
ever, our model with an orthogonality regularisation trades
reduced forecasting performance for the ability to run better
backward reconstructions although it was not trained on this
task. Figure 4 shows a typical example for which the model
with an orthogonal matrix sticks to the time series while the
unregularised one diverges from it. Interestingly, we noticed
than using the inverse of the matrix from our model trained
with an orthogonality loss worked better than using the inverse
of the forward prediction matrix of a trained cKAE model.
This is somewhat surprising since the cKAE model features
a consistency loss that should make its forward prediction
model better at backward predictions than a model that is
completely agnostic to the backward dynamics. However, the
orthogonality loss seems to perform an unexpectedly strong
regularisation in this context.

TABLE II
MEAN SQUARED ERRORS FOR FORWARD AND BACKWARD PREDICTIONS

Task \ Model Unregularised With orthogonality
Forward prediction (HF) 1.65× 10−6 5.50× 10−6

Backward prediction (HF) 1.88× 10−4 1.48× 10−4

Forward prediction (LF) 1.66× 10−6 8.89× 10−6

Backward prediction (LF) 0.123 3.24× 10−5

V. EXPERIMENTS ON REAL SENTINEL-2 TIME SERIES

In this section, we work on multispectral satellite image
time series. They consist in successive multivariate images of
the forests of Fontainebleau and Orléans in France, which have
been taken by the Sentinel-2 satellites as a part of the European
Copernicus program [60] over a duration of nearly 5 years. We
use the reflectance from L = 10 visible and infrared spectral
bands at a spatial resolution of 10 meters, resorting to bicubic

0.4
0.2

0.0
0.2

0.4
0.4

0.2
0.0

0.2
0.4

0.150
0.175
0.200
0.225
0.250
0.275
0.300
0.325

Groundtruth
Backward reconstruction (unregularised)
Backward reconstruction (orthogonal)

Fig. 4. Backward reconstructions of a test time series from a model trained
with an orthogonality loss term (orthogonal) and a model trained without it
(unregularised). Both models were trained on high-frequency forecasting.

interpolation for those that were originally at a 20 meter
resolution. Although the satellites have a revisit time of five
days, many images are unexploitable due to the presence of too
many clouds between the satellite and the surface. Therefore,
we performed temporal interpolation of the available data to
obtain complete versions of the time series. The interpolation
is performed with the Cressman method, which fills each
missing value with a normalized sum of the available data,
weighted by a Gaussian function of the temporal distance
to the filled time, with a Gaussian radius of 15 days. After
this, we have 2 versions of each image time series at our
disposal: one incomplete version where all data are real, and
a complete but partly synthetic version. Having synthetic parts
in a real-world time series is generally not desirable since a
model trained on this data will learn the chosen interpolation
scheme along with the true data distribution, but it can be
necessary since most models are not able to handle irregularly-
sampled time series. In practice, we will show that models
trained on interpolated data can transfer well to raw incomplete
data. We show RGB compositions of sample images from the
time series in figure 5. Further details are available in [61].
The datasets, along with the code for the experiments, are
freely accessible from github.com/anthony-frion/Sentinel2TS.
Throughout this section, the reported mean squared errors are
averaged over all spectral bands, pixels and available times.

A. Forecasting

First, we train models to perform predictions from an initial
condition on the 2L-dimensional reflectance vector of a given
pixel. The input dimension is twice the number of spectral
bands of the pixels since we work with delayed embeddings
as defined in equation (17). Our encoder ϕ is a multi-layer
perceptron with hidden layers of size 512 and 256, and the
decoder ψ symmetrically has hidden layers of size 256 and

github.com/anthony-frion/Sentinel2TS

TRANSACTIONS ON SIGNAL PROCESSING 10

Fig. 5. Left: a temporally interpolated Fontainebleau image. Right: a non-
interpolated Orléans image. The date for both images is 20/06/2018. Those
are RGB compositions with saturated colors. The red square is the 150×150
pixel training area and the blue squares are test areas.

512. The latent space and matrix K have a size of d = 32.
We train models with this architecture with and without
the orthogonality loss term from equation (21) in order to
assess its influence on the trained models. These models are
compared with a long short-term memory [62] (LSTM) model
with hidden size 256, which, like ours, has around 3 × 105

parameters. In addition, in order to assess the importance
of our model’s nonlinear embedding, we compare against a
baseline linear model which assumes that ϕ and ψ are simply
identity functions in equation (16), thus consisting of only
a matrix K ∈ R2L×2L This baseline is similar to dynamic
mode decomposition [19], yet we observed that computing K
as the closed-form least-squares solution for 1-step prediction
leads to poor long-term predictions, and we found that an
accurate long-term reconstruction was only possible with a
high order delayed embedding [63]. To circumvent this issue,
we trained this model to long-term prediction with automatic
differentiation, like the other models of this benchmark. This
model will be referred to hereafter as long term DMD.

