
HAL Id: hal-04179081
https://imt-atlantique.hal.science/hal-04179081

Preprint submitted on 9 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automated Slow-Start Detection for Anomaly Root
Cause analysis and BBR Identification

Ziad Tlaiss, Alexandre Ferrieux, Isabel Amigo, Isabelle Hamchaoui, Sandrine
Vaton

To cite this version:
Ziad Tlaiss, Alexandre Ferrieux, Isabel Amigo, Isabelle Hamchaoui, Sandrine Vaton. Automated
Slow-Start Detection for Anomaly Root Cause analysis and BBR Identification. 2023. �hal-04179081�

https://imt-atlantique.hal.science/hal-04179081
https://hal.archives-ouvertes.fr


Automated Slow-Start Detection for Anomaly

Root Cause analysis and BBR Identification

Ziad Tlaiss1, Alexandre Ferrieux2, Isabel Amigo1,
Isabelle Hamchaoui2, Sandrine Vaton1

1IMT Atlantique, Lab-STICC laboratory, Brest, France.
2Orange Labs Networks, Lannion, France.

Contributing authors: ziad.tlaiss@imt-atlantique.fr;
alexandre.ferrieux@orange.com; isabel.amigo@imt-atlantique.fr;

isabelle.hamchaoui@orange.com; sandrine.vaton@imt-atlantique.fr;

Abstract

Networks troubleshooting usually requires packet level traffic capturing and
analysing. Indeed, the observation of emission patterns sheds some light on the
kind of degradation experienced by a connection. In the case of reliable transport
traffic where congestion control is performed, such as TCP and QUIC traffic, these
patterns are the fruit of decisions made by the Congestion Control Algorithm
(CCA), according to its own perception of network conditions. The CCA esti-
mates the bottleneck’s capacity via an exponential probing, during the so-called
”Slow-Start” (SS) state. The bottleneck is considered as reached upon reception
of congestion signs, typically lost packets or abnormal packet delays depending
on the version of CCA used. The SS state duration is thus a key indicator for
the diagnosis of faults; this indicator is estimated empirically by human experts
today, which is time-consuming and a cumbersome task with large error margins.
This paper proposes a method to automatically identify the Slow-Start state
from actively and passively obtained bidirectional packet traces. It relies on an
innovative timeless representation of the observed packets series. We implemented
our method in our active and passive probes and tested it with CUBIC and BBR
under different network conditions. We then picked a few real-life examples to
illustrate the value of our representation for easy discrimination between typical
faults and for identifying BBR among CCAs variants.

Keywords: troubleshooting, active measurement, passive measurement, Congestion
Control algorithm, Slow-Start state, packet inter-arrival times, BBR

1



1 Introduction

Quality of Experience (QoE) remains one of the most crucial competitive advantages
for an Internet Service Provider as it directly impacts its brand image. However, room
for improvement remains consistent for network operators as many networks are still
impeded by crippling issues bitterly reported by customers which affect operators
reputation. Improving customers experience is a necessary yet delicate task, as it relies
on continuous and pervasive monitoring of the network and, as soon as a degradation
is detected, a quick identification and fixing of the root cause is demanded, that is
troubleshooting.

Unfortunately many problems cannot be handled with mainstream monitoring
tools: For example, excessive latency cannot be detected via flow-level tools such as
Netflow [1], nor by equipment’s counters [2] or traffic sampling methods [3]. Even
if end-to-end active measurements can identify slow connections, they are of little
help for locating latency bottlenecks on the path. Collecting and analysing exhaustive
packet-level traces captured on network mid-points are still operators’ best choice for
anomaly root cause identification.

For decades, most operators’ end-to-end diagnosis methods have been based on the
observation of transport protocol (e.g. TCP, Transmission Control Protocol) packet
headers. Hence, with a mere one-point traffic capture, passive probes can easily catch
latencies and packet losses on both upstream (from sender to probe) and downstream
(from probe to destination) segments, see [4] and [5]. Faulty nodes can further be
located by moving the capture point (beam splitter, port mirroring, etc.). These cap-
tures together with the related analysis are typically performed by human experts upon
network monitoring alarms or customers claims. This method remains the cornerstone
of troubleshooting for many operators, however, it is jeopardized by the explosive
growth of QUIC where transport headers are encrypted, making them unreadable for
a midpoint observer. Although QUIC has an option that allows monitoring latencies
[6], it is likely that it will not be implemented by client software (e.g. browsers, mobile
applications) in the future. QUIC observability via passive probes will thus probably
be lacking for a long time.

It is true that active probes, by generating their own traffic, are not impeded by
encryption and can detect QoS degradation, however, contrarily to passive probes,
their representativeness can be questioned for two reasons: First, test traffic is not
real clients’ traffic. Second, active probes typically see only a subset of the network.
This last point can be balanced through a massive probes deployment, but as current
troubleshooting is mainly based on human diagnosis, automation is certainly a key
element for dealing with the data deluge collected via such a dense fleet of active
probes. Beyond this scalability issue, the whole troubleshooting process should be
revisited in light of active measurement specificity.

In this context, observing the source behavior appears as a promising strategy:
Source emission patterns derive from decisions of the Congestion Control Algorithm
(CCA) embedded in TCP/QUIC stacks, and reflect network conditions rather accu-
rately. The CCA is in charge of regulating the source emission to obtain a good
throughput without flooding the network. It calms down as soon as it detects early
signs of congestion, such as packet loss or delay. Tracking its behavior thus reveals

2



crucial hints for fault qualification and location. Loss-based algorithms like CUBIC
can lead to reduced throughput for users [7]. This can be addressed by investing in
Data Center Networks (DCN) to ensure sufficient bandwidth and speed, and minimize
packet loss rates. On the other hand, recent CCAs as BBR (Bottleneck Bandwidth
and Round-trip propagation time) offers improved performance, lower latency, and
better resource utilization, reducing the need for additional resources to support the
same number of users or applications [8]. For network operators, understanding the
CCAs in use on their network is crucial for identifying bottlenecks, optimizing net-
work performance, and making informed decisions on network design, configuration,
and management. Identifying the type of CCA in use, particularly BBR, can help
optimize network infrastructure and reduce investment in network infrastructure.

Slow-Start (SS) is an important state of CCA as it aims at giving a first estimation
of the path capacity at the beginning of the connection life, or on resumption after
a significant pause. Should it fail, then the connection will experience poor quality.
Most importantly, the way it fails (with or without loss, etc.) is an excellent indication
of the degradation root cause. In this work, we introduce an effective method to
automatically detect the exit from SS state - or equivalent naming. For this purpose,
we introduce a novel representation, that is the bytes-in-flight versus sequence number.
We use then this representation in order to identify the last packet in the SS state of
the CCA, by using a relation between the sequence number values and the bytes-in-
flight values that are true only during the SS phase. Due to the similarity of QUIC and
TCP CCAs, this method applies to both. However, as it requires accessing transport
headers information, it can be applied to QUIC traffic only with active measurements
while it could be used on TCP traffic with both active and passive measurements. We
also introduce how our SS detection method could be used as a powerful tool to easily
discriminate between network typical fault types and to identify BBR CCA among
TCP traffic.

