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Neural Koopman prior for data assimilation
Anthony Frion, Student Member, IEEE, Lucas Drumetz, Member, IEEE, Mauro Dalla Mura, Senior

Member, IEEE, Guillaume Tochon, Abdeldjalil Aı̈ssa El Bey

Abstract—With the increasing availability of large scale
datasets, computational power and tools like automatic differ-
entiation and expressive neural network architectures, sequential
data are now often treated in a data-driven way, with a dynamical
model trained from the observation data. While neural networks
are often seen as uninterpretable black-box architectures, they
can still benefit from physical priors on the data and from
mathematical knowledge. In this paper, we use a neural network
architecture which leverages the long-known Koopman operator
theory to embed dynamical systems in latent spaces where
their dynamics can be described linearly, enabling a number
of appealing features. We introduce methods that enable to train
such a model for long-term continuous reconstruction, even in
difficult contexts where the data comes in irregularly-sampled
time series. The potential for self-supervised learning is also
demonstrated, as we show the promising use of trained dynamical
models as priors for variational data assimilation techniques, with
applications to e.g. time series interpolation and forecasting.

Index Terms—Dynamical systems, self-supervised learning,
Koopman operator, auto-encoder, remote sensing, data assimi-
lation, Sentinel-2.

I. INTRODUCTION

The evergrowing amount of historical data for scientific
applications has recently enabled to model the evolution of
dynamical systems in a purely data-driven way using powerful
regressors such as neural networks. While many of the most
spectacular results obtained by neural networks rely on the
paradigm of supervised learning, this paradigm is limited in
practice by the available amount of labelled data, which can
be prohibitively costly and difficult to obtain. For example, a
number of Earth observation programs that have been launched
in the last decade provide huge amounts of sequential (though
generally incomplete) satellite multi/hyperspectral images cov-
ering the entire Earth’s surface. However, few accurate and
reliable labels exist for land cover classification of the ground
pixels, although some efforts have been made, e.g. for crop
type classification and segmentation [1], [2].

In this context, one can leverage another machine learning
paradigm called self-supervised learning (SSL) [3]. It consists
in training a machine learning model to solve a pretext task
that requires no labels in order to learn informative representa-
tions of the data which can be used to solve downstream tasks.
When dealing with image data, possible pretext tasks include
predicting the relative positions of two randomly selected
patches of a same image [4] and predicting which rotation
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angle has been applied to an image [5]. Many SSL approaches
can be labelled as contrastive SSL [6], which means that they
aim at learning similar representations for images that are
related by transformations such as rotations, crops and color
transfers. We refer the interested reader to [7] for a review of
self-supervised learning for remote sensing applications.

In our case, since we are dealing with sequential data,
we use a natural pretext task which consists in being able
to forecast the future state of the data from a given initial
condition. This is similar in spirit to recent approaches in
natural language processing where a model is trained on
completing texts and then used to perform various tasks in
zero/few shot, e.g. [8]. Our trained model is used for down-
stream tasks which can be formulated as inverse problems
such as denoising and interpolation. We solve these tasks
by minimising a variational cost which uses a trained model
as a dynamical prior, contrarily to classical data assimilation
techniques [9]–[11] which leverage hand-crafted dynamical
priors that require domain knowledge, and are not always
available. Besides, these priors should be differentiable since
any first order optimization algorithm tackling such a problem
must be able to differentiate through repeated compositions of
the model, which requires careful implementation [12] and is
out of reach for many operational systems relying on complex
dynamical models [13]. In contrast, neural emulators of the
dynamics are de facto implemented in packages supporting
automatic differentiation, e.g. Pytorch [14], Tensorflow, JAX,
etc. providing effortless access to model derivatives.

For all these reasons, in this paper, we first aim at modelling
dynamical systems from observation data using differentiable
models. We assume that the state of a dynamical system
can be described by a d-dimensional state variable x ∈ D
with D ⊂ Rd. Then, assuming the system is governed by
an autonomous ordinary differential equation (ODE), one can
describe its (discrete) dynamics by a function F : D → D
such that xt+1 = F (xt). Although F might be any non-linear
function, Koopman operator theory [15] tells us that the model
can be described by a linear operator acting in the space of
observation functions. Namely, given an observation function
f : D → R, the so-called Koopman operator K maps an
observation function f to its composition with the dynamics:

Kf(xt) , (f ◦ F )(xt) = f(xt+1). (1)

From this definition, K is linear because of the linearity of the
function space, i.e. for any f, g : D → R:

K(f + g)(xt) = (f + g)(xt+1) = Kf(xt) +Kg(xt). (2)

Yet, the function space being infinite dimensional, the advan-
tage of the linearity of K comes at the cost of an infinite
dimension, which makes it difficult to model in practice. Thus,



TRANSACTIONS ON SIGNAL PROCESSING 2

the key to finding a finite-dimensional representation of the
Koopman operator is to look for Koopman invariant subspaces
(KIS) [16], i.e. subsets of the function space that are stable by
the Koopman operator. There exists a variety of such spaces,
but one needs to retrieve nontrivial KIS that give information
about the dynamics of the state variable.

Once a KIS is found, the restriction of the Koopman
operator to it is a matrix K which can be interpreted with
classical linear algebra tools. Notably, each of the complex
eigenvalues of K is associated to an observation function that
is located in the subspace. Let us denote by K = VΛV−1

the complex eigendecomposition of K, with V the complex
eigenvectors and Λ a complex diagonal matrix containing the
associated eigenvalues. Predicting τ steps in the future through
the Koopman operator means multiplying the initial latent
state vector (obtained with the functions from the invariant
subspace) by Kτ = VΛτV−1. Therefore, one can see that the
eigenvectors associated with an eigenvalue of modulus higher
than one will have an exponentially growing contribution,
while those with an eigenvalue of modulus smaller than one
will exponentially vanish. Only eigenvalues of modulus very
close to one will approximately preserve the norm of the latent
state in the long run, which might be crucial for time series
with clear seasonality or periodicity.

Our approach fits into the Koopman operator framework to
model dynamical systems from data. More specifically, our
contributions are the following:

1) We perform a synthetic review of the different ap-
proaches that have recently been used to compute data-driven
approximations of the Koopman operator, emphasizing on the
limitations of each of the successive categories of approaches.