The models are trained on the interpolated version of the
Fontainebleau dataset, containing Ttest = 342 images, of
which we use the first Ttrain = 242 for training. The spatial
area that is used is contained in the red square from figure 5.
Note that we do not train the models on Ttrain-time-steps pixel
reflectance time series but on time series of length T = 100
extracted from the data. In this way, the models learn to predict
from any initial condition rather than just from the initial time
of the dataset. The set of 100-time-steps time series that are
used for training is fixed and organised in 512 batches of
size 512, which are always passed through the models in a
deterministic order. This enables to retrain the models and
to obtain the exact same results as ours with the available
code. We use as the validation loss the mean-squared error
of a Ttrain-step prediction from the state at time 1. Since the
models tend to overfit to the T -step prediction task, we use
the validation loss as an early stopping criterion, and always
save the model that minimizes it. All of the studied models
are trained with this procedure on the exact same data.

All models are evaluated on the task of predicting the state
at times Ttrain to Ttest using only one delayed embedding
at time 1. Their performance are measured through the mean
squared error (MSE) over all times, pixels and spectral bands
in two areas: the Fontainebleau training area and a test area

in the forest of Orléans, marked by a blue square in figure 5.
Thus, the Fontainebleau forecasting performance only reflects
the ability of the models to extrapolate in time while the
Orléans testing area also tests the ability of the model to
transfer to different initial conditions. For the Fontainebleau
area, we use the original irregular time series, which means
that the models are tested only on true data. Since it is not
possible to use a delayed embedding in this context, we make a
rough estimate of the finite difference derivative from the first
two available snapshots. All results are displayed in table III.
For all models but the long term DMD, we train 5 different
instances with different random parameterisations, and we
report the mean and standard deviation of the MSE over these
5 instances. We also show the MSE of the best instance from
each model in parenthesis for both datasets. For long term
DMD, we noticed that initialising K with the identity matrix
gave better performance than any random initialisation, which
is why we only report this result, with no standard deviation.

From the reported results, one can see that the impact of
the orthogonality loss is higher on the test Orléans area, which
shows that this loss term is especially useful for transferring
to new data. Our model with the orthogonality loss is the
best on the Fontainebleau area and second best in the Orléans
area. The LSTM model performs almost on par with ours on
the training area, yet its performance are much worse when
testing it on the test Orléans area. This can be explained by the
fact that the underlying evolution of the LSTM is nonlinear,
which makes it a more complex model which is more prone
to overfitting on its training data. Long term DMD is able
to roughly approximate the periodic pattern of the data, yet
its limited capacity makes it unable to capture the precise
relationship between the initial condition and the long-term
behavior or to fit a complex periodic pattern. However, its
simplicity also makes it a very good choice when transferring
to a test area since it is not sensible to overfitting (relatively
high bias, but also relatively low variance). It even outperforms
the mean error of our model with orthogonality loss in this
case: in detail, only 2 of the 5 instances of our model trained
with an orthogonality regularisation outperform long term
DMD on the test Orléans area in this setting. Indeed, long
term DMD suffers less from the shift of the distribution of the
data than the other models. However, we shall see next that
our model is still a much better prior for data assimilation.

TABLE III
FORECASTING MSE (×10−3) FOR DIFFERENT AREAS AND METHODS

Fontainebleau Orléans (irregular data)
Our model 1.98± 0.20 10.35± 0.97

(with orthogonality) (1.76) (8.93)
Our model 2.15± 0.28 12.06± 0.76

(no orthogonality) (1.85) (10.66)
LSTM 2.08± 0.11 12.78± 1.62

(1.99) (10.95)
Long term DMD 4.32 9.79

B. Forecasting with data assimilation

We showed in the last section that a trained model is able to
model the long-term reflectance dynamics of a pixel from only

TRANSACTIONS ON SIGNAL PROCESSING 11

2 observations (because of the delayed embedding). However,
one can obtain a much more accurate forecast by taking into
account a higher number of observations for a given pixel.
Namely, one can try to predict the future dynamics of a
pixel after time Ttrain given a time series (x̃t)1≤t≤Ttrain

of observed data representing its past behavior. We perform
this task using the variational cost from equation (31), where
the set H of observed time indices contains all positive
integers up to time Ttrain = 242 (i.e. the training data). We
investigate minimising this cost with no spatial regularisation
or with a simple Tikhonov regularisation favoring the spatial
smoothness of the resulting time series. More precisely, we
seek to solve

z∗0 = arg min
z0∈RN×d

Ttrain∑
t=0

||x̃t − xt(z0)||2 + βS(xt(z0)) (34)

where we again note xt(z0) = ψ(Ktz0), and S(x) is a
smoothness prior, penalising the square of the spatial gradient
of the resulting images through first order finite differences.
The case with no spatial regularisation simply corresponds to
β = 0. In this case, the optimisation variable z0 ∈ RN×d

can be seen as N independent vectors which do not have to
be computed in parallel, alleviating the memory requirements.
Once z∗0 has been computed, one can use it to extend the
generated time series by simply using higher powers of K.
We will refer to this technique as assimilation-forecasting. We
solve this equation with gradient descent, using z0 = ϕ(x̃0)
as a starting point, which is more effective than a random
starting point. Should z∗0 be equal to ϕ(x̃0), then this would
be equivalent to simply performing a forecast from the initial
state x̃0, which is not the case in practice. One can observe
assimilation-forecasting results of our model with and without
spatial prior in a 3-dimensional PCA projection of a 100×100
subcrop of the data in figure 6. Note that, even though all the
pixels correspond to a forest environment, one can visually see
that there are various long-term patterns among the pixels,
and that our model can reproduce all of them. In addition,
although the spatial prior has a modest influence, it makes the
predictions visibly smoother in space.