The remainder of this paper is organized as follows. In Section 2, we demonstrate
the significance of CCA behavior for troubleshooting. In Section 3, we describe the
troubleshooting process from data collection to data analysis for root cause identifi-
cation. Section 4 presents our method to detect SS state exit. An evaluation of our
method is presented in section 5. An application of the method to network trou-
bleshooting is presented in section 6. A model based on analysing packet arrival time
during the SS to identify TCP BBR is introduced in section 7. Section 8 surveys the
related work. Finally, a conclusion is given in Section 9.

We note that this paper is an extended version of a paper that we submitted to
ICIN 2023 conference [9].

2 Congestion Control Algorithm and
troubleshooting

2.1 Finite State Machine transitions series

The CCA role is to prevent congestion collapse while taking into account fairness and
improving connection’s performance [10]. Roughly, the CCA embedded in TCP/QUIC

3



stacks aims at reaching, in a fair manner, the highest throughput safely tolerable by
the network. Under its control, the emitted traffic falls back as soon as it detects
signs of congestion, that is, lost packets or growing delays. This behaviour can be
observed with an exhaustive capture of the flow’s packets, but also, via the sequence
of transitions of the CCA Finite State Machine (FSM). State transitions are typically
triggered by degradation events such as detection of congestion signals. The FSM tran-
sitions series contains factually rich semantic information providing crucial elements
for troubleshooting.

2.2 Invariants in CCA behaviour

Amongst the CCAs, the most commonly encountered are CUBIC and BBR. According
to [11], they alone contribute to the vast majority of today’s traffic, in particular,
BBR traffic probably represents more than half of all internet traffic. Other CCAs
can be observed, but in significantly lower proportion. However, the CCA landscape
remains diverse as many flavours coexist for a given CCA, depending of the underlying
implementation (e.g. Linux version on server side).

Even if these CCAs differ in major ways, they share a few common mechanisms,
particularly at the beginning of the connection life. Should it be called ”Slow Start”
or whatever equivalent (e.g. Hystart or Hystart++, see [12]), the CCA behaviour in
the first state is the same: an exponential rate growth until reaching the bottleneck
capacity. An example of this exponential growth is shown in Figure 1 and Figure 2 for
a CUBIC and BBR capture.

Fig. 1 BIF (Bytes In Flight) over time evolution for a CUBIC capture showing SS & CA states, we
can notice the exponential growth of the SS phase versus the linear growth during the CA phase

4



Fig. 2 BIF over time evolution for a BBR capture showing SS state, we can notice the exponential
growth of the SS phase versus the linear growth after

2.3 The (not so) Slow Start

Generally speaking, the CCA controls the amount of data being injected into the net-
work. For this purpose, the sender typically maintains a variable called Congestion
Window (cwnd) that determines the amount of data that can be transmitted before
receiving an acknowledgement from the destination [13]. This cwnd is a variable inter-
nal to the sender stack and then is unknown from any mid-point observer, or from the
destination. However, it can be inferred from observation of the Bytes-in-Flight (BIF),
i.e. the number of bytes sent but not yet acknowledged, as the BIF is, by definition,
strictly bounded by the cwnd value at any given time.

During the SS, the CCA exponentially increases its Congestion Window (or simi-
larly, its emission rate) to quickly reach the bottleneck capacity. The very first packets
are emitted with respect to a so-called Initial Congestion Window, typically 10 pack-
ets [14]. Then, the sender keeps doubling the congestion window value every round
trip time until a congestion signal is detected or a threshold (ssthresh) is reached [15].
This congestion signal is typically a loss for CUBIC or an excessive delay for BBR [16].
Figure 1 shows the cwnd exponential growth during the SS state ending at around 1.4
sec before entering the Congestion Avoidance (CA) state.

2.4 Slow-Start exit time

When analysing a packet trace, the SS exit time is a key element for troubleshooting
experts. If many state transitions suggest specific root causes, SS exit time has a
particular significance in detecting faults type and identify the used CCA variant.
Indeed, in SS, the source estimates the value of the path’s capacity by exponentially
increasing its rate (binary search) until a congestion signal is received, then it exits
the SS state to enter a new phase with a much lower rate growth.

Should the SS overestimate the bottleneck, then the source will exceed the bot-
tleneck capacity and thus experience multiple packet losses, from which recovery is

5



painful. On the contrary, if it underestimates the bottleneck capacity and triggers
an early SS exit, the source will under-use the available bandwidth and possibly
experience a poor throughput. While bottleneck overestimation is quite unusual,
underestimation is a very common cause for low performance. It simply reveals that
the SS has mistakenly detected a congestion signal. This is typically the case in pres-
ence of transmission loss, or excessive jitter related to radio mobile access - even
underloaded. In both cases, limiting the rate will lead to a pitiful customer experi-
ence, without any benefit regarding a non-existent congestion. For example, as shown
in Figure 1, the CCA exits SS after around 1.4 sec with a cwnd value around 0.2
MB, however, we can notice that the true bottleneck capacity is around 0.7 MB as
the cwnd value keeps slowly increasing until reaching it. As the trigger signal is not
obvious, this early exit should be investigated.

3 Troubleshooting: from data extraction to data
analysis

In this section we present the metrics used for network troubleshooting, together with
associated basic data processing.

3.1 Data collection & Data processing

Capturing Packet traces can be made via many tools, such as Wireshark [17] and
tcpdump [18]. These tools capture transport layer packet headers together with their
arrival times as shown in Figure 3.

Fig. 3 A packet trace showing the SEQ, ACK and BIF with their arrival times.

6



Fig. 4 BIF and RTT calculation method

These captures should be processed, so as to derive significant timestamped
indicators; The most significant ones are:

• Sequence number (SEQ): identifies the first byte in a segment [19]. For a bet-
ter match up with the acknowledgements, we denote SEQ the last byte of the
transmitted segment plus one, i.e. SEQ = sequence number + length.

• Acknowledgment (ACK): it informs the source about the sequence number of the
next expected segment.

• Receiving window (RWIN) : it identifies the number of bytes that the receiver
can accept.

• Bytes in flight (BIF): it represents the number of bytes sent by the source but
not yet acknowledged.BIF is not included in packet headers but can be deduced
from SEQ and ACK values by deducing the last received ACK value from the
last emitted SEQ value as shown in Figure 4 and Figure 3.

• Round-Trip-Time (RTT): it represents the delay between the emission of a packet
and the reception of the corresponding acknowledgment. It can be calculated
using the SEQ and ACK arrival times as shown in Figure 4.