2) We refine and extend our own approach to learn a neural
Koopman operator, first sketched in [17], with a discussion
on the interest of having a (close to) orthogonal Koopman
operator and on handling irregular time series.

3) We present several ways to use our model as a fully-
differentiable dynamical prior in data assimilation in order to
solve inverse problems using automatic differentiation.

4) We present associated results on simulated as well as
real-world data. We notably perform a frequency upsampling
experiment on fluid flow data. We also show interpolation ex-
periments on satellite image time series using variational data
assimilation with our model as a dynamical prior, including in
hard scenarios such as irregularly sampled data and transfer
to new areas unseen during training.

II. BACKGROUND AN RELATED WORKS

A. Koopman operator theory
In short, the Koopman operator theory [15] states that any

dynamical system can be described linearly at the cost of
an infinite dimension. However, some methods seek to find
a finite-dimensional representation of the Koopman operator.
Notably, Dynamic Mode Decomposition [18] (DMD) consists
in finding a matrix A such that the residual rt in

xt+1 = Axt + rt (3)

is as small as possible in the least squares sense. This
approach has been theoretically linked to the Koopman mode

decomposition in [19], and has known many different variants,
e.g. [20]–[22]. However, it relies on the implicit assumption
that the set of observation functions constituting the identity
of the state space is a Koopman invariant subspace (KIS).
This assumption can be useful in regions of the state space
where the dynamics are close to linear, but it is very unlikely
to be generally true. In order to mitigate this shortcoming,
the Extended Dynamic Mode Decomposition [23] (EDMD)
uses a manually designed dictionary of observable functions
from the dynamical system. Common choices of dictionaries
include polynomials of the observed variables up to a given
degree and sets of radial basis functions. These dictionaries all
include the identity of the state space, which trivially allows
to make predictions in the state space by projection. Choosing
to include only these functions in the dictionary of functions
amounts to performing a classical DMD.

Being a generalization of DMD, EDMD can give satis-
factory results when the chosen dictionary of functions is
well suited to the considered dynamical system. However, a
hand-designed dictionary of observables might still not be the
most optimal choice, and it is typically very high dimensional.
For these reasons, subsequent works have proposed to auto-
matically learn a low-dimensional dictionary of observation
functions through machine learning. For example, there is
a rich literature on leveraging Reproducing Kernel Hilbert
Spaces to obtain approximations of the Koopman operator with
some interpretability and theoretical guarantees, e.g. [24]–[26].

Other methods [27], [28] jointly learn the parameters of a
neural network which computes a set of observation functions
and a matrix K which is the restriction of the Koopman
operator to this set. To be able to retrieve the evolution of
the state variable from the KIS, they constrain the inclusion of
the state space in the subspace along with the learnt functions.
This is a convenient trick, yet it restricts those methods since
it means assuming that there exists a low-dimensional KIS
containing the state functions.

In order to not rely on this assumption anymore, some
other works [17], [29]–[33] do not constrain a trivial link
between the KIS and the state space, and instead train another
neural network to reconstruct the state variables from the
learnt observation functions. In this case, the network learning
the KIS and the network that reconstructs the state space
from it form an autoencoder. This framework is theoretically
more powerful since it only assumes a nonlinear relationship
between the KIS and the state space.

Among these methods, [29], which we refer to as Deep-
Koopman in this paper, learns an auxiliary network that
outputs eigenvalues as a function of the encoded state of the
system while others learn a fixed matrix K. [33] learns two
distinct matrices for the forward and backward evolutions, in
order to favor the consistency of the latent dynamics. A good
indicator for the stability of long run predictions is that the
eigenvalues of the learnt Koopman matrix should be located
on the unit circle, which may encourage us to look for matrices
with such eigenvalues. Among those are orthogonal matrices,
which have many desirable properties. Most importantly, they
lead to constrain the dynamics to be periodic. We detail the
reason why this is true in Appendix A.
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B. Orthogonality regularisation

The promotion of orthogonality for the weight matrices
of linear layers in neural networks has been long studied.
This idea is related to the well-known vanishing gradient
and exploding gradient issues. Those get more important as
the computational graph gets deeper, e.g. for recurrent neural
networks and for very deep residual neural networks [34].

[35] showed that the initialisation of weights as a random
orthogonal matrix can be much more effective than the classi-
cal random Gaussian initialisation. It was also advocated that
the orthogonality of the weight matrices should be promoted
during the training phase too. [36] introduced a soft regulari-
sation term for weight matrices W:

||WWT − I||2. (4)

This term, which is to be used in a similar way to weight
decay [37], was shown to significantly improve the final
performance of neural networks in computer vision tasks.
[38] compared this term with similar orthogonality-promoting
expressions, and showed that they all all brought substantial
gains in the performance of deep residual networks.

In our case, constraining the Koopman operator to be
orthogonal leads to periodic dynamics, which are of course
stable in the long run and useful to model seasonality in time
series. Yet, working with an exactly orthogonal K may not
always be desirable, for instance when the data are noisy, or
the time series is not exactly periodic (e.g. when there are
interannual variations or slower trends in seasonal dynamics),
or even not periodic. For these reasons, we will resort to a
soft penalization as in (4) instead of enforcing exactly the
orthogonality of K.

C. Variational data assimilation

Variational data assimilation can be used to solve inverse
problems involving time series for which one has at disposal
a set of possibly noisy and incomplete trajectories x̃ as well as
a dynamical prior and/or a regularisation R on the distribution
of the solution. It consists in finding the complete trajectory
that minimizes a variational cost C of the form

C(x) = D(x, x̃) +R(x) (5)

where D is a chosen distance, such as a norm of the difference
between two elements (restricted to dimensions on which x̃ is
defined). In practice, when all terms are smooth, the cost can
be minimised by gradient descent or related first order algo-
rithms. The gradient can be obtained either analytically when
tractable, or using automatic differentiation, as made easily
accessible by modern computing frameworks, e.g. Pytorch.