We also adapt this framework to the LSTM and to long
term DMD, yet in these adaptations we have to optimise on
the input initial condition rather than on the encoded initial
condition. Thus, equation (34) becomes:

x∗
0 = arg min

x0∈RN×2L

Ttrain∑
t=0

||x̃t − xt(x0)||2 + βS(xt(x0)) (35)

where xt(x0) is the prediction from either the LSTM or
long term DMD at time t from x0. For long term DMD,
the computational requirements are very light because of the
absence of an encoding or decoding. In contrast, for the
LSTM, a time increment necessitates going through a neural
network rather than performing a matrix-vector product, which
is far more costly in memory and time. In particular, since
using a Tikhonov spatial prior requires optimising on all pixels
in parallel, it is not possible to do so for as large images with
a LSTM dynamical prior as with our model as a prior.

Gr
ou

nd
tru

th

Day 1200 Day 1300 Day 1400 Day 1500 Day 1600

Pi
xe

lw
ise

 p
re

di
ct

io
ns

Sp
at

ia
lis

ed
 p

re
di

ct
io

ns

Fig. 6. Top: groundtruth images of Fontainebleau, corresponding to test times.
Middle: predictions made by our model by assimilating the time series up to
day 1200 with a trained model. Bottom: Same as middle but including a spatial
regularisation in the variational cost. The colors result from a 3-dimensional
principal component analysis (PCA) of the 10 spectral bands performed
globally on all the Fontainebleau data. This is much more informative than an
RGB composition, mainly because vegetation is very reflective in the near-
infrared domain.

We also try to forecast the Orléans time series in the same
way with the models trained on the forest of Fontainebleau
in order to test the zero-shot transfer performance of our
model. As previously stated, the Orléans data is irregularly
sampled, which makes it harder to predict with assimilation-
forecasting. All assimilation-forecasting performance of the
tested models with no spatial prior are reported in table IV.
Using assimilation-forecasting is far more effective than a sim-
ple prediction from an initial state, no matter which model is
used as the dynamical prior, as can be assessed by comparing
each model’s performance to those from table III.

The LSTM model is more expressive than ours and it
is therefore able to fit very precisely the data on which it
assimilates, yet it tends to overfit on these data, which is why
it performs significantly worse than ours on the extrapolation
data. On the other hand, long term DMD is a very simple
model, making it unable to fit the training data as well as the
other models, but it performs reasonably well when transferred
to the test Fontainebleau area. Our model performs the best
as a dynamical prior for assimilation-forecasting, especially
when trained with the orthogonality loss. Again, the gain of
performance due to the orthogonality loss is higher on the
test Orléans area. Qualitative results for a given pixel can
be observed on figure 7, where we show the assimilation-
forecasting with the best instance of each model. From this
figure, one can see that all models except for the linear one
are able to fit the assimilated (training) data very closely but
that the differences reside in their respective capacities to
extrapolate beyond the training data.

C. Interpolation through data assimilation

We now move on to performing interpolation tasks. As pre-
viously mentioned, the satellite image time series are usually
incomplete since most of the observations are too cloudy to
be exploited. Therefore, one often has to interpolate them in
time to work with regularly sampled data. Here, we perform
variational data assimilation, using our data-based model to
constrain the search. Our model is trained with the procedure

TRANSACTIONS ON SIGNAL PROCESSING 12

0 250 500 750 1000 1250 1500 1750
Time (days)

0.30

0.35

0.40

0.45

0.50

0.55
Re

fle
ct

an
ce

Linear model
Our model (with orthogonality)
Our model (without orthogonality)
LSTM
Groundtruth

Fig. 7. Assimilation-forecasting results with different dynamical priors for
the reflectance of the B7 band (in near infrared). The vertical line marks the
limit between the assimilated and the extrapolated data. The pixel of interest
is marked by a red dot on the Fontainebleau image from figure 5.

TABLE IV
ASSIMILATION-FORECASTING MSE (×10−3)

Fontainebleau Orléans (irregular data)
Our model 1.13± 0.04 3.46± 0.20

(with orthogonality) (1.08) (3.22)
Our model 1.23± 0.10 4.27± 0.55

(no orthogonality) (1.13) (3.78)
LSTM 1.50± 0.08 5.42± 0.84

(1.38) (4.60)
Long term DMD 2.13 4.33

described in section V-A, with the orthogonality loss term.
The variational cost, in the framework of equation (32), is
minimised jointly on the latent initial condition and on the
parameters of the pre-trained model.