• Packet inter-arrival times (INTRPKT): it represents the elapsed time between
the arrival of two consecutive packets.

3.2 Data analysis

This final step typically consists in visually analyzing the temporal evolution of these
indicators, e.g. with a tool as tcptrace [20]. For each trace, a human expert should
visually detect the state transitions and QoS degradations affecting the connection a.

To automate the analysis, we designed a method and developed a tool to auto-
matically detect the SS exit time on collected traces. Combined with other indicators
(presence of loss, etc.), this is a significant step toward full automation.

7



4 Automatic Slow Start exit detection

In this section we introduce a new representation together with a method to
automatically detect SS exit.1

4.1 Visual CCA states identification

As explained in section 2, the FSM state series, and particularly the SS exit time gives
crucial insight for troubleshooting experts. To get hold of these state series, the first
idea that comes to mind is direct introspection in the sender stack. Unfortunately, this
introspection requires cooperation from the sender’s server, which is rather impracti-
cal, as many servers belong to third-party internet content providers, often reluctant
to open their infrastructures. As a consequence, sticking to measurements from active
and passive probes is still operators’ best choice to build these state series. Recall that
passive probes can only handle TCP traffic, as active probes may monitor both TCP
or QUIC flows.

In this context, troubleshooting experts are used to performing visual analysis of
the BIF against time to detect the end of the exponential growth, namely the SS exit
time. This method is highly time consuming and inaccurate. We can see in Figure 5
an exponential increase of the BIF against time until t = 1.2 sec, a telltale sign of
the SS phase. Root cause analysis is then completed thanks to the SEQ against time
graph (Figure 6) showing bursts of packets retransmission at this very same time, a
typical effect of congestion loss [21]. The SS exit is then a legitimate reaction of the
CCA to reaching the actual bottleneck.

Fig. 5 BIF against time during SS state, focus on the exponential growth

1Tool available online at https://193.252.113.227/cgi-bin/ats.cgi

8



Fig. 6 SEQ against time during SS state - packet burst doubled after each RTT

4.2 Challenges towards automation: Noise and
Non-stationarity

While manual analysis can easily handle noise and irregularities in the data, this is non
trivial for an automated procedure. For example, some smoothing may be necessary
in order to recognize the exponential growth in Figures 5 and 6. More generally, the
graphs might need to be segmented into a number of homogeneous regimes before any
kind of pattern recognition can be applied.

The aforementioned time series are typically non-stationary, and not even piecewise
stationary. This makes it impossible to define homogeneous areas, which invalidates
most usual mathematical methods. An example about this non-stationarity can be
observed in Figure 7 and Figure 8. Figure 7 shows the evolution of BIF over time, while
Figure 8 represents the arrival times of the captured packets. The latter focuses on the
so-called ”on/off pattern” of packets arrival times which reflects the basic congestion
window mechanism, waiting for ACKs before sending a new burst of packets. However,
while this on/off pattern can be detected at the beginning of the connection (from 0
sec to 0.8 sec), it blurs over time, due to TCP’s (intentional) tendency towards ”ACK
clocking” [13].

All previously mentioned challenges invalidate most methods like using regression
and Markov Modulated Poisson Process (MMPP) that we have considered and tried
when working on the automated detection of the SS state. A more promising approach
yielding better initial results was ”exponential regression”, i.e. fitting the BIF-against-
time with an exponential. However, it turns out that in case of very early SS exits
(within 2 or 3 RTT), the exponential part is dwarfed by the subsequent evolution,
making it impossible to detect the exponential part reliably. This is unfortunate, as
we use the SS state detection to troubleshoot networks, where the most frequent cases
of bad performance are correlated with a premature exit from SS. As it turns out,

9



this fundamental problem is resolved using the new representation that we introduce
in the next section.

Fig. 7 BIF against time - non stationarity and noise on BIF values

Fig. 8 Packets arrival times - blurring of on/off pattern over time

4.3 Timeless packet series representation

In the light of our troubleshooting experience, it turns out that the main hurdle to
automation lies in the on/off patterns of the source emissions. A natural way to get
rid of them without any loss of information is to switch to a timeless representation.
To this effect, we chose to represent BIF as a function of SEQ as shown in Figure 9. In
essence, we replace the time axis with the sequence number progression: this naturally
wipes out all burst, silence, or RTT variation effects, while preserving the important
correlations between significant indicators, thus focusing on the CCA dynamics.
To the best of our knowledge, such a representation was not described before in the
state of the art.

10



Fig. 9 BIF against SEQ: new representation to detect the SS state exit time

4.4 Slow Start exit time: ”slope 1/2” method

A few basic properties of the BIF vs SEQ representation can easily be derived
analytically. To begin with, the shape of the graph is readily predictable during 2
phases:
(a) During burst emissions: in the absence of any acknowledgement, during this phase

each sent packet increments both SEQ and BIF by an equal value, which is the
segment’s length.

(b) During the reception of burst acknowledgements: assuming all packets previously
sent were received, the BIF quickly drops back to zero.

As a result of these 2 phases, every round-trip time, the graph is expected to display
a triangular shape made of a slope 1 due to phase (a), followed by the vertical drop
described in (b), as depicted in Figure 10.

11



Fig. 10 Theoretical Representation of the BIF vs SEQ evolution

Furthermore, in an ideal SS state, the vertical extent of this triangular shape,
which represents the cwnd, is expected to double every round-trip-time. Thus, the
graph should display a fractal series of triangles, each one being twice the size of the
one before. The position of the highest-SEQ point and highest-BIF point in the graph,
after n round-trip-times, is thus expected to be:

SEQ =

n−1∑
i=0

a× 2i = a× (2n − 1)

BIF = a× 2n−1

The slope of the line from origin to this point is thus

BIF/SEQ =
2n−1

2n − 1

And hence its limit
lim

n→+∞
BIF/SEQ = 1/2

It can further be seen that this asymptote y = x/2 is in fact ”approached from above”,
as the top of each triangle satisfies.

BIF/SEQ =
2n−1

2n − 1
> 1/2

However, as soon as the SS state is exited, the exponential growth of the BIF stops,
and no further point can stand above the y = x/2 line. This yields a very simple and

12



practical criterion: the SS exit occurs immediately after the last point satisfying

BIF ≥ SEQ

2

It should be stressed that the power of this method lies in its simplicity: no regression
neither filtering are needed, a simple linear inequality suffices, once we are in the
appropriate representation space.

