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Abstract
Bernard O Koopman proposed an alternative view of dynamical systems based on linear operator
theory, in which the time evolution of a dynamical system is analogous to the linear propagation of
an infinite-dimensional vector of observables. In the last few years, several works have shown that
finite-dimensional approximations of this operator can be extremely useful for several
applications, such as prediction, control, and data assimilation. In particular, a Koopman
representation of a dynamical system with a finite number of dimensions will avoid all the
problems caused by nonlinearity in classical state-space models. In this work, the identification of
finite-dimensional approximations of the Koopman operator and its associated observables is
expressed through the inversion of an unknown augmented linear dynamical system. The
proposed framework can be regarded as an extended dynamical mode decomposition that uses a
collection of latent observables. The use of a latent dictionary applies to a large class of dynamical
regimes, and it provides new means for deriving appropriate finite-dimensional linear
approximations to high-dimensional nonlinear systems.

1. Introduction

Koopman operator theory (Koopman 1931) states that any nonlinear dynamical system can be lifted by a
time-invariant nonlinear representation into a space where the time evolution of the system can be described
by linear methods. In the last years, a combination of theoretical (Mezíc 2005, 2013, 2015, Budǐsíc et al 2012)
and numerical (Schmid 2010, Williams et al 2015) efforts, as well as the increasing availability of data,
promoted this formalism into one of the leading data-driven identification techniques. Modern Koopman
theory aims at finding, from data, some special measurements of the state space that provide global linear
models of non-linear, and potentially high dimensional dynamical systems. These representations may,
however, be hard to obtain on complex systems. In practice, data-driven approximations such as the
extended dynamic mode decomposition, (EDMD) (Williams et al 2015), assume some finite-dimensional
basis of functions that span an (approximately) invariant Koopman subspace.

In this work, we wish to further expand the EDMDmethodology to account for latent observables of the
state variables. Specifically, we assume the finite-dimensional Koopman subspace to possibly be spanned by a
known dictionary plus a collection of latent functions that form the latent dictionary. The evaluation of these
latent functions is performed on a given realization of the observations. We discuss two methods for this
proposed latent EDMD (LEDMD) framework, which can be used to derive Koopman approximations for
both deterministic and stochastic dynamical systems. The latter relies on a state space model formulation
with Gaussian uncertainties.
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2. Deterministic dynamical systems and Koopman operator theory

2.1. Background on Koopman operator theory for deterministic systems
Let us assume a continuous, autonomous s-dimensional time-varying ODE, governing the state variable zt.
This dynamical system also generates measurements xt ∈ Rn in the following state space model:

żt = f(zt) (1a)

xt =H(zt). (1b)

When considering the dynamical equation (1a) and given an initial condition zt0 , the solution of this
equation for an interval t ∈ [t0, tf] can be written as

Φt(zt0) = zt0 +

ˆ t

t0

f(zw)dw (2)

where Φt(zt0) ∈ L with L⊂ Rs. We may also define a discrete state space model as follows:

zk+1 = T (zk) (3a)

xk =H(zk) (3b)

where T can be the application of a given integration scheme to (1a).
Koopman (1931) introduced a new operator-based formalism, where the evolution of a dynamical

system can be determined by following a set of observables of the state variable zt. Koopman proved that
when considering an infinite-dimensional Hilbert space of observables F , the time evolution of the
dynamics is invariant to a linear Koopman operator. Formally, let g ∈ F : L−→ C be a complex-valued
observable of the dynamical system (3a). The collection of all these observables forms a linear vector space,
on which the Koopman operator K is defined as follows:

Kg(ztk) = g ◦ T (ztk) (4)

where ◦ is the composition operator. For time-continuous dynamical systems, we define a one-parameter
semi-group of Koopman operators {Kt}t>0 as follows:

Ktg(zt0) = g ◦Φt(zt0). (5)

We also denote byA= limt→0
Kt−I

t the infinitesimal generator of the Koopman semi-group, which
satisfies, assuming uniform continuity on a suitable banash space (Engel et al 2000):

Kt = eAt. (6a)

The Koopman operator K is a linear operator that advances observables in time. From a modeling
perspective, going from an ODE to a Koopman operator formulation can be seen to trade the nonlinear
complexity of the dynamical operator f for a linear operator representation based on an infinite-dimensional
and non-linear set of observables.