Alternatively, one can restrain the search on a set of tra-
jectories defined by a model M : x0 → x. In this case, one
formulates a cost on the input of the model:

C(x0) = D(M(x0), x̃) +R(M(x0)). (6)

A conceptual view of constrained variational data assimilation
is displayed on Figure 1. We refer the interested reader to [9]
for an extensive review on data assimilation.

Time

Quantity of
interest

Choice of the
initial condition

Data
samples

Optimal
trajectory

Model
trajectories

Fig. 1. Visual representation of constrained variational data assimilation. It
consists in choosing the initial condition from which the model’s trajectory
minimises the distance to the sampled data. One could also include a prior in
the variational cost on the initial condition, such as the trajectory smoothness.

Fig. 2. Schematic view of our architecture.

While variational data assimilation is traditionally used with
priors R that were constructed from physical knowledge of
the studied dynamical system, recent works [13], [39] have
attempted to leverage machine learning tools to learn a prior
in a completely data-driven way. In the second case, the
prior is jointly learned with a gradient-based optimization
algorithm, further improving performance. Other works [40]
have proposed to learn a data-driven surrogate model to
predict the residual error of an existing physics-based model,
which finally results in a hybrid model. Those models have
the advantage of being fully differentiable and implemented
in an automatic differentiation framework (e.g. Pytorch or
Tensorflow), which means that their associated cost can be
differentiated automatically via the chain rule. Overall, linking
data assimilation and machine learning is a very hot topic,
which has been recently reviewed in [41].

III. PROPOSED METHODS

A. Neural network design and training
Our architecture for a neural Koopman operator relies on

three components : an encoding neural network φ with a de-
coder ψ and a matrix K ∈ Rd×d. It is graphically represented
in Figure 2. The idea is that (φ, ψ) learns the relationship
between the state space and a learnt d-dimensional (approx-
imately) Koopman invariant subspace, while K corresponds
to the restriction of the Koopman operator to this space. Our
goal is to be able to make long-term predictions of the state by
successive multiplications of the encoded initial state, followed
by a decoding to come back to the original data space. This
translates in equations as

ψ(Kτφ(xt)) = xt+τ (7)
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for any initial condition xt and time increment τ . We empha-
size that τ does not necessarily have to be an integer since one
can easily compute noninteger powers of K by using its matrix
logarithm, as explained in section III-B. The time increment τ
could also very well be negative, enabling to predict the past
state of a dynamical system from future states.

Our training data will be constituted from N time series
of length T , which we denote as (xi,t)1≤i≤N,0≤t≤T+1. Note
that these time series could be manually chosen and possibly
overlapping cuts of longer time series. A first processing step
is to augment the state space with its discrete derivatives xi,t−
xi,t−1. We therefore work with the variable y defined as

yi,t =
(
xi,t+1 xi,t+1 − xi,t

)T
(8)

for index t ∈ [[0, T ]]. This reformulation makes it easier to
predict the future state. Indeed, given that the data varies
smoothly, one could expect that xi,t + (xi,t − xi,t−1) is a
good approximation of xi,t+1 (this formally looks like an
explicit Euler scheme to integrate an underlying infinitesimal
representation formulated as an ODE). This intuition is further
theoretically justified by Takens’ theorem [42], which, infor-
mally, states that the evolution of a dynamical system gets
more and more predictable when we know more time lags
from an observed variable of the system. Using this augmented
state is therefore useful when the observed x is not the state
variable of the system. In the following, we write our loss
function using x even though it can be written in the same
way with an augmented state y.

We denote by Θ the set of all the trainable parameters of
our architecture. Θ includes the coefficients of K along with
the trainable parameters of φ and ψ. In order to obtain the
desired behavior corresponding to equation (7), we train the
architecture using the following loss terms:
• The prediction term Lpred ensures that the long-term

predictions starting from the beginning of each time series
are approximately correct. Some works [30] weigh this
loss with an exponentially decaying factor that gives more
importance to short term predictions, but we choose to
penalize the errors on all time spans equally:

Lpred(Θ) =
∑

1≤i≤N

∑
1≤τ≤T

||xi,τ −ψ(Kτφ(xi,0))||2. (9)

• The auto-encoding term Lae is the classical loss for auto-
encoders, making sure that ψ ◦ φ is close to the identity:

Lae(Θ) =
∑

1≤i≤N

∑
0≤t≤T

||xi,t − ψ(φ(xi,t))||2. (10)

• The linearity term Llin is a regularisation term which
favors the linearity of the learnt latent dynamics. It is
useful to favor the long-term stability, which is not always
guaranteed by the prediction loss alone:

Llin(Θ) =
∑

1≤i≤N

∑
1≤τ≤T

||φ(xi,τ )−Kτφ(xi,0)||2. (11)

• The orthogonality term is a second regularisation term,
prompting the complex eigenvalues of K to be located
close to the unit circle, which favors the long-term
stability of the latent predictions. It is particularly helpful

when the dynamics are close to periodic, as explained in
Appendix A. ||.||F denotes the Frobenius norm.

Lorth(K) = ||KKT − I||2F (12)

Although it was mentioned in [17] that training a neural
architecture directly to long-term predictions with large values
of τ leads to bad local minima, we found that it can actually
lead to good results with a careful choice of the learning rate.
In cases where it is not effective, we recommend training the
architecture for short-term prediction first, as explained in [17].

B. Handling irregular time series

When working with irregular time series, it is not possible
to augment the state with delayed observations as described
in equation (8). Yet, the training can still be performed in a
way similar to the case of regular time series. One has to
distinguish two cases : (1) the data has a regular sampling
with missing values (i.e. all temporal distances are multiples
of a reference duration) and (2) the time increments between
the sampled points are completely arbitrary.

If the irregular time series result from a regular sam-
pling with missing values, then one can denote these data
by (xi,t)1≤i≤N,1≤t≤T , with the binary observation variable
(Hi,t)1≤i≤N,1≤t≤T being so that Hi,t = 1 if xi,t is actually
observed and 0 otherwise. Then, one can trivially multiply
each term of the prediction, auto-encoding and linearity losses
from equations (9)-(11) by the corresponding binary coeffi-
cient Hi,t to train a model for these irregular data.