4.5 Slope 1/2 method details

While the critical state transition event is well characterized by the above criterion,
some attention is due to properly interpret the earlier features of the representation.
During the SS phase, as mentioned before, local slopes are typically 1, with a series
of abrupt drops. As a result, the graph keeps crossing the asymptote, thus, a local
decision is not appropriate, as it would readily generate false positives. Fortunately,
the global criterion of the ”last point above the asymptote” is more robust. This is
fundamentally linked to the fact that after exiting SS, the CCA essentially takes very
careful steps to refrain from going too fast, and by definition will never ”catch up”
to the exponential regime. The asymptote is never to be crossed again. Figure 11 is
an example of our slope 1/2 method application. We can see the BIF vs SEQ curve
slightly exceeding the y = 1

2x line until it abruptly drifts below, marking the instant
when the CCA has exited the SS state.

Fig. 11 Automatically detecting SS state exit time with slope 1/2 method

5 Evaluation of the slope 1/2 method

In this section we assess the accuracy of our method by comparing the SS exit time
we obtain, against a ”ground truth” which we define as the CCA state transition time

13



recorded in the server stack logs. For this purpose, the assessment is performed on
one of our servers, accessed by several active probes, through the public internet. We
instrumented the CUBIC and BBR TCP stacks on this server to generate CCA logs;
then we performed active measurements with our probes by executing many downloads
from our server using BBR and CUBIC CCA, and from these logs, we extracted the
”ground truth” SS exit times. We note that in the Linux BBR implementation that we
instrumented, the SS (binary search period) is very difficult to identify, especially in
presence of massive loss, as it is not a discrete state but a region in parameter space.

For the sake of representativity, we locate our probes amongst 4 Orange affiliates.
Depending on the country, the average RTT ranges from 20ms to 200ms with varied
loss levels. Moreover, in each of these countries, our downloads were performed with
various congestion levels (peak and off-peak hours). Last, we compute the difference
between the slope 1/2 exit time and this ”ground truth”. This time difference is
represented in Figures 12 and 13, in RTT units.

Fig. 12 Cumulative distribution function of the difference in RTT units between the SS exit times
from the slope 1/2 method and the one logged by the CUBIC server

14



Fig. 13 Cumulative distribution function of the difference in RTT units between the SS exit times
from the slope 1/2 method and the one logged by the BBR server

Figure 12 shows the distribution of error in prediction for the CUBIC stack on
219 downloads. We can notice that this error is less than 1 RTT in more than 95%
of cases. It is indeed the best accuracy that can be expected, since the typical time
granularity of CCA decisions is precisely the RTT.

The same representation for BBR is shown in Figure 13 for 241 downloads. We can
notice that 55 % of cases are bounded between -1 and 1 RTT. We attribute this larger
deviation in prediction error more to the approximate ground truth (because of the
aforementioned difficulties in the BBR implementation) than to real mis-predictions of
our slope 1/2 method. We are currently investigating a better calculation for ground
truth.

6 Application to network troubleshooting

The slope 1/2 method, together with our new BIF/SEQ representation, proves to be
a powerful tool in network troubleshooting. Indeed, with this representation, typical
patterns appear, each of them pointing to a type of degradation. What is more, these
graphical patterns could rather easily be identified using trivial criteria, thus leading
to easy classification. We describe hereafter some typical faults together with their
graphical representation.

6.1 Pattern 1: Constant BIF after SS exit

In this ideal case, the binary search performed during the SS successfully discovers the
path bottleneck. Then the BIF = f(SEQ) curve stays constant, as shown in figure
14. This denotes a good and stable QoS.

15



Fig. 14 Constant BIF after SS exit: Good QoS

6.2 Pattern 2: BIF dive after SS exit

Figure 15 exhibits a sudden drop in BIF value after what we identify as the SS exit
time; then, the BIF value further stays significantly lower than its peak at SS exit.
This pattern is typically associated with QoS degradation due to loss. These losses
may originate from cross-traffic competition (i.e. traffic emitted by other sources) or
transmission errors.

Fig. 15 BIF plunge after SS exit: Loss

6.3 Pattern 3: BIF growth after SS exit

Beyond losses, packet delay variation (also known as jitter) is another typical root
cause for early SS exits [12], as they may occur while the bottleneck capacity has not
been reached yet. Figure 16 illustrates this case. In contrast with pattern 1, the BIF
here continues to grow after SS exit, but at a much slower pace. This allows for an easy
discrimination between these two patterns. Pattern 3 also clearly differs from pattern

16



2, as it exhibits no reduction in BIF, that is, no packet loss. This behaviour is typical
of mobile access networks affected with large jitter values.

Fig. 16 Slow Bif growth after SS exit: Jitter issue

17



7 BBR identification using the SS exit time
detection

BBR and CUBIC are two popular congestion control algorithms representing together
the main part of internet volume [11]. As their behaviour is particularly contrasted in
presence of loss or other degradation, it is crucial to differentiate them when investi-
gations are conducted. Indeed, erroneous conclusions can easily be drawn in case of
mis-identification of the CCA flavour.

Despite abundant literature on their respective strengths and weaknesses, little
has been proposed on solid discrimination tools (see Section 8). In the present section,
we propose an identification method based on their different behaviour during the SS
state.

7.1 Motivation of the method

By design, of the two end-points of a connection, only the source has an explicit
knowledge of the running CCA flavour (CUBIC or BBR). As a consequence, in this
paper we work with traces from controlled sources (i.e. our lab servers) to calibrate
our recognition algorithm. Extension of this method to real life traffic from third-party
servers will be considered in section 7.4.

From the mere observation of traces, it can be seen that at the beginning of the
connection, BBR and CUBIC emission patterns are particularly dissimilar (Figure
17): CUBIC is typically bursty whereas BBR exhibits a smooth emission pattern. This
results from a fundamental difference between these two CCAs: BBR is rate-based
while CUBIC is window-based. In other words, CUBIC sends its full window in a
burst and waits for acknowledgements, while BBR paces its emissions according to a
rate-based policy.

Fig. 17 Time-sequence graph of real CUBIC and BBR connections during SS

18



However, after SS exit, CUBIC also tends to behave smoothly, as it is subject to
the so-called ”ack clocking” phenomenon [13], due to bottleneck-induced pacing, as
shown in Figure 18. This precisely happens when reaching the bottleneck capacity,
typically on SS exit.

Fig. 18 SEQ against time for a CUBIC capture - we can notice how CUBIC tends to behave
smoothly after exiting the SS state.

In a nutshell, the best period for discrimination appears to be during the SS. As a
consequence, we isolate the SS period of each connection and characterize the emission
patterns - more precisely, the burstiness - in this period only. To assess it, our approach
relies on analyzing the distribution of packet inter-arrival times (INTRPKT), derived
from the packet capture.

7.2 Analyzing Packet Inter-Arrival Times: Modelling and
Inference

To catch the statistical properties of their INTRPKT distribution, we plot on Figure 19
the probability density functions (pdf) for a BBR (red) vs. CUBIC (blue) connection;
they exhibit a significantly different shape: Contrary to BBR, CUBIC distribution is
typically heavy-tailed.