2.2. Data-driven approximation of Koopman operator
Finding a data-driven approximation of Koopman representations consists in the definition, from a sequence
of N + 1 measurements {xk}N+1

k=1 , of a finite-dimensional collection of observables, that can be propagated
linearly in time. It is important to note that in this work, the measurements xk are distinguished from the
states zk. Indeed, in real applications, we are not guaranteed to observe the full state vector. A data-driven
identification of Koopman representations thus brings another layer of complexity: the finite-dimensional
set of observables is defined as a function of the measurements xk and not from the state zk. In this situation,
we need to ensue the projection (1b) does not impact the data-driven Koopman representation.

The literature on data-driven approximation of the Koopman operator mainly follows two paths. A first
path is written in the language of the dynamic mode decomposition (DMD) (Schmid 2010). The DMD was
first introduced to find low rank spatio-temporal coherent structures of complex dynamics. In the language
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of Koopman, the DMD computes a Koopman approximation when considering the observables as the
measurements xk of the state space (Rowley et al 2009). The EDMD (Williams et al 2015) was then
introduced to generalize the DMD algorithm to some (non-linear) functions of the measurements.
Numerous basis of functions were explored in the literature, ranging from polynomial representations
(Brunton et al 2016a) up to multi-layer perceptron (Takeishi et al 2017a). DMD-type algorithms were also
shown to converge to a Galerkin approximation of the Koopman operator (Williams et al 2015). The
combination of these theoretical results as well as the simplicity of the DMD algorithm motivated several
developments of the method. For instance, the piDMDmethod (Baddoo et al 2023) was developed to
enforce some known symmetries on the DMD approximation, and the mpEDMD (Colbrook 2022)
guarantees that the EDMD approximation is measure preserving. Furthermore, in order to avoid the
computation of spurious pairs of eigenvalues/eigenvectors, the ResDMDmethod (Colbrook et al 2023) was
developed to assess and validate the accuracy of the pairs of eigenvalues/eigenvectors outputted by a DMD
procedure. Several works also aimed at approximating the Koopman generator (Mauroy and Goncalves 2016,
2019, Klus et al 2020) using DMD-type algorithms, such methods can include sparsity priors on the
infinitesimal generator even when the corresponding Koopman operator is not.

However, this technique can be subject to closure issues, especially for complex systems with no prior
knowledge about the dynamics (and their non-linearities). The measurement noise may also have a strong
influence on EDMD estimates. A number of works then proposed efficient estimates of the DMD output
under certain noisy conditions. Combining the DMD with the Kalman filter (Jiang and Liu 2022), methods
can both provide an efficient separation of the signal and noise, and an approximation of the stochastic
Koopman operator.

A second path explores deep learning models to identify the necessary non-linear transformations of the
measurements that may lead to suitable Koopman observables (Lusch et al 2018, Yeung et al 2019, Azencot
et al 2020, Rice et al 2020).

Further note, considering partial observations of the state space variable, delay embedding coordinates
offer a simple class of observables that can unfold (under some conditions on the parameters of the delay
embedding) the structure of the underlying dynamics. These delay embedding observables were shown to be
extremely efficient in the linearization of periodic and quasi-periodic dynamical systems (Arbabi and Mezic
2017). Their exploitation was also demonstrated in the decomposition of chaotic dynamics (Brunton et al
2017), further considering an additional forcing term. These types of representations have led to significant
advances in the field, including convergence results under asymptotic regimes (Arbabi and Mezic 2017, Zhen
et al 2022). However, in practice, the definition of their parameterization, especially the delay embedding
(Kamb et al 2020) as well as their exploitation in computing dissipative eigenvalues of the Koopman operator
(Arbabi and Mezic 2017) remains an active research topic.

3. Inverse problem formulation

We begin by outlining the EDMDmethod (Williams et al 2015) before introducing the proposed LEDMD
framework.