When the data is sampled at arbitrary times, one has to adopt
a continuous formulation. In this case, one does not work with
the discrete K but rather with its continuous counterpart L,
which is related to it through the matrix exponential

K = exp(L) (13)

and can be seen as its corresponding infinitesimal evolution.
A sufficient condition to guarantee the existence of such a
matrix L is that K (always diagonalizable in C) has no real
negative eigenvalue [43]. In our case, we constrain K to be
close to orthogonal and initialize it to the identity. Thus, the
eigenvalues are very unlikely to become real negative (in
addition, this set has zero Lebesgue measure), and this never
happened in our experiments.

In that case, we can equivalently switch to a continuous
dynamical system whose evolution can be described in a
Koopman invariant subspace by

dφ(x(t))

dt
=
dz(t)

dt
= Lz(t). (14)

In this case, it is a well known result that

z(t0 + τ) = exp(τL)z(t0) (15)

for any time increment τ ∈ R. In particular, with τ = 1, we
find the previous definition of K from equation (13).

Let us suppose that we train a model on N irregular time
series. For each index 1 ≤ i ≤ N , we denote the trajectory xi
as a list of Ti time-value pairs (ti,k,xi,k)0≤k≤Ti . Without loss
of generality, one can suppose that the pairs are ordered by
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increasing times, with ti,0 = 0. The set of trainable parameters
Θ now includes the parameters of (φ, ψ) and the coefficients
of the infinitesimal evolution matrix L. Then, one can rewrite
the prediction, auto-encoding and linearity loss terms as:

Lpred(Θ) =
∑

1≤i≤N

∑
1≤k≤Ti

||xi,k − ψ(Kti,kφ(xi,0))||2 (16)

Lae(Θ) =
∑

1≤i≤N

∑
0≤k≤Ti

||xi,k − ψ(φ(xi,k))||2 (17)

Llin(Θ) =
∑

1≤i≤N

∑
1≤k≤Ti

||φ(xi,k)−Kti,kφ(xi,0)||2 (18)

where we use the slightly abusive notation Kt = exp(tL)
for any non-integer time increment t. Now, one can use
these rewritten loss terms in conjunction with the unchanged
orthogonality loss to learn from irregularly-sampled data in
the same way as from regularly-sampled ones, although it is
likely to be a more challenging learning problem.

The continuous formulation is actually more general than
the discrete one, but we work with a discrete formulation when
possible for convenience and because it gave better results in
our experiments. Note that training a model with a discrete
formulation does not mean that we give up on the continuous
modelling. Indeed, when one has a trained discrete matrix of
evolution K at hand, it is possible to switch to continuous
dynamics as soon as a matrix logarithm exists [43]. In that
case, the complex eigendecomposition of K writes

K = VΛV−1 (19)

with V ∈ Cd×d and Λ ∈ Cd×d a diagonal matrix. Then, L
can be obtained by computing the principal logarithm of each
(necessarily not real negative) diagonal coefficient of Λ:

L = V log(Λ)V−1. (20)

One can easily check that L then verifies equation (13), and
use this matrix to query the state of the latent system at any
time from a given initial condition using equation (15).

C. Variational data assimilation using our trained model

Once a model has been trained for a simple prediction
task, it is supposed to hold enough information to help solve
a variety of inverse problems involving the dynamics, like
interpolation or denoising. To leverage this knowledge, we
resort to variational data assimilation, using the trained model
as a dynamical prior instead of a more classical hand-crafted
physical prior. We describe hereafter a general formulation
for inverse problems involving time series of images and two
different methods to solve them. Although we consider images
specifically in our experiments, the methods can be used for
any time series by ignoring or adapting the spatial prior.

Suppose that we are working on images containing N pixels
and L spectral bands (L being 3 for RGB images or higher for
multi/hyperspectral images), defined on a set of T time steps
with some missing values. We denote this data by (x̃t)t∈H
with H ⊂ [[0, T ]]. For each t ∈ H , x̃t ∈ RN×L. Our objective
is to reconstruct (and possibly extend) a complete time series
x ∈ R(T+1)×N×L.

The first method that we propose is a weakly-constrained
variational data assimilation, where we minimise a variational
cost on x which is composed of at most three components: a
term of fidelity to the available data, a dynamical prior which
is given by our model, and a spatial prior. The variational cost
on x can thus be expressed as∑
t∈H
||xt − x̃t||2 + α

T−1∑
t=0

||xt+1 −M(xt)||2 + βS(x) (21)

where M(xt) = ψ(Kφ(xt)) and S is the spatial prior. In
practice, S can be a classical spatial regularisation leading
to spatially smooth images, such as a Tikhonov regularisa-
tion [44] or the total variation [45]. We emphasize that the
optimized variable here is the whole time series x. The first
term of equation (21) is the data fidelity term (first term of
equation (5)) and the other two terms form together the prior
or regularisation term (second term of equation (5)).

In some cases, it can be useful to consider a more con-
strained optimization. This is especially true when dealing with
very noisy data, in which case the data fidelity term can lead
to overfitting the noise even if a high weight is put on the
prior terms. We do not optimize on x anymore but rather on
the latent initial state z0 of the prediction, so that only values
of x that can be produced by our data-driven dynamical prior
are considered. In this way, we seek to solve

z∗0 = arg min
z0∈RN×d

∑
t∈H
||x̃t − xt(z0)||2 + βS(x(z0)), (22)

where, for time t, xt(z0) = ψ(Ktz0). After finding the
optimal initial condition z∗0, one can simply compute the
associated predictions at any time t using xt(z0). Note that
z0 belongs to RN×d since we assumed that the input of φ is
the reflectance vector of a single pixel of an image, so that
the model forecasts the dynamics of all pixels in parallel.

The constrained and unconstrained assimilations have dif-
ferent advantages and weaknesses. The unconstrained assim-
ilation is generally useful when x̃ is close to x, i.e. when
the observed data are complete and when the signal-to-noise
ratio is large enough. In this case, it can efficiently provide
small corrections to the noise in the dynamics. The constrained
optimization, however, is not useful in this case since it is
not able to reconstruct the exact observed data. Therefore,
when the error due to the noise has a magnitude smaller or
similar to the reconstruction error of the model, the constrained
optimisation is not able to perform a relevant denoising. On
the other hand, the constrained assimilation is very effective
to deal with sparse or very noisy observed data. Indeed, any
prediction made by the model should be a possible trajectory
of the dynamical system, which means that the result of
this optimization can be seen in some way as the plausible
trajectory which best matches the observed data.