19



Fig. 19 The PDF of INTRPKT for a CUBIC and BBR capture

7.2.1 CUBIC distribution

The main peak of a CUBIC inter-arrival distribution corresponds to the short
INTRPKTs within bursts, while the heavy tail corresponds to long INTRPKTs result-
ing from periods of silence between two bursts. If N is the average number of packets
in a burst then the probability for an INTRPKT to belong to a burst (respectively to
a silence between two bursts) is N

N+1 (respectively 1
N+1 ). We can then express the pdf

of the INTRPKT as a mixture distribution f , as shown in this equation:

f(x) =
1

N + 1
g(x) +

N

N + 1
h(x) (1)

Here, g(x) is the pdf of the OFF periods, while h(x) is the pdf of packet interarrival
times within bursts.

7.2.2 BBR distribution

On the other hand, a typical BBR distribution only exhibits a peak on small values.
Indeed, occurrences of large INTRPKT are pretty rare, due to smooth emission pat-
tern. The discrimination task then seems to amount to recognizing single-peak (BBR)
vs. heavy-tailed (CUBIC) distributions.

7.2.3 Expanding small contributions

In the CUBIC case, it can be noted in Eq. 1 that the large-INTRPKT component
is dwarfed by the short-INTRPKT component. This is due to the large number of
events in a burst, compared with the small number of pauses between bursts. Since
our aim is to discriminate between single-peak and heavy-tailed distributions, we need
to compensate this imbalance by magnifying the minority contribution, namely the
long-INTRPK component.

20



Note that, as any distribution, the CUBIC pdf (Eq. 1) can be approximated using
an empirical distribution based on the measured INTRPKT values:

f̂(x) =
1

T

T∑
i=1

1xi
(x) (2)

To magnify the minority contribution, we thus weight each observed INTRPKT
value xi by wi =

xi∑T
j=1 xj

So we now consider the rebalanced empirical distribution f̂bal:

f̂bal(x) =

T∑
i=1

wi1xi(x) =
1∑T

j=1 xj

∑
i

xi1xi(x) (3)

Notably, if the timescale is renormalized to [0, 1] for the observation period (SS state),

then
∑T

j=1 xj = 1 and f̂bal(x) =
∑

i xi1xi
(x).

Fig. 20 The PDF of INTRPKT for a CUBIC and BBR capture after expanding the small contri-
butions

It is interesting to notice that the resulting empirical distribution f̂bal approximates
the distribution of INTRPKTs that would be observed if sampling was uniform over
time (Figure 20) rather than uniform over packets (Figure 19). Choosing each sampling
instant uniformly over the observation period corresponds to a Poisson sampling.
Because of the PASTA (Poisson Arrivals See Time Averages) property, the probability
of a sampling instant falling during a burst or a silence period is TON

TON+TOFF
and

TOFF

TON+TOFF
, respectively, where TON (respectively TOFF ) is the average duration of a

burst (respectively of a silence). Therefore f̂bal(x) is an empirical approximation of

21



the following mixture distribution:

ϕ(x) =
TOFF

TON + TOFF
g(x) +

TOFF

TON + TOFF
h(x) (4)

It can be observed that the weight TOFF

TON+TOFF
of g(x) in Eq. 4 is not negligible (contrary

to the weight 1
N+1 in Eq. 1). Replacing a uniform sampling strategy across packets with

a uniform sampling strategy over time gives more weight to the inter-packets which
correspond to silences between two bursts. This is an interesting property because it
makes it possible to better differentiate the distribution of INTRPKT between CUBIC
and BBR.

7.3 Choice of the optimal decision point

To better capture distribution features in a resolution-independent manner, we switch
from PDFs to CDFs. Figures 21 and 22 respectively show the raw and re-balanced
CDFs of INTRPKTs during the SS state of CUBIC and BBR. We see that in the
rebalanced case (which mimics an uniform sampling over time), the two distributions
are much better separated than in the raw case (corresponding to the original uniform
sampling over packets).

Fig. 21 CDF of INTRPKT for a CUBIC and BBR capture using the raw distribution (uniform
sampling over packets)

22



Fig. 22 CDF of INTRPKT for the same captures using the re-balanced distribution (uniform
sampling over time). A typical decision point (x; y) is shown.

Let us assume that our objective is to determine whether a connection is carrying
BBR traffic or not. To accomplish this, we can frame the problem as an hypothesis test
between two options: H0 : CUBIC and H1 : BBR. During the SS state, we measure
INTRPKT values x1, x2, . . . , xT , and propose a method that makes a decision based
on these values.

Since CUBIC tends to have more long INTRPKTs, we decide that the connection is
using CUBIC if the proportion of values (xi)i=1,T greater than a threshold x is greater
than y. Conversely, if the proportion of values (xi)i=1,T greater than x is smaller than
y, then we conclude that the connection is using BBR.

In other words, we are seeking a point (x,y) that separates the red and blue curves
in Figure 22. If the curve (x, f̃(x)) (Eq. 3) is below this point, we decide CUBIC; if it
is above the point, we decide BBR. Since there are two types of risk in a hypothesis
test between two options, false alarm and non-detection, we propose to fix y = θ(x)
for a particular value of x, so that the two risks have equal probability. This roughly
corresponds to positioning the point (x, y) in the middle, between the green and red
curves in Figure 22 (assuming equal numbers of CUBIC and BBR connections). We
then select the x minimizing the total (false-alarm + non-detection) probability of
error, which is the probability of misclassifying a connection.

7.4 Model evaluation

We assess our method and model using two datasets, consisting of 221 captures for
training and 583 for evaluation.

The packet traces were captured on one of our servers, which was accessed by mul-
tiple active probes via the public Internet. The active measurements were performed
by conducting several downloads from our server with BBR and CUBIC CCA algo-
rithms. Our server is based in Europe and our probes are on another continent. For
the sake of representativity, we positioned our probes across different countries. In

23



addition, our downloads were carried out during peak and off-peak hours, seeking dif-
ferent levels of congestion. The average RTT of our captures varies between 100ms
and 400ms, while the majority fall between 200ms and 300ms.

7.4.1 Choice of the decision point using a training dataset

In order to identify the optimal decision point, we trained on a dataset of 221 packet
captures, consisting of 133 BBR captures and 88 CUBIC captures. By applying the
equal-error-rate minimization described above to the CDF curves of these packet cap-
tures, depicted in Figure 23, we determined that the decision point should be set
at (x = 0.14, y = 0.503): in other words, the optimal decision criterion amounts to
comparing the median of the INTERPKT distribution with 0.14 ∗RTT .

Using this decision point, the minimum total error rate achieved on the training
dataset is 2.6% . As the optimum is degenerate (several points with the same error
rate), we selected the central one to get as a wide a margin as possible.