3.1. EDMD
The main idea behind the EDMD is to estimate a finite-dimensional approximation of the Koopman
operator K given a dictionary of functions and a dataset of snapshot pairs. Formally, we start by choosing a
dictionary:

DM = {ψ1,ψ2, . . . ,ψM} (7)

where ψi ∈ F : L−→ C for i = 1,2, . . . ,M. We also define the vector valued functionΨM : L−→ CM×1:

ΨM(zt) = [ψ1(zt) ψ2(zt) . . . ψM(zt)]
T. (8)

The span ofDM is a subspace of F , and can be written as follows:

FDM = Span{ψ1,ψ2, . . . ,ψM}= {aTMΨM : aM ∈ CM×1} ⊂ F . (9)

3
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By definition, we can write any function ϕ ∈ FDM as:

ϕ =
i=M∑
i=1

aiψi = a
T
MΨM. (10)

If we apply the Koopman operator on the observable ϕ we have:

Kϕ = aTMKΨM = aTMΨM ◦ T . (11)

If we assume that the subspace spanned byDM is invariant under the action of the Koopman operator we
can write:

K(FDM) = FDM (12)

then Kϕ = bTMΨM for some bM ∈ CM×1. Under this assumption, we can define an exact finite-dimensional
Koopman operator KM ∈ RM×M that verifies bTM = aTMKM. The action of this finite-dimensional Koopman
operator is defined as:

Kϕ = aTMKΨM = aTMKMΨM = aTMΨM ◦ T . (13)

In practice, the subspace spanned byDM is not invariant to the Koopman operator. It implies that the
action of the Koopman operator on some element of FDM will not lie exactly on FDM i.e. Kϕ = bTMΨM + r
with r ∈ F . This yields to the following relation:

Kϕ = aTMKΨM = aTMKMΨM + r= aTMΨM ◦ T . (14)

To determine KM , the EDMDminimizes the following cost function given a dataset of snapshot pairs
{(uk,vk)}Nk=1 where vk = T (uk):

J =
1

2

N∑
k=1

|r(uk)|2

=
1

2

N∑
k=1

|aT(ΨM(vk)−KMΨM(uk))|2 (15)

where | · | denotes the Frobenius norm. Equation (15) is a least squares problem and the solution that
minimises (15) is:

KM =Ψ(V)Ψ(U)+ (16)

where

Ψ(U) = [Ψ(u1) Ψ(u2) . . . Ψ(uM)] (17)

Ψ(V) = [Ψ(v1) Ψ(v2) . . . Ψ(vM)] (18)

andΨ(U)+ represents the pseudoinverse ofΨ(U).
Overall, EDMD requires a data set of snapshot pairs, {(uk,vk)}Nk=1, as well as a dictionary of observables,

DM. Furthermore, it assumes that the subspace spanned byDM is (nearly) invariant under the action of K.
Theoretical guarantees on the convergence of KM to the true Koopman operator were studied in the limit of
infinite data and an infinite number of observables. Specifically, under some technical assumptions on the
sampling of the measurements and the form of the Hilbert space F , Klus et al (2015), Williams et al (2015),
Korda and Mezíc (2018)showed that the matrix KM converges to KDM , the Galerkin projection of the
Koopman operator on the subspace FDM . Furthermore, Korda and Mezíc (2018) studied the convergence of
KM to K asM goes to infinity in the strong operator topology. In practice, both N andM are finite, and in
this setup, the choice of a relevant dictionary is still an open question. To further generalize the EDMD

4
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algorithm, we thus propose to consider a latent dictionary. This latent dictionary will help generate
observables that make the Koopman approximation more accurate.

3.2. EDMDwith a latent dictionary
3.2.1. Proposed framework
Within an LEDMD framework, the data-driven derivation of numerical approximations of the Koopman
operator are stated as an EDMD approximation with latent observables. These latent observables are used to
account for both i) situations where the observation operator is not an embedding and ii) closure issues
related to the choice of the dictionary in EDMD framework. In the LEDMD approach, we do not assume to
access a dataset of snapshot pairs {(uk,vk)}Nk=1 that satisfy vk = T (uk). We only assume observations of the
state space model (3), that we conveniently put in the following dataset: {(xk,xk+1)}Nk=1.