Another possibility in our framework is to perform a con-
strained assimilation like in equation (22) but with a joint
optimization of the initial latent space and of the parameters
of the model. Thus, the optimisation problem becomes

min
z0,K,ψ

∑
t∈H
||x̃t − xt(z0)||2 + βS(x(z0)), (23)
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where, again, xt(z0) = ψ(Ktz0). While this problem would
be very difficult to solve when starting with random variable
initializations, using the parameters of a pretrained model as
initial values gives good results. Notably, adjusting the model
parameters enables to fit the available data much better, which
is especially useful when working on a set of data which
differs from the model training data. This strategy corresponds,
in machine learning parlance, to transfer learning or solving
a downstream task using the self-supervised trained model.
However, one must be careful not to make the model overfit
the assimilated data at the cost of its general knowledge, which
could be related to the well-known catastrophic forgetting [46].
Thus, it is critical to use a very low learning rate as commonly
described in the literature, e.g. [47].

IV. EXPERIMENTS ON SIMULATED DATA

Here, we present a benchmark of our method against
the method of [29], which we call DeepKoopman, on a 3-
dimensional dynamical system arising from fluid dynamics.

The nonlinear fluid flow past a cylinder with a Reynolds
number of 100 has been a fluid dynamics benchmark for
decades, and it was proven by [48] that its high-dimensional
dynamics evolves on a 3-dimensional attractor with the model:

ẋ = µx− y − xz
ẏ = µy + x− yz
ż = −y + x2 + y2.

(24)

This dynamical system is not periodic, yet it exhibits a stable
limit cycle and an unstable equilibrium.

In our experiments, we use the training and test data
from [29], which have been generated by numerically in-
tegrating equations (24). All of our models trained on this
dynamical system have the same architecture: the encoder φ
(resp. decoder ψ) is a Multi-Layer Perceptron (MLP) with 2
hidden layers of size 256 and 128 (resp. 128 and 256), with the
dimension of the latent space and matrix K being 16. Their
reported mean squared errors are averaged over all variables,
time steps and trajectories from the test set.

A. Interpolation from low-frequency regular data

We first show the ability of our architecture to model a
continuous dynamical system even when trained on discrete
data. As mentioned in subsection III-B, once a model is
trained, one can retrieve its learnt Koopman matrix K and
compute its corresponding infinitesimal operator L. Then, one
can analytically compute a new discrete matrix corresponding
to an advancement by any desired time increment. Concretely,
suppose that ω̄ is a chosen target frequency (we choose
ω̄ = 50 Hz here). We train a model on training time series
sampled at a lower frequency ω, obtaining in particular a
Koopman matrix K. Then, we compute the discrete operator
K̄ = exp (ωω̄ log K) = exp (ωω̄L), and use it to perform
predictions at a frequency ω̄ from the initial states of the test
time series. Finally, we compute a mean squared error between
the high-frequency groundtruth and predictions.

We report in Table I the results obtained with various
training frequencies ω. Note that these models are trained
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Fig. 3. Upsampling experiment on fluid flow data. We learn a model on
low-frequency data and then use the continuous representation to make a
high-frequency prediction which we compare to the groundtruth. Top: our
model and DeepKoopman compared to the groundtruth trajectory. Bottom:
corresponding mean squared errors over time, in a logarithmic scale.

without the orthogonality loss term from equation (12) since
it enabled better forecasting performance for this dataset. We
compare our results against DeepKoopman models trained on
the same data and for which we interpolated linearly inside
of the latent space between the low-frequency time steps to
perform a high-frequency prediction. One can see that the
quality of our high-frequency predictions depends very little on
the training frequency. In contrast, the MSE for DeepKoopman
is on par with ours for the highest training frequencies but
increases exponentially as the training frequency decreases.
Indeed, being specialised in discrete predictions, the Deep-
Koopman model does barely better than a linear interpolation
of the state variable when one tries to use it to interpolate.
Our model, however, successfully combines the information
of many low-resolution time series to construct a faithful
continuous representation of the dynamics. Visual results for
one trajectory can be observed on Figure 3.

B. Learning to predict forward and backward

Here, we investigate the ability of our models to perform
backward predictions after being trained on forward predic-
tion. In theory, one can simply invert the learnt matrix K.
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TABLE I
50 HZ PREDICTION OF FLUID FLOW DYNAMICS WITH TRAINING DATA

SAMPLED AT DIFFERENT FREQUENCIES

Training DeepKoopman Our method
sampling frequency interpolation MSE interpolation MSE

50 Hz 1.21× 10−6 1.65× 10−6

25 Hz 1.44× 10−6 1.11× 10−6

10 Hz 1.36× 10−5 1.39× 10−6

5 Hz 2.15× 10−4 1.62× 10−6

2.5 Hz 2.31× 10−3 1.66× 10−6
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Fig. 4. Backward reconstructions of a test time series from a model trained
with an orthogonality loss term (orthogonal) and a model trained without it
(unregularised). Both models were trained on high-frequency forecasting.

This is not a possibility of the DeepKoopman framework since
it computes a new matrix K as a function of the input at
each iteration, and one would need to invert the matrix of
the preceding state (which one does not have access to) to
predict backwards. Table II reports our mean squared errors:
in this table, ”HF” means that the model was trained on high-
frequency data (50 Hz) while ”LF” means that it was trained
on low-frequency data (2.5 Hz). One can see that the backward
predictions have significantly higher errors in average than
forward predictions. This matches the observation by [33] that
naively inverting a learnt Koopman matrix is generally not
effective. In particular, our model trained on low-frequency
forecasting with no orthogonality term quickly diverges from
the groundtruth when performing backward predictions. How-
ever, our model with an orthogonality regularisation trades
reduced forecasting performances for the ability to run better
backward reconstructions although it was not trained on this
task. Figure 4 shows a typical example for which the model
with an orthogonal matrix sticks to the time series while the
unregularised one diverges from it.