Here, we test on raw incomplete data while our model
was trained only on interpolated data from the forest of
Fontainebleau. We consider the two areas in the blue squares
from figure 5. In both cases, we have at our disposal a set of
around 85 100 × 100 × 10 images, each with its associated
time index, irregularly sampled over a duration of 342 time
steps (i.e. nearly 5 five years). From this set, we randomly
mask half of the images which we use for the interpolation,
while keeping the other half as a groundtruth to evaluate
the quality of the computed interpolation. As a point of
comparison, we seek the periodic pattern that best matches
the available data, with a temporal smoothness prior using
Tikhonov regularisation in the time dimension. Namely, we
solve

arg min
x∈Rp×N×L

∑
t∈H

||x̃t − xt%p||2 + αSt(x), (36)

where p is the known pseudo-period of one year, we use the
notation t%p for the remainder of the Euclidean division of t
by p, and St is the temporal smoothness prior. This method,
which we call ”periodic interpolation”, is a strong baseline
since it explicitly leverages the physical knowledge of the
pseudo-period of the data. Yet, even if it was not trained on
this data but only fine-tuned on it, our model has better results,
as can be seen quantitatively in table V and for a particular
pixel of the forest of Orléans on figure 8. We show in the table
the mean and standard deviation of the mean squared errors
over 20 randomly computed masks.

0 250 500 750 1000 1250 1500 1750
Time (days)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Re
fle

ct
an

ce

Test data
Assimilated data
Periodic interpolation
Our interpolation (no spatial regularisation)
Our interpolation (with spatial regularisation)

Fig. 8. Comparison of interpolations for an Orléans pixel on the B7 band,
using periodic interpolation and using data assimilation with our model trained
on Fontainebleau data. We show an interpolation with no spatial regularisation
(as can be found in [61]) and an interpolation with an additional spatial
regularisation in the variational cost. The pixel of interest is marked by a
red dot on the Orléans image on figure 5.

Since the baseline method obtains much better results on
Fontainebleau than on Orléans, the former seems to be easier
to interpolate, yet the gap between this method and ours is
bigger on the Orléans area since it is closer to our model’s
training data.

TABLE V
INTERPOLATION MSE (×10−3) FOR DIFFERENT AREAS AND METHODS

Periodic Fontainebleau Orléans
Periodic assimilation 0.628± 0.128 2.37± 0.38

Our method 0.349± 0.154 2.22± 0.37
Our method 0.335± 0.146 2.13± 0.34

(with spatial prior)

D. Training on an irregular time series

As our final experiment, we investigate the training of
our architecture on an irregular version of the Fontainebleau
time series. This corresponds to the relatively simple setting
mentioned in subsection III-B since this time series results
from a regular sampling from which some observations have
been removed because they were not usable. We were therefore
able to optimise directly on the discrete operator K rather
than on its continuous counterpart L. As explained in subsec-
tion III-B, one just has to adapt the prediction, auto-encoding
and linearity loss terms by computing them only for time
delays for which the groundtruth is available. We were able
to obtain satisfying results in this way, although the computed
model is not as good as when training on interpolated time
series. This tends to suggest that training our model directly
on irregular time series can be a possibility when it is not
possible to perform an interpolation as a pre-processing step.

We found that training on irregular data makes our model
more subject to overfitting. Indeed, the model is not forced
to predict a smooth evolution anymore but only to be able to
correctly reconstruct some sparsely located points. Therefore,
all regularisation terms that we presented in subsection III-A
are very important to get the most out of this dataset. To

TRANSACTIONS ON SIGNAL PROCESSING 13

0 250 500 750 1000 1250 1500 1750
Time (days)

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Re

fle
ct

an
ce

Groundtruth (real data)
Groundtruth (interpolated)
Prediction (without spatial prior)
Prediction (with spatial prior)

Fig. 9. Forecasting results on the B7 band, with irregular data from the forest
of Fontainebleau. The considered pixel is marked by a blue dot on figure 5.

support this claim, we performed an ablation study in which
we tested different loss functions: the complete loss with the
4 terms from equations (18)-(21) and 4 versions where one
of the terms has been removed. For each version of the loss
function, we trained models on the Fontainebleau data from
5 different initialisations. We then retrieved the mean and
standard deviations of the mean squared errors obtained when
performing assimilation-forecasting as in subsection V-B. The
results are presented in table VI. One can see that the final
results on the Fontainebleau area largely depend on the model
initialisation, yet both the mean and the standard deviation of
the MSE are lower when using all loss terms.

TABLE VI
FORECASTING MSE (×10−3) OF MODELS TRAINED ON

IRREGULARLY-SAMPLED DATA WITH DIFFERENT LOSS FUNCTIONS

Fontainebleau Orléans
Complete loss 0.699± 0.130 3.480± 0.198

No orthogonality 0.922± 0.233 3.564± 0.301
No linearity 2.722± 0.576 5.454± 0.515

No auto-encoding 1.252± 0.128 3.770± 0.172
No prediction 3.514± 1.276 4.586± 0.232

We show qualitative results of the assimilation-forecasting
of irregular data using one of our models trained on irregular
data with the complete loss function in figure 9. We emphasize
that the blue curve is only a Cressman interpolation of the
groundtruth points and should not be seen as a groundtruth
here. Our model fits the training points well and, in some way,
performs a smoother interpolation than the Cressman method
that was used to obtain the regularly-sampled data.