Similarly to the EDMD, we start by choosing a dictionaryDM (7). This dictionary operates on
measurements of the state space (3). We also assume the existence of some latent dictionaryDW, that can be
written similarly toDM as follows:

DW = {ψl
1,ψ

l
2, . . . ,ψ

l
W} (19)

where ψl
i ∈ F : L−→ C for i = 1,2, . . . ,W. Recall xk =H(zk), we also define the following vector valued

functions:
We start byΨM, stated as the EDMD observables.ΨM : L−→ CM×1:

ΨM(H(zk)) = [ψ1(H(zk)) ψ2(H(zk)) . . . ψM(H(zk))]
T. (20)

We also defineΨW, stated as the latent observables.ΨW : L−→ CM×1:

ΨW(zk) = [ψl
1(zk) ψ

l
2(zk) . . . ψ

l
W(zk)]

T. (21)

Finally, we defineΨdE the vector valued LEDMD observables.ΨdE : L−→ CdE×1:

ΨdE(zk) = [ψ1(H(zk)) ψ2(H(zk)) . . . ψM(zk) ψ
l
1(zk) ψ

l
2(zk) . . . ψ

l
W(zk)]

T (22)

where dE =M+W.
We also define the matrix G ∈ RM×dE as:

ΨM(·) = GΨdE(·). (23)

If we assume that the observation operatorH is a vector valued function with elements in F , then the
span ofDdE =DM ∪DW is a subspace of F , and can be written as follows:

FDdE
= Span{ψ1,ψ2, . . . ,ψM,ψ

l
1,ψ

l
2, . . . ,ψ

l
W}

= {aTdEΨdE : adE ∈ CdE×1} ⊂ F . (24)

Similarly to the EDMD, KdE , an approximation of the Koopman operator verifies:

Kϕ = aTdEKΨdE = a
T
dEKdEΨdE + r= aTdEΨdE ◦ T (25)

where ϕ ∈ FDdE
and adE ∈ CdE×1. In the EDMD framework, the approximate Koopman operator KdE is

defined as the minimizer of the following cost:

J =
1

2

N∑
k=1

|r(zk+1)|2

=
1

2

N∑
k=1

|aTdE(ΨdE(zk+1)−KdEΨdE(zk))|2. (26)

The above EDMD cost function assumes direct measurements of the state variables zt. Furthermore, it
assumes that both the dictionaries of non-linear functionsDM andDW are known and span an
(approximately) invariant Koopman subspace. In more realistic settings, we more likely have solely access to
measurements xt of a dynamical system. Even though we define our basis of observables on an embedding of
the measurements, like for the case with delay embedding approaches (Kamb et al 2020), an arbitrary choice
of a dictionary of observables does not systematically generate a good approximation of the Koopman
operator. We thus propose to minimize cost function (26), solely given measurements of a dynamical system

5
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and without any knowledge of the latent dictionary of observablesDW. For this purpose, we reformulate the
action of the Koopman operator on a function ϕM ∈ FDM . By definition, we have:

ϕM =
i=M∑
i=1

aiψi = a
T
MΨM = aTMGΨdE (27)

with aM ∈ CM×1. The action of the Koopman operator on ϕM verifies:

KϕM = aTMGKΨdE = a
T
MGΨdE ◦ T . (28)

Since the subspace spanned by FDdE
is not invariant to the Koopman operator, the approximate

Koopman operator KdE includes a residual term r as follows:

KϕM = aTMGKΨdE = a
T
MGΨdE ◦ T = aTMGKdEΨdE + r. (29)

Given a dataset of snapshot pairs, {(xk,xk+1)}Nk=1 the LEDMD considers the following cost function:

JLEDMD =
1

2

N∑
k=1

|r(uk)|2

=
1

2

N∑
k=1

|aT(GΨdE((zk+1))−GKdEΨdE(zk))|2

=
1

2

N∑
k=1

|aT(ΨM(H(zk+1))−GKdEΨdE(zk))|2

=
1

2

N∑
k=1

|aT(ΨM(xk+1))−GKdEΨdE(zk))|2.