As will be shown in subsequent experiments, the models
trained with an orthogonality regularisation are more stable
and versatile than their unregularised counterparts in general,
making them more suitable for downstream tasks.

TABLE II
MEAN SQUARED ERRORS FOR FORWARD AND BACKWARD PREDICTIONS

Task \ Model Unregularised With orthogonality
Forward prediction (HF) 1.65× 10−6 5.50× 10−6

Backward prediction (HF) 1.88× 10−4 1.48× 10−4

Forward prediction (LF) 1.66× 10−6 8.89× 10−6

Backward prediction (LF) 0.123 3.24× 10−5

Fig. 5. Left: a temporally interpolated Fontainebleau image. Right: a non-
interpolated Orléans image. The date for both images is 20/06/2018. Those
are RGB compositions with saturated colors. The red square is the 150×150
pixel training area and the blue squares are test areas.

V. EXPERIMENTS ON REAL SENTINEL-2 TIME SERIES

In this section, we work on multispectral satellite image
time series. They consist in successive multivariate images
of the forests of Fontainebleau and Orléans in France, which
have been taken by the Sentinel-2 satellites as a part of the
European Copernicus program [49] over a duration of nearly
5 years. We use the reflectance from L = 10 visible and
infrared spectral bands at a spatial resolution of 10 meters,
resorting to bicubic interpolation for those that were originally
at a 20 meter resolution. Although the satellites have a revisit
time of five days, many images are unexploitable due to the
presence of too many clouds between the satellite and the
surface. Therefore, we performed temporal interpolation of
the available data to obtain complete versions of the time
series, along with the original incomplete versions for training
on irregularly sampled data and assimilation purposes. The
interpolation is performed with the Cressman method, which
fills each missing value with a normalized sum of the available
data, weighted by a gaussian function of the temporal distance
to the filled time, with a gaussian radius of 15 days. We show
RGB compositions of sample images from these time series in
figure 5. Further details are available in [50], and the data is
freely accessible from github.com/anthony-frion/Sentinel2TS.
Throughout this section, the reported mean squared errors are
averaged over all spectral bands, pixels and available times.

A. Forecasting

First, we train a model to perform predictions from an initial
condition on the 10-dimensional reflectance vector of a given
pixel. Our encoder φ is a multi-layer perceptron with hidden
layers of size 512 and 256, and the decoder ψ has a symmetric
architecture. The latent space and matrix K have a size of 32.

The model is trained on the interpolated version of the
Fontainebleau dataset, containing 343 images, of which we
use the first 243 for training and the last 100 for validation.
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Note that we do not train our model on 243-time-steps
pixel reflectance time series but on time series of length
100 extracted from the data. In this way, our model learns
to predict from any initial condition rather than just from
the initial time of the dataset. Therefore, a trained model is
able to model the long-term reflectance dynamics of a pixel
from only 2 observations (because we use an augmented state
as presented in equation (8)). However, one can obtain a
much more accurate forecast by taking into account a higher
number of observations for a given pixel. Namely, one can
try to predict the future dynamics of a pixel given a time
series representing its past behavior. We perform this task
using the variational cost from equation (22), where the set
H of observed time indices contains all positive integers
up to time Ttrain = 242 (i.e. the training data). while the
groundtruth time series prolongs the observations up to time
index Tval = 342. We investigate minimising this cost with no
spatial regularisation or with a simple Tikhonov regularisation
favoring the spatial smoothness of the resulting time series.
More precisely, we seek to solve

z∗0 = arg min
z0∈RN×d

Ttrain∑
t=0

||x̃t − xt(z0)||2 + βS(xt(z0)) (25)

where we again note xt(z0) = ψ(Ktz0), and S(x) is a
smoothness prior, penalizing the square of the spatial gradient
of the resulting images through first order finite differences.
The case with no spatial regularisation simply corresponds
to β = 0. Once z∗0 has been computed, one can use it to
extend the generated time series at will by simply using higher
powers of K. We will refer to this technique as assimilation-
forecasting. We solve this equation with gradient descent,
using z0 = φ(x̃0) as a starting point, which is more effective
than a random starting point. Should z∗0 be equal to φ(x̃0),
then this would be equivalent to simply performing a forecast
from the initial state x̃0, which is not the case in practice. One
can observe assimilation-forecasting results in a 3-dimensional
PCA projection of a 100×100 subcrop of the data in figure 6
and for a particular pixel in figure 7. Note that, even though all
the pixels correspond to a forest environment, one can visually
see that there are various long-term patterns among the pixels,
and that our model can model them all.

We also try to forecast the Orléans time series in the same
way with a model trained on the forest of Fontainebleau in
order to test the zero-shot transfer performance of our model.
Note that, in addition to being unseen during training, the
Orléans data is irregularly sampled, which makes it harder
to predict with assimilation-forecasting. All quantitative fore-
casting performances of our model are reported in table III,
along with the performance of a long short-term memory
network (LSTM) trained on the same Fontainebleau data.
As previously mentioned, using assimilation-forecasting is far
more effective than a simple prediction from an initial state.
Using an additional smoothness prior further improves the
results. One can also see that assimilation-forecasting achieves
better results than an LSTM for long-term forecasting of this
dataset, mainly because the LSTM is more fit to short-term
prediction and tends to accumulate errors after multiple steps
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Fig. 6. Top: groundtruth images of Fontainebleau, corresponding to test times.
Middle: predictions made by our model by assimilating the time series up to
day 1200 with a trained model. Bottom: Same as middle but including a spatial
regularisation in the variational cost. The colors result from a 3-dimensional
principal component analysis (PCA) of the 10 spectral bands performed
globally on all the Fontainebleau data. This is much more informative than an
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Fig. 7. Predictions of different methods for the reflectance of the B7 band
(in near infrared). The vertical line marks the limit between the training and
the validation data. The pixel of interest is marked by a red dot on the
Fontainebleau image from figure 5.

of nonlinear computation, as can be qualitatively assessed on
figure 7. In many cases, the long-term predictions of the LSTM
diverge in amplitude. In contrast, our model, being driven by a
nearly orthogonal matrix, is very stable on the long-term and
well fit for time series with a pseudo-periodic pattern.