We emphasize that, when tested on the same irregular
test data, models trained on interpolated Fontainebleau data
have better interpolation performance but lower forecasting
performance than models trained on irregular Fontainebleau
data. Using interpolation as a pre-processing step is not a
trivial choice since models trained on these data will learn
the interpolation scheme along with the true data. However, it
can be seen as a form of data augmentation.

VI. DISCUSSION

In the assimilation results presented in the previous section,
adding a regularisation on the spatial gradient generally only
results in a modest improvement of the mean squared error

compared to using no regularisation. Since the chosen regular-
isation was a very basic one, this suggests that our predictions
could gain more from spatial information. One could imagine
using a more complex spatial prior, e.g. a data-driven one
like in [50]. One could also use an image as the input of the
Koopman auto-encoder instead of a single pixel, which would
enable it to directly leverage spatial information (e.g. with a
convolutional architecture) but might be more difficult and less
suited to pixel-level downstream tasks. Another possibility is
to train a convolutional neural network to correct the residual
errors made when recomposing images from our pixelwise
model. This approach has been presented in [61] and it can
indeed improve the results. Yet, it is much less flexible and
elegant since such a CNN needs to be trained for every new
model or task considered, for which we do not necessarily
have enough time or data.

The weights of the prior terms in assimilation should be
chosen carefully, although a slightly inaccurate choice is
unlikely to severely affect the results. A good way to proceed,
when possible, is to use a set of validation data to set the
parameters α and β from equations (30)-(32). About the choice
of allowing the parameters of the pretrained model to vary
when performing data assimilation (i.e. solving the problem
from equation (31) or (32)), it seems from our experiments
that: (1) It is more beneficial to make the parameters vary when
working with data that differ from what could be found in the
training dataset. This can be seen as fine-tuning the model.
(2) Allowing the model parameters to vary is effective when
performing interpolation, but more dangerous for forecasting.
An explanation could be that a slightly modified model keeps
its tendency to generate smooth trajectories but not necessarily
its long-term stability. One could investigate extensions of the
framework of equation (32) with e.g. an orthogonality term to
make sure that the modified model remains stable.

VII. CONCLUSION

In this paper, we presented a method that enables to
jointly learn a Koopman invariant subspace and an associated
Koopman matrix of a dynamical system in a data-driven way.
We showed that this method enables to learn a continuous
representation of dynamical systems from discrete data, even
in difficult contexts where the data are sparsely or irregularly
sampled. In addition, it was demonstrated that a trained model
is not only useful to forecast the future state of a dynamical
system but also to solve downstream tasks. Indeed, we used
the forward prediction as a pretext task to learn general
useful information about the dynamical system in a self-
supervised way. Since our architecture is fully differentiable,
we showed how this information can be leveraged to solve
inverse problems using variational data assimilation.

A possible extension of our work is to introduce a control
variable in order to better predict the state of systems on
which we know that some information is lacking. For example,
precipitation data could be used as a control variable to better
predict the vegetation reflectance. For image data specifically,
one could make a better use of the spatial structure of the
images by learning a complex spatial prior that would be

TRANSACTIONS ON SIGNAL PROCESSING 14

coupled to the dynamical prior or by directly learning an
end-to-end model that takes into account both dynamical
and spatial information. Finally, a stochastic extension of
our framework would make it able to output distributions of
possible trajectories rather than single predictions.

APPENDIX A
PROOF OF THEOREM 1

Let us consider linear dynamics in a latent space given by
zt ∈ Rd, and

zt+1 = Kzt (37)

where K ∈ SO(d). K belongs to the special orthogonal
group, i.e. the group of invertible matrices satisfying KKT =
KTK = I, and with determinant equal to +1. First we note
that the norm of the iterates zt remain equal to that of the
initial condition z0. Indeed:

||zt+1||2 = ||Kzt||2 = zTt K
TKzt = zTt zt = ||zt||2 (38)

and it is easy to see by induction that every iterate’s norm is
equal to ||z0||. So the dynamics remain on a sphere of radius
||z0||. This is equivalent to saying that the matrix group SO(d)
acts on the sphere via matrix-vector multiplication.