(30)

IfDW and zk are known, the LEDMD framework falls back into the standard EDMD problem described
above. The solution of the minimization of JLEDMD can then be defined similarly to (15) using the
pseudoinverse. However, sinceDW and zk are not known, we propose to minimize JLEDMD with respect to
both KdE and {ΨW(zk)}k=N

k=1 :

arg min
KdE

,{ΨW(zk)}k=N
k=1

JLEDMD. (31)

3.2.2. Practical optimization problem
In this work, a regularization term is used to account for the action of KdE on the latent observables.
Specifically, we numerically minimize the following objective function:

argmin
KdE

min
{ψl

i(zk)}
i=W
i=1

N∑
k=1

|ΨM(xk+1)−GKdEΨdE(zk)|2 +β|ΨdE(zk+1)−KdEΨdE(zk)|2 (32)

where β is a weighting parameter. The term |ΨdE(zk+1)−KdEΨdE(zk)|2 may be regarded as a regularization
term such that the inference of the latent observables {ΨW(zk)}k=N

k=1 of the vector of observableΨdE is not
solved independently for each time-step. The overall idea of the proposed framework are sketched in figure 1.
Interpretation of the LEDMD: This formulation can be interpreted as searching for the most relevant

subset of latent observablesΨW, that makes the set of observablesΨdE to evolve linearly in time. It is worth
noting that this formulation naturally extends to cases where the measurements xt do not form an
embedding of the state of the dynamics zt. Indeed, the set of latent observables is written as a solution to an
optimization problem, and not as an explicit mapping of the observations. The LEDMD can be easily
extended to account for physical constraints, similarly to DMD-type algorithms (Colbrook 2022, Baddoo
et al 2023), by including these constraints as regularization terms in (30).
Benefits of the numerical optimization: Since the optimization is carried out numerically, we can further

benefit from the numerical computation of the approximate Koopman operator as well as the corresponding
latent observables. It helps to formulate the Koopman operator as the matrix exponential of an infinitesimal
generator. Such a formulation makes it simple to constrain the eigenvalues of the approximate Koopman
operator to be unitary (when relevant, for example, in conservative systems). This formulation is simply
derived by considering K= e∆tA where A is the approximate infinitesimal generator of the Koopman
operator and∆t is the time step. Figure 1 shows an example where the infinitesimal generator is optimized.

6
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Figure 1. Detailed computational pipeline and global overview of the proposed framework. The proposed framework is
highlighted on partial observations of the state variables of a non-linear equilibrium point. These partial measurements are
embedded into a higher dimensional space of observables. This higher dimensional space is assumed to be invariant to a linear
Koopman operator. Both the observables ψl

1 and ψ
l
1 as well as the infinitesimal generator of Koopman are solution of an

optimization problem with respect to the prediction of the measurements. The outputs of this inverse problem is a linear model
that can be used to simulate/predict new measurements.

Forecasting applications B the latent observablesΨW of the vector of observablesΨdE are outputs of an
optimization problem, forecasting applications must be approached with caution to account for a relevant
choice ofΨW initial conditions. In practice, given a trained LEDMDmodel, forecasting measurements xk
relies on the forecasting of the entire set of observablesΨdE . The latter amounts to finding an initial
condition for the latent observables,ΨW and then propagating these observables by the action of the
approximate Koopman operator. This issue can be addressed by finding the most relevant latent observables
that minimize the forecasting cost of a predefined sequence of EDMD observablesΨM. Specifically, given a
new sequence of measurements xk, k ∈ {N1, . . . ,N2}, forecasting these new series of measurements for
k> N2 is carried by following the optimization problem (32), where we infer the initial condition ofΨW

using the following minimization:

arg min
{ψl

i(zk)}
i=N2
i=N1

N2∑
k=N1

|ΨM(xk+1)−GKdEΨdE(zk)|2 +β|ΨdE(zk+1)−KdEΨdE(zk)|2. (33)

Here, we only minimize w.r.t. latent observables,ΨW given the trained Koopman operator KdE . This
minimization relates to a variational assimilation issue with partially-observed states and known dynamical
and observation operators (Lynch and Huang 2010).

4. LEDMD and the stochastic Koopman operator

Hereafter, we describe the extension of the proposed framework for the derivation of finite-dimensional
approximations of the stochastic Koopman operator.