Fig. 23 Choice of the decision point on the training set

7.4.2 Testing the decision point to identify BBR CCA

To assess our approach, we gathered a total of 583 packet captures, consisting of 389
BBR and 194 CUBIC captures. The CDF curves of all 583 captures are presented
in Figure 24. By using the decision point we obtained on the training dataset, the
model is able to identify TCP variants with an overall error rate of only 4.1%. None
of the 194 CUBIC captures is misclassified, and 16 out of the 389 BBR captures are
mistakenly classified as CUBIC. This slight bias points to the necessity of a larger and
more diverse training set, slated for future work.

24



Fig. 24 Model evaluation on an independent test set

7.5 Model advantages and future challenges

By taking advantage of the novel SS-detection method described in the earlier sections
of this paper, it is possible to build a ”BBR vs. CUBIC” classifier for TCP connections,
which is both extremely cheap in training and runtime computational resources (as
the model comprises only two dimensionless scalars and feature extraction is trivial),
and quite promisingly accurate as per our preliminary evaluation.

Despite our confidence in the approach, we recognize that there are various obsta-
cles that could jeopardize it if newer versions of CUBIC and BBR were to be widely
adopted by the industry. The first that comes to mind is BBRv2, the most recent
version of BBR, which incorporates an improved loss detection mechanism to better
react to changes in network conditions. However, this improvement does not impact
our method since the pacing rate during the SS state remains unchanged. Of more
concern could be newer versions of CUBIC resorting to some level of pacing, which
might blur the rather clear contrast with BBR during the SS phase. However, at the
time of writing only a small part of providers turn to this option, partly due to its
absence in the default stack tuning of popular operating systems. Should this state of
affairs evolve, one might consider addressing this 3-class task with two decision points,
with somewhat lowered accuracy.

8 Related Work

We identified two areas of related work to our study: Inferring and identification of
the CCA and network troubleshooting tools. In this section, we focus on those directly
related to our work in each area.

8.1 Identification of CCA states to infer TCP behavior

Hagos et al. [22] use machine learning approaches to recognize loss-based TCP CCAs
and infer the congestion window within a passively collected traffic at mid-point.

25



Although estimating the cwnd can be useful for network operators to troubleshoot
their network, it does not cover non-loss-based CCAs such BBR. Our work differs from
theirs as our method focuses on the application of CCA SS state detection in order
to detect network root causes anomalies, and could be applied for all types of CCA,
loss-based or not.

Padhye et al. [23] developed the TCP Behavior Inference Tool (TBIT), which per-
forms active measurements to infer various TCP behaviors such as the initial window
and congestion window (cwnd) of a remote Web server. TBIT can also detect which
of the following CCAs is running on a Web server: Reno, New Reno, Reno Plus, or
Tahoe.

Yang et al. [24] proposed an active CCA identification approach that uses a random
forest algorithm to classify the CCA variants of a Web server. The classification is
based on two features: the multiplicative decrease parameter applied when a loss is
detected during the SS state and the window growth function driving the congestion
avoidance state. The authors were able to identify several famous CCAs, such as
NewReno, BIC, VEGAS, and CUBIC.

Jaiswal et al. [25] introduce a passive measurement methodology to infer the cwnd
and round-trip-time. They build a replica of the CCA state for each TCP connection
at the midpoint. This replica updates its estimate of the cwnd based on the observed
acknowledgments that could change the CCA state. They use those estimates to rec-
ognize 3 of the TCP flavors: Reno, NewReno and Tahoe. Even if [25] are interested
in initial cwnd, SS state and congestion avoidance states to identify the CCA types,
they do not try to accurately locate state transitions.

Kato et al. [26] use unidirectional packet traces to characterise TCP CCAs. They
define a new metric that is seen as being proportional to cwnd size, and apply curve
fitting to recognize the CCA. In the continuity of their work Kato et al. [27] identify
TCP CCAs using a sequence number vs packet arrival time representation.

Zhang et al. [28] analyse TCP passive packet captures and investigate CCA mech-
anisms to understand the origins of limitation in the transmission rates of flows by
grouping packets into flights using a round-trip-time estimator.

Mishra et al. [11] developed Gordon, an active tool that measures the congestion
window size and identifies TCP CCA variants among websites. Gordon measures the
cwnd and then analyzes the reaction of the TCP variants to packet losses to classify
them. In particular, depending on the decrease factor after a loss or/and the increase
factor during the congestion avoidance state, the TCP variant is identified. To do
this they do not rely on common active measurements, but manipulate the client to
force the server to react against several scenarios, generating a considerable amount
of traffic. For rate-based CCAs such as BBR, which does not change its cwnd after a
loss, the no-loss reaction is used to determine the CCA as BBR or unknown.

In summary, [28], [24] and [11] show interest in the detection of the SS state;
however, [28]’s method tracks the SS state in the first flights based on explicit segmen-
tation, which does not work consistently in real life, e.g. when ACKs are not ”bursty”.
On the other hand, [24] and [11] only take losses into consideration in the detection of
the SS state. In contrast, in our work, while we do end up using the cause of SS exit
to identify the root cause of an anomaly, we start by locating the event regardless of
the cause.

26



On the other hand, none of the previously mentioned works address the identifi-
cation of BBR in its own by analysing a packet capture, nor do they compare CUBIC
and BBR traffic. Our method differs from these works in that it relies only on the anal-
ysis of bidirectional packet traces obtained from classical TCP downloads to identify
BBR traffic. Unlike [23] and [11], we don’t need to generate multiple traffic and control
the cwnd by holding the acknowledgments which can be exhaustive, as our method
consists on analysing a simple packet trace so one single download/packet capture is
sufficient. We also differ from [24] as we do not use a heavyweight machine learning
algorithm: indeed, our parameter space is extremely small, thanks to a novel, well-
motivated feature extraction step that taps into the core design differences between
the CCAs. And similarly to the aforementioned works, we do not need to process our
data online, as our objective is to allow operators to quantify the amount of each CCA
present on their networks.

8.2 Troubleshooting tools

Guo et al. [29] developed pingmesh, a tool for large scale data center network
latency measurement and analysis to track network latency issues. Zhu et al. [30] pro-
posed Everflow, a packet level tracing and analysis tool. While [29] and [30] are 2
troubleshooting solutions, their scope is limited to a specific set of equipment-level
performance metrics; this makes sense from a ”repairman”’s point of view, to whom
exonerating a specific router from guilt is critical, but is not sufficient to address an
end-to-end scenario, where the offending connection spans continents and (possibly
non-cooperative) actors. In our work, we aim to get a broader view of the issue at
hand, by providing a cause-agnostic observable, the SS exit time, as input to further
investigations.

9 Conclusion

As many network operators use the SS state duration as a key indicator for the diag-
nosis of faults, it is crucial to automate its extraction to save human experts time. In
this work, we have presented a method to automatically detect the exit from the Slow-
Start state, enabled by an innovative timeless representation of the observed packets
series. We deployed our method in active and passive probes in 4 countries with var-
ied access networks and traffic conditions, and tested it with both CUBIC and BBR.
This evaluation shows the method to be accurate enough for the purpose, i.e. very
often within 1 RTT of the oracle.