Additionally, we noticed that training a model without the
orthogonality loss term results in slightly better results for
naive prediction from a given initial condition but far worse
assimilation-forecasting results. This is in line with the results
from section IV-B and confirms that the models with a nearly
orthogonal matrix are better for performing downstream tasks.

B. Interpolation through data assimilation

We now move on to performing interpolation tasks. As pre-
viously mentioned, the satellite image time series are usually
incomplete since most of the observations are too cloudy to
be exploited. Therefore, one often has to interpolate them in
time to work with regularly sampled data. Here, we perform
variational data assimilation, using our data-based model to
constrain the search. The variational cost, in the framework
of equation (23), is minimised jointly on the latent initial
condition and on the parameters of the pre-trained model.
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TABLE III
FORECASTING MSE FOR DIFFERENT AREAS AND METHODS

Fontainebleau Orléans (irregular data)
Prediction 2.14× 10−3 8.90× 10−3

from time 0
Assimilation-forecasting 7.28× 10−4 3.94× 10−3

Assimilation-forecasting 7.08× 10−4 3.75× 10−3

(with spatial prior)
LSTM from 4.26× 10−3 1.38× 10−2

time 0
LSTM from 1.42× 10−3 6.80× 10−3

time Ttrain

Here, we test on raw incomplete data while our model
was trained only on interpolated data from the forest of
Fontainebleau. We consider the areas in the blue squares from
figure 5. In both cases, we have at our disposal a set of around
85 100×100×10 images, each with its associated time index,
irregularly sampled over a duration of 342 time steps (i.e.
nearly 5 five years). From this set, we randomly mask half of
the images which we use for the interpolation, while keeping
the other half as a groundtruth to evaluate the quality of the
computed interpolation. As a point of comparison, we seek
the periodic pattern that best matches the available data, with
a temporal smoothness prior using Tikhonov regularisation in
the time dimension. Namely, we solve

arg min
x∈Rp×N×L

∑
t∈H
||x̃t − xt%p||2 + αSt(x), (26)

where p is the known pseudo-period of one year, we use the
notation t%p for the remainder of the Euclidean division of t
by p, and St is the temporal smoothness prior. This method,
which we call ”periodic interpolation”, is a strong baseline
since it explicitly leverages the physical knowledge of the
pseudo-period of the data. Yet, even if it was not trained on
this data but only fine-tuned on it, our model has better results,
as can be seen quantitatively in table IV and for a particular
pixel of the forest of Orléans on figure 8. We show in the table
the mean and standard deviation of the mean squared errors
over 20 randomly computed masks.

Since the baseline method obtains much better results on
Fontainebleau than on Orléans, the former seems to be easier
to interpolate, yet the gap between this method and ours is
bigger on this area since it is closer to the training data.

TABLE IV
INTERPOLATION MSE (×10−3) FOR DIFFERENT AREAS AND METHODS

Periodic Fontainebleau Orléans
Periodic assimilation 0.628± 0.128 2.37± 0.38

Our method 0.349± 0.154 2.22± 0.37
Our method 0.335± 0.146 2.13± 0.34

(with spatial prior)

C. Training on an irregular time series

As our final experiment, we investigate the training of
our architecture on an irregular version of the Fontainebleau
time series. This corresponds to the relatively simple setting
mentioned in subsection III-B since this time series results
from a regular sampling from which some observations have
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Fig. 8. Comparison of interpolations for an Orléans pixel on the B7 band,
using periodic interpolation and using data assimilation with our model trained
on Fontainebleau data. We show an interpolation with no spatial regularisation
(as can be found in [50]) and an interpolation with an additional spatial
regularisation in the variational cost. The pixel of interest is marked by a
red dot on the Orléans image on figure 5.

been removed because they were not usable. We were therefore
able to optimise directly on the discrete operator K rather
than on its continuous counterpart L. As explained in subsec-
tion III-B, one just has to adapt the prediction, auto-encoding
and linearity loss terms by computing them only for time
delays for which the groundtruth is available. We were able
to obtain satisfying results in this way, although the computed
model is not as good as when training on interpolated time
series. This tends to suggest that training our model directly
on irregular time series can be a possibility when it is not
possible to perform an interpolation as a pre-processing step.

We found that training on irregular data makes our model
more subject to overfitting. Indeed, the model is not forced
to predict a smooth evolution anymore but only to be able to
correctly reconstruct some sparsely located points. Therefore,
all regularisation terms that we presented in subsection III-A
are very important to get the most out of this dataset. To
support this claim, we performed an ablation study in which
we tested different loss functions: the complete loss with the
4 terms from equations (9)-(12) and 4 versions where one
of the terms has been removed. For each version of the loss
function, we trained models on the Fontainebleau data from
5 different initialisations. We then retrieved the mean and
standard deviations of the mean squared errors obtained when
performing assimilation-forecasting as in subsection (V-A).
The results are presented in table V. One can see that the final
results on the Fontainebleau area largely depend on the model
initialisation, yet both the mean and the standard deviation of
the MSE are lower when using all loss terms.

TABLE V
FORECASTING MSE (×10−3) OF MODELS TRAINED ON

IRREGULARLY-SAMPLED DATA WITH DIFFERENT LOSS FUNCTIONS

Fontainebleau Orléans
Complete loss 0.699± 0.130 3.480± 0.198

No orthogonality 0.922± 0.233 3.564± 0.301
No linearity 2.722± 0.576 5.454± 0.515

No auto-encoding 1.252± 0.128 3.770± 0.172
No prediction 3.514± 1.276 4.586± 0.232
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Fig. 9. Forecasting results on the B7 band, with irregular data from the forest
of Fontainebleau. The considered pixel is marked by a blue dot on figure 5.

We show qualitative results of the assimilation-forecasting
of irregular data using one of our models trained on irregular
data with the complete loss function in figure 9. We emphasize
that the blue curve is only a Cressman interpolation of the
groundtruth points and should not be seen as a groundtruth
here. Our model fits the training points well and, in some
way, performs a smoother interpolation between those than the
Cressman interpolation that was used to obtain the regularly-
sampled data from section V-A.