7
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4.1. Stochastic Koopman operator
Let us consider a state space model driven by a Random Dynamical System (RDS):

zk+1 = TΩ(zk,wk); zk ∈ L; wk ∈ Ω (34)

xk =H(zk) (35)

with (L,ΣL,µL) and (Ω,ΣΩ,µΩ,θ) the probability spaces associated with L and Ω respectively. θ : Ω−→ Ω is
a measure preserving base flow. The noise process wk is assumed to be independent from z0 z0 . . . zk.

We can define a one-step stochastic Koopman operator KΩ, associated with the RDS (34) as:

KΩg(zt) = EΩ[g(TΩ(zk,wk))] (36)

with g ∈ F : L−→ C is a complex-valued observable of the dynamical system. Similarly to the deterministic
case, if a finite dictionaryDdE of elements of F spans a subspace FdE ⊂F that is (approximately) invariant to
the stochastic Koopman operator, we can define a finite-dimensional (approximation) KΩ of KΩ as the
projection of KΩ into FdE .

4.2. Approximation of the stochastic Koopman operator
When considering the approximation of the stochastic Koopman operator from data, the standard EDMD
(with a correct choice of the dictionary) has been explored in various works. Specifically, when in addition to
ergodicity, the noise process is assumed to be white, Takeishi et al (2017b) showed the eigenvalues produced
by the standard EDMD algorithms converging to the ones of the stochastic Koopman operator. However, for
given noisy observables, the output of the EDMD algorithm is biased (Dawson et al 2016). Several works
proposed variants of the DMD algorithm to correct the influence of noise on the estimation of the
approximate Koopman operator in both the deterministic (Dawson et al 2016, Jiang and Liu 2022) and
stochastic (Takeishi et al 2017b, Wanner 2020, Jiang and Liu 2022) settings. Yet, a fundamental issue
regarding the choice of the dictionary of observables still persists.

We will show that the proposed LEDMD framework is relevant for handling RDS. Assuming a Gausian
noise, ek, we combine LEDMD with a Kalman filter, following Jiang and Liu (2022), to produce an estimate
of the stochastic Koopman operator and estimates of the process and observation noises. Furthermore, using
the LEDMD in a Kalman filter allows for highly irregular observations that can not be handled by simple
DMD inversions.

4.3. LEDMD for the stochastic Koopman operator
The proposed LEDMDmodel can be used to derive the stochastic Koopman operator, given partial
observations of the state of the system, and assuming an incomplete basis of observables. Similarly to the
LEDMD in the deterministic case, two dictionaries of functionsDM andDW are considered. The dictionary
DM acts on measurements of the RDS, whileDW spans the latent observables. We assume that the span of
DdE =DM ∪DW is (approximately) invariant to the action of the stochastic Koopman operator which gives:

ΨdE(zk+1) = KΩΨdE(zk)+ ek. (37)

The derivation of KΩ and the latent observablesΨW are to be considered with care to account for both
the process noise and some potential measurements noise. The learning criterion proposed in (32) is likely to
fail. To best circumvent this issue, similarly to Jiang and Liu (2022), we propose to formulate the LEDMD as
a state space model. In this model, the measurement equation can be easily defined by writing the restriction
of the full state observable to the measurements xk:ΨO : L−→ Cn×1:

ΨO(H(zk)) = [ψo
1(H(zk)) ψ

o
2(H(zk)) . . . ψ

o
n(H(zk))]

T

= [e∗1 (H(zk)) e
∗
2 (H(zk)) . . . e

∗
n(H(zk))]

T

= xk (38)

with e∗i , i = 1, . . . ,n the ith unit vector in Rn. In this work, we assume that ψo
i ∈ FDdE

for all i = 1, . . . ,n so
that we can write:

8
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xt =HΨdE(zk)+νk (39)

whereH= BG. Here, B ∈ Rn×M is some appropriate matrix of weight that satisfies ψo
i = biΨM where bi is

the i-th line of B. νk ∼N (0,Rk) with Rk ∈ Rn×n is the covariance matrix of the measurements error. The
vector ν accounts for the measurements error.