As a bonus, the representation, together with the SS exit time, proves to be a
powerful enabler for classifiers, first of performance issues, and then of TCP CCAs,
CUBIC and BBR.

In further academic work, we plan to refine the issue classifier so as to identify
more classes and integrate the method in an automated tool. Our purpose is to deploy
this classifier in all our probes and validate the solution at scale in a field trial. On
another aspect, the CCA classifier could take part into the investigation of ”fairness”
in the wild, observing high-capacity links carrying multiple unknown TCP variants.

27



It should be noted that our timeless representation uses the BIF value derived from
information in packets headers, which is impossible with passive (mid-point) obser-
vation of encrypted transport like QUIC traffic. Still, the method remains valid with
active measurements, where encryption keys are available. Moreover, we are currently
investigating a promising generalization of the BIF = f(SEQ) representation to an
”ACK-agnostic” variant, which is applicable to passive capture of encrypted traffic.

Conflicts of interest

Not applicable.

References

[1] Claise, B.: Cisco Systems NetFlow Services Export Version 9. RFC Editor (2004).
https://doi.org/10.17487/RFC3954 . https://www.rfc-editor.org/info/rfc3954

[2] Yu, M., Jose, L., Miao, R.: Software defined traffic measurement with opensketch.
In: Proceedings of the 10th USENIX Conference on Networked Systems Design
and Implementation. nsdi’13, pp. 29–42. USENIX Association, USA (2013)

[3] Panchen, S., McKee, N., Phaal, P.: InMon Corporation’s sFlow: A Method for
Monitoring Traffic in Switched and Routed Networks. RFC Editor (2001). https:
//doi.org/10.17487/RFC3176 . https://www.rfc-editor.org/info/rfc3176

[4] Veal, B., Li, K., Lowenthal, D.: New methods for passive estimation of tcp round-
trip times. In: Dovrolis, C. (ed.) Passive and Active Network Measurement, pp.
121–134. Springer, Berlin, Heidelberg (2005)

[5] Benko, P., Veres, A.: A passive method for estimating end-to-end tcp packet loss.
In: Global Telecommunications Conference, 2002. GLOBECOM ’02. IEEE, vol.
3, pp. 2609–26133 (2002). https://doi.org/10.1109/GLOCOM.2002.1189102

[6] Iyengar, J., Thomson, M.: QUIC: A UDP-Based Multiplexed and Secure Trans-
port. RFC Editor (2021). https://doi.org/10.17487/RFC9000 . https://www.
rfc-editor.org/info/rfc9000

[7] Ha, S., Rhee, I., Xu, L.: Cubic: A new tcp-friendly high-speed tcp variant. SIGOPS
Oper. Syst. Rev. 42(5), 64–74 (2008) https://doi.org/10.1145/1400097.1400105

[8] Cardwell, N., Cheng, Y., Yeganeh, S.H., Swett, I., Jacobson, V.: BBR Congestion
Control. Internet-Draft draft-cardwell-iccrg-bbr-congestion-control-02, Internet
Engineering Task Force (March 2022). Work in Progress. https://datatracker.ietf.
org/doc/draft-cardwell-iccrg-bbr-congestion-control/02/

[9] Tlaiss, Z., Hamchaoui, I., Amigo, I., Ferrieux, A., Vaton, S.: Troubleshooting
enhancement with automated slow-start detection. In: 2023 26th Conference on

28

https://doi.org/10.17487/RFC3954
https://www.rfc-editor.org/info/rfc3954
https://doi.org/10.17487/RFC3176
https://doi.org/10.17487/RFC3176
https://www.rfc-editor.org/info/rfc3176
https://doi.org/10.1109/GLOCOM.2002.1189102
https://doi.org/10.17487/RFC9000
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9000
https://doi.org/10.1145/1400097.1400105
https://datatracker.ietf.org/doc/draft-cardwell-iccrg-bbr-congestion-control/02/
https://datatracker.ietf.org/doc/draft-cardwell-iccrg-bbr-congestion-control/02/


Innovation in Clouds, Internet and Networks and Workshops (ICIN), pp. 129–136
(2023). https://doi.org/10.1109/ICIN56760.2023.10073485

[10] Floyd, S.: Congestion Control Principles. RFC Editor (2000). https://doi.org/10.
17487/RFC2914 . https://www.rfc-editor.org/info/rfc2914

[11] Mishra, A., Sun, X., Jain, A., Pande, S., Joshi, R., Leong, B.: The great internet
tcp congestion control census. Proceedings of the ACM on Measurement and
Analysis of Computing Systems 3, 1–24 (2019) https://doi.org/10.1145/3366693

[12] Balasubramanian, P., Huang, Y., Olson, M.: HyStart++: Modified Slow Start
for TCP. Internet-Draft draft-ietf-tcpm-hystartplusplus-13, Internet Engineering
Task Force (January 2023). Work in Progress. https://datatracker.ietf.org/doc/
draft-ietf-tcpm-hystartplusplus/13/

[13] Blanton, E., Paxson, D.V., Allman, M.: TCP Congestion Control. RFC Editor
(2009). https://doi.org/10.17487/RFC5681 . https://www.rfc-editor.org/info/
rfc5681

[14] Rüth, J., Kunze, I., Hohlfeld, O.: Tcp’s initial window—deployment in the
wild and its impact on performance. IEEE Transactions on Network and Ser-
vice Management 16(2), 389–402 (2019) https://doi.org/10.1109/TNSM.2019.
2896335

[15] Stevens, W.R.: TCP Slow Start, Congestion Avoidance, Fast Retransmit,
and Fast Recovery Algorithms. RFC Editor (1997). https://doi.org/10.17487/
RFC2001 . https://www.rfc-editor.org/info/rfc2001

[16] Cardwell, N., Cheng, Y., Gunn, C.S., Yeganeh, S.H., Jacobson, V.: Bbr:
Congestion-based congestion control. Commun. ACM 60(2), 58–66 (2017) https:
//doi.org/10.1145/3009824

[17] Sanders, C., Smith, J.: Applied network security monitoring, p. . Syngress,
Boston (2014). https://doi.org/10.1016/B978-0-12-417208-1.09984-0 . https://
www.sciencedirect.com/science/article/pii/B9780124172081099840

[18] Casey, E., Altheide, C., Daywalt, C., de Donno, A., Forte, D., Holley, J.O., John-
ston, A., van der Knijff, R., Kokocinski, A., Luehr, P.H., Maguire, T., Pittman,
R.D., Rose, C.W., Schwerha, J.J., Shaver, D., Smith, J.R.: Handbook of digital
forensics and investigation, pp. 1–17. Academic Press, San Diego (2010). https://
doi.org/10.1016/B978-0-12-374267-4.00001-X . https://www.sciencedirect.com/
science/article/pii/B978012374267400001X