We emphasize that, when tested on the same irregular
test data, models trained on interpolated Fontainebleau data
have better interpolation performance but lower forecasting
performance than models trained on irregular Fontainebleau
data. Using interpolation as a pre-processing step is not a
trivial choice since models trained on these data will learn
the interpolation scheme along with the true data. However, it
can be seen as a form of data augmentation.

VI. DISCUSSION

In the assimilation results presented in the previous section,
adding a regularisation on the spatial gradient generally only
results in a modest improvement of the mean squared error
compared to using no regularisation. Since the chosen regular-
isation was a very basic one, this suggests that our predictions
could gain more from spatial information. One could imagine
using a more complex spatial prior, e.g. a data-driven one
like in [39]. One could also use an image as the input of the
Koopman auto-encoder instead of a single pixel, which would
enable it to directly leverage spatial information (e.g. with a
convolutional architecture) but might be more difficult and less
suited to pixel-level downstream tasks. Another possibility is
to train a convolutional neural network to correct the residual
errors made when recomposing images from our pixelwise
model. This approach has been presented in [50] and it can
indeed improve the results. Yet, it is much less flexible and
elegant since such a CNN needs to be trained for every new
model or task considered, for which we do not necessarily
have enough time or data.

The weights of the prior terms in assimilation should be
chosen carefully, although a slightly inaccurate choice is
unlikely to severely affect the results. A good way to proceed,
when possible, is to use a set of validation data to set the
parameters α and β from equations (21)-(23). About the choice

of allowing the parameters of the pretrained model to vary
when performing data assimilation (i.e. solving the problem
from equation (22) or (23)), it seems from our experiments
that: (1) It is more beneficial to make the parameters vary when
working with data that differ from what could be found in the
training dataset. This can be seen as fine-tuning the model.
(2) Allowing the model parameters to vary is effective when
performing interpolation, but more dangerous for forecasting.
An explanation could be that a slightly modified model keeps
its tendency to generate smooth trajectories but not necessarily
its long-term stability. One could investigate extensions of the
framework of equation (23) with e.g. an orthogonality term to
make sure that the modified model remains stable.

VII. CONCLUSION

In this paper, we presented a method that enables to
jointly learn a Koopman invariant subspace and an associated
Koopman matrix of a dynamical system in a data-driven way.
We showed that this method enables to learn a continuous
representation of dynamical systems from discrete data, even
in difficult contexts where the data are sparsely or irregularly
sampled. In addition, it was demonstrated that a trained model
is not only useful to forecast the future state of a dynamical
system but also to solve downstream tasks. Indeed, we used
the forward prediction as a pretext task to learn general
useful information about the dynamical system in a self-
supervised way. Since our architecture is fully differentiable,
we showed how this information can be leveraged to solve
inverse problems using variational data assimilation.

A possible extension of our work is to introduce a control
variable in order to better predict the state of systems on
which we know that some information is lacking. For example,
precipitation data could be used as a control variable to better
predict the vegetation reflectance. For image data specifically,
one could make a better use of the spatial structure of the
images by learning a complex spatial prior that would be
coupled to the dynamical prior or by directly learning an
end-to-end model that takes into account both dynamical
and spatial information. Finally, a stochastic extension of
our framework would make it able to output distributions of
possible trajectories rather than single predictions.

APPENDIX A
USING A (SPECIAL) ORTHOGONAL MATRIX FOR THE

KOOPMAN OPERATOR LEADS TO PERIODIC DYNAMICS

Let us assume that we have found a KIS that leads us to
consider linear Koopman dynamics in a latent space given by
zt ∈ Rd. Let us further assume the discrete dynamics are given
by

zt+1 = Kzt (27)

where K ∈ SO(d), i.e. K belongs to the special orthogonal
group, i.e. the group of invertible matrices satisfying KKT =
KTK = I, and with determinant equal to +1.

First we note that the norm of the iterates zt remain equal
to that of the initial condition z0. Indeed:

||zt+1||2 = ||Kzt||2 = zTt KTKzt = zTt zt = ||zt||2 (28)
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and it is easy to see by induction that every iterate’s norm is
equal to ||z0||. So the dynamics remain on a sphere of radius
||z0||.

Besides, SO(d) is a Lie group, whose Lie algebra so(d)
is the set of skew-symmetric matrices of size d. Furthermore,
as SO(d) is compact, the exponential map exp : so(d) →
SO(d), corresponding here to the matrix exponential, is sur-
jective [51]. This means that any special orthogonal matrix
can be written as the matrix exponential of a skew-symmetric
matrix L: exp(L) = K. Equivalently, a skew-symmetric
matrix logarithm of a special orthogonal matrix always exists.
In these conditions, we can see that zt+1 is the solution to the
following ODE, representing the same dynamics in continuous
time:

dz

dt
= Lz (29)

with z(0) = zt. We proceed to show that the dynamics
generated by this ODE must be periodic.

L is a skew-symmetric matrix, to which the spectral theorem
applies: it can be diagonalized in a unitary basis, and its
eigenvalues must be purely imaginary. There exists U ∈ U(d)
such that:

L = U∗DU (30)

with D = diag(iα1, iα2, ..., iαd), αk ∈ R. By denoting Kτ =
exp(τL) (giving zt by matrix multiplication with z0), we can
write:

Kτ = exp(τL) = U∗ exp(τD)U (31)

If we write out Kτ
rs, denoting as ur the rth column of U, we

get

Kτ
rs = u∗r exp(τD)us =

d∑
k=1

u∗kr exp(iταk)usk. (32)

The exponential factor is periodic of period 2π
αk

. Hence each
entry of Kτ is a linear combination of periodic functions.
Mathematically, such a linear combination is only periodic
when all the ratios between pairs of periods of the summands
are rational. For all practical purposes, however, when numbers
are represented with finite precision in a computer, such a
linear combination can be itself seen as periodic. Finally, the
same argument applies for the whole matrix Kτ to be periodic.

This shows that the dynamics of linear dynamical system
specified with a skew-symmetric matrix (when continuous)
or with a special orthogonal matrix (when discrete) leads to
periodic dynamics. Note that this property carries on to any
time independent transformation of zt: for any regular enough
function ψ, ψ(z(t)) will itself be periodic with the same period
as z(t).
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