Besides, SO(d) is a Lie group, whose Lie algebra so(d)
is the set of skew-symmetric matrices of size d. Furthermore,
as SO(d) is compact, the exponential map exp : so(d) →
SO(d), corresponding here to the matrix exponential, is sur-
jective [64]. This means that any special orthogonal matrix
can be written as the matrix exponential of a skew-symmetric
matrix L: exp(L) = K. Equivalently, a skew-symmetric
matrix logarithm of a special orthogonal matrix always exists.
In these conditions, we can see that zt+1 is the solution to the
following ODE, representing the same dynamics in continuous
time:

dz

dt
= Lz (39)

with z(0) = zt. We proceed to show that the dynamics
generated by this ODE must be periodic. L is a skew-
symmetric matrix, to which the spectral theorem applies: it
can be diagonalized in a unitary basis, and its eigenvalues
must be purely imaginary. There exists U ∈ U(d) such that:

L = U∗DU (40)

with D = diag(iα1, iα2, ..., iαd), αk ∈ R. By denoting Kτ =
exp(τL) (giving zt by matrix multiplication with z0), we can
write:

Kτ = exp(τL) = U∗ exp(τD)U (41)

If we write out Kτ
rs, denoting as ur the rth column of U, we

get

Kτ
rs = u∗

r exp(τD)us =

d∑
k=1

u∗kr exp(iταk)usk. (42)

The exponential factors are periodic with periods 2π
αk

. Hence
each entry of Kτ is a linear combination of periodic functions.
Mathematically, such a linear combination is only periodic
when all the ratios between pairs of periods of the summands
are rational. For all practical purposes, however, when numbers

are represented with finite precision in a computer, such a
linear combination can be itself seen as periodic. Finally, the
same argument applies for all entries, with a common period,
so the whole matrix Kτ is periodic. ■

REFERENCES

[1] M. Rußwurm, C. Pelletier, M. Zollner, S. Lefèvre, and M. Körner,
“Breizhcrops: a time series dataset for crop type mapping,” ISPRS-
International Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, vol. 43, pp. 1545–1551, 2020.

[2] G. Weikmann, C. Paris, and L. Bruzzone, “Timesen2crop: A million
labeled samples dataset of Sentinel 2 image time series for crop-type
classification,” IEEE J-STARS, vol. 14, pp. 4699–4708, 2021.

[3] X. Liu, F. Zhang, Z. Hou, L. Mian, Z. Wang, J. Zhang, and J. Tang,
“Self-supervised learning: Generative or contrastive,” IEEE Transactions
on Knowledge and Data Engineering, vol. 35, no. 1, pp. 857–876, 2021.

[4] C. Doersch, A. Gupta, and A. A. Efros, “Unsupervised visual represen-
tation learning by context prediction,” in IEEE ICCV, 2015, pp. 1422–
1430.

[5] S. Gidaris, P. Singh, and N. Komodakis, “Unsupervised representation
learning by predicting image rotations,” in ICLR, 2018.

[6] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework
for contrastive learning of visual representations,” in ICML. PMLR,
2020, pp. 1597–1607.

[7] Y. Wang, C. Albrecht, N. A. A. Braham, L. Mou, and X. Zhu, “Self-
supervised learning in remote sensing: A review,” IEEE GRSM, 2022.

[8] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models
are few-shot learners,” NeurIPS, vol. 33, pp. 1877–1901, 2020.

[9] G. Evensen, F. C. Vossepoel, and P. J. van Leeuwen, Data assimilation
fundamentals: A unified formulation of the state and parameter estima-
tion problem. Springer Nature, 2022.

[10] R. A. Borsoi, T. Imbiriba, P. Closas, J. C. M. Bermudez, and C. Richard,
“Kalman filtering and expectation maximization for multitemporal spec-
tral unmixing,” IEEE Geoscience and Remote Sensing Letters, vol. 19,
pp. 1–5, 2020.

[11] R. A. Borsoi, T. Imbiriba, and P. Closas, “Dynamical hyperspectral
unmixing with variational recurrent neural networks,” IEEE TIP, 2023.

[12] J. M. Lewis and J. C. Derber, “The use of adjoint equations to solve
a variational adjustment problem with advective constraints,” Tellus A,
vol. 37, no. 4, pp. 309–322, 1985.

[13] M. Nonnenmacher and D. S. Greenberg, “Deep emulators for differen-
tiation, forecasting, and parametrization in earth science simulators,”
Journal of Advances in Modeling Earth Systems, vol. 13, no. 7, p.
e2021MS002554, 2021.

[14] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” 2017.

[15] B. O. Koopman, “Hamiltonian systems and transformation in Hilbert
space,” Proceedings of the National Academy of Sciences, vol. 17, no. 5,
pp. 315–318, 1931.

[16] S. L. Brunton, M. Budišić, E. Kaiser, and J. N. Kutz, “Modern Koopman
theory for dynamical systems,” arXiv preprint arXiv:2102.12086, 2021.

[17] S. L. Brunton, B. W. Brunton, J. L. Proctor, and J. N. Kutz, “Koop-
man invariant subspaces and finite linear representations of nonlinear
dynamical systems for control,” PloS one, vol. 11, no. 2, p. e0150171,
2016.

[18] A. Frion, L. Drumetz, M. Dalla Mura, G. Tochon, and A. Aı̈ssa-
El-Bey, “Leveraging neural Koopman operators to learn continuous
representations of dynamical systems from scarce data,” in ICASSP.
IEEE, 2023, pp. 1–5.

[19] P. J. Schmid, “Dynamic mode decomposition of numerical and experi-
mental data,” Journal of fluid mechanics, vol. 656, pp. 5–28, 2010.