Equations (39) and (37) form a linear state space model. Assuming in this setup that the uncertainities
are gaussian i.e. ek ∼N (0,Qk) and νk ∼N (0,Rk) and the span ofDdE is invariant to the action of the
stochastic Koopman operator, the Kalman filter then represents an optimal estimator, in the least square
sense, of the sequence of vector valued observablesΨdE(zk), given the measurements xt. Standard Kalman
filtering parameterization can then be used to infer the approximate stochastic Koopman operator, and the
covariances Qk and Rk.

4.4. Kalman filter for the estimation of the stochastic LEDMD
The Kalman filter is used on equations (39) and (37) to derive an estimate of the distribution
p(ΨdE(zk)|{xi}i=k

i=1), k⩽ N. Formally, given the initial momentsΨdE(zk)
a
1 and P

a
1, the meanΨdE(zk)

a and
covariance Pak of p(ΨdE(zi)|{xi}i=k

i=1) can be computed as follows:

ΨdE(zk+1)
f = KΩΨdE(zk)

a (40a)

P f
k+1 = KΩP

a
kK

T
Ω +Qk (40b)

Kk+1 = P
f
k+1H

T[HP f
k+1(H)

T +Rk]
−1 (40c)

ΨdE(zk+1)
a =ΨdE(zk+1)

f +Kk+1

[
xk+1 −HΨdE(zk+1)

f
]

(40d)

Pak+1 = P
f
k+1 −Kk+1HP

f
k+1. (40e)

The superscripts f and a refer to the forecasting and filtering phases of the Kalman filter, respectively.

4.5. Optimization of the parameters of the stochastic LEDMD:
The use of the Kalman filter to estimate parameters of a given state space model (hereΨdE , KΩ, Qk and Rk) is
classical in state space modeling literature (Tandeo et al 2018). The optimization of KΩ, Qk and Rk must be
considered with care to account for a correct derivation of the covariances Qk and Rk, and the stochastic
Koopman operator KΩ. We consider the maximization of the likelihood of the observations. It provides a
direct objective function to be optimized using gradient descent. Formally, and under the assumption of the
state space model of equations (39) and (37), the innovation likelihood of a given observation at time k,

p(xt|xk−1,KΩ) follows a Gaussian distributionN (HΨdE(zk),HP
f
kH

T +Rk) (Carrassi et al 2017). The total
likelihood of the observations under (39) and (37) then writes as a product of the likelihood of the
innovations (Carrassi et al 2017):

p(x1:N|KΩ) =
k=N∏
k=2

p(xk|xk−1,KΩ). (41)

Equation (41) includes crucial information regarding the parameters of the filtering scheme. It can be
maximized numerically to derive the correct values forΨdE , KΩ, Qk and Rk. Furthermore, and under some
assumptions on the covariances Qk and Rk, Jiang and Liu (2022) showed that the maximization of the
likelihood of the observations converges to the standard DMD formulation in the deterministic case. It also
converges to the Noise-corrected DMD (Dawson et al 2016) when considering deterministic dynamics with a
small measurement noise level. For arbitrary noises, the maximization of (41) does not have a known
analytical solution. We thus propose to maximize (41) numerically using gradient descent. Specifically, the
observableΨdE(zk) and the KΩ, Qk and Rk are estimated as follows:

• Step 1: Initialize KΩ, Qk and Rk.
• Step 2: Given measurements {xk}k=N

k=1 , estimate the posterior distribution p(ΨdE(zk)|{xi}i=k
i=1) using the

Kalman filter.

9
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• Step 3: Minimize the negative log likelihood of (41) with respect to KΩ, Qk and Rk.
• Step 4: Repeat steps 2 and 3 until convergence.

The likelihood (41) measures how good a model fits the observations. It is known in the state-of-the-art
data assimilation literature as model evidence. It is also often used in model selection (Carson et al 2018) as it
provides a direct measure of the accuracy of a given state-space model. In this work, and under the
hypothesis of the Gaussian noise uncertainties, this likelihood can be used to evaluate the effectiveness of the
stochastic LEDMD approximation under different dictionaries of observables. In the next experimental
section, focus is given on the evaluation of the dimension of the approximate Koopman operator. We show
that the likelihood is maximized for approximations of Koopman that have a sufficient dimension.