[19] Transmission Control Protocol. RFC Editor (1981). https://doi.org/10.17487/
RFC0793 . https://www.rfc-editor.org/info/rfc793

[20] Kary: Understanding the tcptrace time-sequence

29

https://doi.org/10.1109/ICIN56760.2023.10073485
https://doi.org/10.17487/RFC2914
https://doi.org/10.17487/RFC2914
https://www.rfc-editor.org/info/rfc2914
https://doi.org/10.1145/3366693
https://datatracker.ietf.org/doc/draft-ietf-tcpm-hystartplusplus/13/
https://datatracker.ietf.org/doc/draft-ietf-tcpm-hystartplusplus/13/
https://doi.org/10.17487/RFC5681
https://www.rfc-editor.org/info/rfc5681
https://www.rfc-editor.org/info/rfc5681
https://doi.org/10.1109/TNSM.2019.2896335
https://doi.org/10.1109/TNSM.2019.2896335
https://doi.org/10.17487/RFC2001
https://doi.org/10.17487/RFC2001
https://www.rfc-editor.org/info/rfc2001
https://doi.org/10.1145/3009824
https://doi.org/10.1145/3009824
https://doi.org/10.1016/B978-0-12-417208-1.09984-0
https://www.sciencedirect.com/science/article/pii/B9780124172081099840
https://www.sciencedirect.com/science/article/pii/B9780124172081099840
https://doi.org/10.1016/B978-0-12-374267-4.00001-X
https://doi.org/10.1016/B978-0-12-374267-4.00001-X
https://www.sciencedirect.com/science/article/pii/B978012374267400001X
https://www.sciencedirect.com/science/article/pii/B978012374267400001X
https://doi.org/10.17487/RFC0793
https://doi.org/10.17487/RFC0793
https://www.rfc-editor.org/info/rfc793


graph in wireshark. https://packetbomb.com/
understanding-the-tcptrace-time-sequence-graph-in-wireshark/

[21] Tlaiss, Z.: Anomaly root cause diagnosis from active and passive measurement
analysis. In: 2021 33th International Teletraffic Congress (ITC-33), pp. 1–3 (2021)

[22] Hagos, D.H., Engelstad, P.E., Yazidi, A., Kure, O.: General tcp state infer-
ence model from passive measurements using machine learning techniques. IEEE
Access 6, 28372–28387 (2018) https://doi.org/10.1109/ACCESS.2018.2833107

[23] Padhye, J., Floyd, S.: On inferring tcp behavior. ACM SIGCOMM Computer
Communication Review (2001) https://doi.org/10.1145/383059.383083

[24] Yang, P., Luo, W., Xu, L., Deogun, J., Lu, Y.: Tcp congestion avoidance algorithm
identification. In: 2011 31st International Conference on Distributed Computing
Systems, pp. 310–321 (2011). https://doi.org/10.1109/ICDCS.2011.27

[25] Jaiswal, S., Iannaccone, G., Diot, C., Kurose, J., Towsley, D.: Inferring tcp con-
nection characteristics through passive measurements, pp. 1582–15923 (2004).
https://doi.org/10.1109/INFCOM.2004.1354571

[26] Toshihiko Kato, R.Y. Leelianou Yongxialee, Ohzahata, S.: A study on how to
characterize tcp congestion control algorithms from unidirectional packet traces.
ICIMP 2016 : The Eleventh International Conference on Internet Monitoring and
Protection (2016)

[27] Kato, T., Yan, X., Yamamoto, R., Ohzahata, S.: Identification of tcp congestion
control algorithms from unidirectional packet traces, pp. 22–27 (2018). https:
//doi.org/10.1145/3291842.3291922

[28] Zhang, Y., Breslau, L., Paxson, V., Shenker, S.: On the characteristics and origins
of internet flow rates. SIGCOMM Comput. Commun. Rev. 32(4), 309–322 (2002)
https://doi.org/10.1145/964725.633055

[29] Guo, C., Yuan, L., Xiang, D., Dang, Y., Huang, R., Maltz, D., Liu, Z., Wang,
V., Pang, B., Chen, H., Lin, Z.-W., Kurien, V.: Pingmesh: A large-scale system
for data center network latency measurement and analysis. SIGCOMM Comput.
Commun. Rev. 45(4), 139–152 (2015) https://doi.org/10.1145/2829988.2787496

[30] Zhu, Y., Kang, N., Cao, J., Greenberg, A., Lu, G., Mahajan, R., Maltz, D., Yuan,
L., Zhang, M., Zhao, B.Y., Zheng, H.: Packet-level telemetry in large datacenter
networks. SIGCOMM Comput. Commun. Rev. 45(4), 479–491 (2015) https://
doi.org/10.1145/2829988.2787483

30

https://packetbomb.com/understanding-the-tcptrace-time-sequence-graph-in-wireshark/
https://packetbomb.com/understanding-the-tcptrace-time-sequence-graph-in-wireshark/
https://doi.org/10.1109/ACCESS.2018.2833107
https://doi.org/10.1145/383059.383083
https://doi.org/10.1109/ICDCS.2011.27
https://doi.org/10.1109/INFCOM.2004.1354571
https://doi.org/10.1145/3291842.3291922
https://doi.org/10.1145/3291842.3291922
https://doi.org/10.1145/964725.633055
https://doi.org/10.1145/2829988.2787496
https://doi.org/10.1145/2829988.2787483
https://doi.org/10.1145/2829988.2787483

	Introduction
	Congestion Control Algorithm and troubleshooting 
	Finite State Machine transitions series
	Invariants in CCA behaviour
	The (not so) Slow Start
	Slow-Start exit time

	Troubleshooting: from data extraction to data analysis
	Data collection & Data processing
	Data analysis

	Automatic Slow Start exit detection
	Visual CCA states identification
	Challenges towards automation: Noise and Non-stationarity
	Timeless packet series representation
	Slow Start exit time: "slope 1/2" method
	Slope 1/2 method details

	Evaluation of the slope 1/2 method
	Application to network troubleshooting
	Pattern 1: Constant BIF after SS exit
	Pattern 2: BIF dive after SS exit
	Pattern 3: BIF growth after SS exit

	BBR identification using the SS exit time detection
	Motivation of the method
	Analyzing Packet Inter-Arrival Times: Modelling and Inference
	CUBIC distribution
	BBR distribution
	Expanding small contributions

	Choice of the optimal decision point
	Model evaluation
	Choice of the decision point using a training dataset
	Testing the decision point to identify BBR CCA

	Model advantages and future challenges

	Related Work
	Identification of CCA states to infer TCP behavior
	Troubleshooting tools

	Conclusion