[20] C. W. Rowley, I. Mezić, S. Bagheri, P. Schlatter, and D. S. Henningson,
“Spectral analysis of nonlinear flows,” Journal of fluid mechanics, vol.
641, pp. 115–127, 2009.

[21] K. K. Chen, J. H. Tu, and C. W. Rowley, “Variants of dynamic mode
decomposition: boundary condition, Koopman, and Fourier analyses,”
Journal of nonlinear science, vol. 22, pp. 887–915, 2012.

[22] J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton, and J. N.
Kutz, “On dynamic mode decomposition: Theory and applications,”
Journal of Computational Dynamics, vol. 1, no. 2, pp. 391–421, 2014.

[23] J. N. Kutz, X. Fu, and S. L. Brunton, “Multiresolution dynamic mode
decomposition,” SIAM Journal on Applied Dynamical Systems, vol. 15,
no. 2, pp. 713–735, 2016.

TRANSACTIONS ON SIGNAL PROCESSING 15

[24] M. O. Williams, I. G. Kevrekidis, and C. W. Rowley, “A data–driven
approximation of the Koopman operator: Extending dynamic mode
decomposition,” Journal of Nonlinear Science, vol. 25, pp. 1307–1346,
2015.

[25] S. Klus, F. Nüske, S. Peitz, J.-H. Niemann, C. Clementi, and C. Schütte,
“Data-driven approximation of the koopman generator: Model reduction,
system identification, and control,” Physica D: Nonlinear Phenomena,
vol. 406, p. 132416, 2020.

[26] Y. Kawahara, “Dynamic mode decomposition with reproducing kernels
for Koopman spectral analysis,” NeurIPS, vol. 29, 2016.

[27] V. Kostic, P. Novelli, A. Maurer, C. Ciliberto, L. Rosasco, and M. Pontil,
“Learning dynamical systems via Koopman operator regression in
reproducing kernel Hilbert spaces,” NeurIPS, vol. 35, pp. 4017–4031,
2022.

[28] P. Bevanda, M. Beier, A. Lederer, S. Sosnowski, E. Hüllermeier, and
S. Hirche, “Koopman kernel regression,” arXiv:2305.16215, 2023.

[29] Q. Li, F. Dietrich, E. M. Bollt, and I. G. Kevrekidis, “Extended
dynamic mode decomposition with dictionary learning: A data-driven
adaptive spectral decomposition of the Koopman operator,” Chaos:
An Interdisciplinary Journal of Nonlinear Science, vol. 27, no. 10, p.
103111, 2017.

[30] E. Yeung, S. Kundu, and N. Hodas, “Learning deep neural network
representations for Koopman operators of nonlinear dynamical systems,”
in American Control Conference (ACC). IEEE, 2019, pp. 4832–4839.

[31] B. Lusch, J. N. Kutz, and S. L. Brunton, “Deep learning for universal
linear embeddings of nonlinear dynamics,” Nature communications,
vol. 9, no. 1, p. 4950, 2018.

[32] S. E. Otto and C. W. Rowley, “Linearly recurrent autoencoder networks
for learning dynamics,” SIAM Journal on Applied Dynamical Systems,
vol. 18, no. 1, pp. 558–593, 2019.

[33] J. Morton, A. Jameson, M. J. Kochenderfer, and F. Witherden, “Deep
dynamical modeling and control of unsteady fluid flows,” NeurIPS,
vol. 31, 2018.

[34] Y. Li, H. He, J. Wu, D. Katabi, and A. Torralba, “Learning compositional
Koopman operators for model-based control,” in ICLR, 2019.

[35] O. Azencot, N. B. Erichson, V. Lin, and M. Mahoney, “Forecasting
sequential data using consistent Koopman autoencoders,” in ICML.
PMLR, 2020, pp. 475–485.

[36] N. B. Erichson, M. Muehlebach, and M. W. Mahoney, “Physics-
informed autoencoders for lyapunov-stable fluid flow prediction,” arXiv
preprint arXiv:1905.10866, 2019.

[37] S. Pan and K. Duraisamy, “Physics-informed probabilistic learning of
linear embeddings of nonlinear dynamics with guaranteed stability,”
SIAM Journal on Applied Dynamical Systems, vol. 19, no. 1, pp. 480–
509, 2020.

[38] F. Fan, B. Yi, D. Rye, G. Shi, and I. R. Manchester, “Learning stable
koopman embeddings,” in 2022 American Control Conference (ACC).
IEEE, 2022, pp. 2742–2747.

[39] P. Bevanda, M. Beier, S. Kerz, A. Lederer, S. Sosnowski, and S. Hirche,
“Diffeomorphically learning stable koopman operators,” IEEE Control
Systems Letters, vol. 6, pp. 3427–3432, 2022.

[40] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in IEEE CVPR, 2016, pp. 770–778.

[41] A. Saxe, J. McClelland, and S. Ganguli, “Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks,” in ICLR, 2014.

[42] D. Xie, J. Xiong, and S. Pu, “All you need is beyond a good init:
Exploring better solution for training extremely deep convolutional
neural networks with orthonormality and modulation,” in IEEE CVPR,
2017, pp. 6176–6185.

[43] A. Krogh and J. Hertz, “A simple weight decay can improve general-
ization,” NeurIPS, vol. 4, 1991.

[44] N. Bansal, X. Chen, and Z. Wang, “Can we gain more from orthog-
onality regularizations in training deep networks?” NeurIPS, vol. 31,
2018.

[45] I. M. Navon, “Data assimilation for numerical weather prediction: a
review,” Data assimilation for atmospheric, oceanic and hydrologic
applications, pp. 21–65, 2009.

[46] X. Jin, L. Kumar, Z. Li, H. Feng, X. Xu, G. Yang, and J. Wang,
“A review of data assimilation of remote sensing and crop models,”
European Journal of Agronomy, vol. 92, pp. 141–152, 2018.

[47] K. H. Cho, Y. Pachepsky, M. Ligaray, Y. Kwon, and K. H. Kim,
“Data assimilation in surface water quality modeling: A review,” Water
Research, vol. 186, p. 116307, 2020.

[48] Q. Xu, B. Li, R. E. McRoberts, Z. Li, and Z. Hou, “Harnessing data
assimilation and spatial autocorrelation for forest inventory,” Remote
Sensing of Environment, vol. 288, p. 113488, 2023.

[49] R. N. Bannister, “A review of operational methods of variational and
ensemble-variational data assimilation,” Quarterly Journal of the Royal
Meteorological Society, vol. 143, no. 703, pp. 607–633, 2017.

[50] R. Fablet, L. Drumetz, and F. Rousseau, “Joint learning of variational
representations and solvers for inverse problems with partially-observed
data,” arXiv:2006.03653, 2020.

[51] A. Farchi, P. Laloyaux, M. Bonavita, and M. Bocquet, “Using machine
learning to correct model error in data assimilation and forecast applica-
tions,” Quarterly Journal of the Royal Meteorological Society, vol. 147,
no. 739, pp. 3067–3084, 2021.

[52] S. Cheng et al., “Machine learning with data assimilation and uncertainty
quantification for dynamical systems: a review,” arXiv:2303.10462,
2023.

[53] F. Takens, “Detecting strange attractors in turbulence,” in Dynamical
Systems and Turbulence: proceedings of a symposium held at the
University of Warwick 1979/80. Springer, 2006, pp. 366–381.

[54] W. J. Culver, “On the existence and uniqueness of the real logarithm of
a matrix,” Proceedings of the American Mathematical Society, vol. 17,
no. 5, pp. 1146–1151, 1966.

[55] R. A. Willoughby, “Solutions of Ill-Posed Problems (A. N. Tikhonov
and V. Y. Arsenin),” SIAM Review, vol. 21, no. 2, pp. 266–267, 1979.

[56] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based
noise removal algorithms,” Physica D: nonlinear phenomena, vol. 60,
no. 1-4, pp. 259–268, 1992.

[57] J. Kirkpatrick et al., “Overcoming catastrophic forgetting in neural
networks,” PNAS, vol. 114, no. 13, pp. 3521–3526, 2017.

[58] C. Sun, X. Qiu, Y. Xu, and X. Huang, “How to fine-tune BERT for
text classification?” in Chinese Computational Linguistics: 18th China
National Conference, CCL 2019, Kunming, China, October 18–20, 2019,
Proceedings 18. Springer, 2019, pp. 194–206.

[59] B. R. Noack, K. Afanasiev, M. Morzyński, G. Tadmor, and F. Thiele, “A
hierarchy of low-dimensional models for the transient and post-transient
cylinder wake,” Journal of Fluid Mechanics, vol. 497, pp. 335–363,
2003.

[60] S. Jutz and M. Milagro-Pérez, “Copernicus: the european Earth obser-
vation programme,” Revista de Teledetección, no. 56, pp. V–XI, 2020.

[61] A. Frion, L. Drumetz, G. Tochon, M. D. Mura, and A. A. E. Bey,
“Learning Sentinel-2 reflectance dynamics for data-driven assimilation
and forecasting,” in EUSIPCO 2023, 2023, pp. 1–5.

[62] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[63] S. Le Clainche and J. M. Vega, “Higher order dynamic mode decom-
position,” SIAM Journal on Applied Dynamical Systems, vol. 16, no. 2,
pp. 882–925, 2017.

[64] T. Bröcker and T. Tom Dieck, Representations of compact Lie groups.
Springer Science & Business Media, 2013, vol. 98.

	Introduction
	Background and related works
	Koopman operator theory
	Orthogonality regularisation
	Variational data assimilation

	Proposed methods
	Neural network design and training
	Handling irregular time series
	Variational data assimilation using our trained model

	Experiments on simulated data
	Interpolation from low-frequency regular data
	Learning to predict forward and backward

	Experiments on real Sentinel-2 time series
	Forecasting
	Forecasting with data assimilation
	Interpolation through data assimilation
	Training on an irregular time series

	Discussion
	Conclusion
	Appendix A: Proof of Theorem 1
	References