5. Application examples

The LEDMD is tested on deternimistic and stochastic dynamical systems in the following section. In the
appendix, we also present further experiments on nonlinear oscillations and passengers airline dataset.

5.1. Equilibrium points
Let us consider the following system of differential equations

{
ż1,t = µz1,t

ż2,t = α(z2,t − z21,t)
. (42)

Equation (42) is a nonlinear ODE with an equilibrium point at the origin. Studying the derivation of a
linear conjugate of this equation is relevant. The equation (42) admits a three-dimensional closed-form
linear Koopman representation (Brunton et al 2016a), by choosing as set of observables the variables z1, z2
and z21. Formally, and considering z3 = z21, we may rewrite (42) as:


ż1,t = µz1,t
ż2,t = α(z2,t − z3,t)
ż3,t = 2µz3,t

. (43)

Full observations of the state space. In this first experiment, we consider as measurements the full state
vector of (42) i.e.H= I2, xTt = [z1,t,z2,t] (please refer to appendix B for a description of the numerical
simulation and sampling of (42)). Figure 2 illustrates the performance of LEDMD framework in the
identification of a linear model that perfectly matches the non-linear dynamics. Our framework is tested here
withDM = {e∗1 e∗2} andDW = {ψl

1}. This setup generates observablesΨdE = [z1 z2 ψl
1(zt)]

T ∈ R3×1

(dE = 3) i.e a single latent observable is concatenated to the observations. It is worth noting that neither the
dynamical model, nor its non-linearities are known by the proposed framework as the observable ψl

1(zt) and
the approximate Koopman operator KdE are solutions of an optimization problem, that minimizes the
forecasting of the observations. The EDMD algorithm using, in addition to the observed states, an additional
observable z21 leads to a closed form Koopman translation of the non-linear differential equation (42).
Indeed, as shown by equation (43), this ODE can be analytically linearized with this set of observables.
However, selecting a bad observable, for instance z22, drastically changes the EDMD performance as
illustrated in figure 2. Choosing the right finite set of observables is key in data-driven Koopman
representations, and this experiment highlights this aspect.
Partial observations of the state spaceWe now only consider partial observations of the state of (42) i.e.

H= [0,1], xTt = [z2,t]. Similarly to the previous experiment, the LEDMD framework is tested with
DM = {e∗2} andDW = {ψl

1,ψ
l
2}. In this configuration, two latent variables are concatenated to the

observation. This application example is depicted in figure 1.
Figure 3(a) illustrates the DMD algorithm, applied to measurements of z2. Including high order

polynomial non-linearities tends to make worst the DMD approximation as illustrated in figure 3(b). This is
due to the fact that the non-linearity is present in the unobserved component z1. The LEDMDmodel is able
to derive the most relevant latent observables that linearize the system, only given partial measurements.
Figure 4 provides a simulation example of the LEDMD framework.

10



Mach. Learn.: Sci. Technol. 4 (2023) 025018 S Ouala et al

Figure 2. Linear simulation of the non-linear dynamical model (42) given full observations of the state variables. The simulation
of the LEDMDmodel is given in (a), the one of the EDMD algorithm with a correct choice of the observables (i.e. [z1,z2,z21]

T) in
(b) and the simulation of the EDMD with a wrong set of observables (i.e. [z1,z2,z22]

T) in (c). In each figure, the colors correspond
to simulations from different initial conditions. The lines correspond to the non-linear dynamics and the dots represent the
data-driven Koopman simulations.

5.2. LEDMD on the shallow water equation (SWE)
Chaotic systems are typical examples where the observables space of the Koopman operator is
infinite-dimensional. However, numerous chaotic systems admit, in addition to a chaotic signature, several
periodic and quasi-periodic modes, making suitably chosen linear models relevant for short-term forecast
applications.

We consider modeling chaotic dynamics governed by the SWE. Observations of the sea surface elevation
ηk are considered as measurements i.e.xk = ηk (please refer to appendix B for a detailed description of the
numerical simulation of the SWE). In this experiment, the LEDMD framework is built as follows. We
constructΨM from the empirical orthogonal function (EOF) decomposition of the measurements, i.e.DM
is built with theM= 100 principal eigenvectors of the covariance of the measurements and
DW = {ψl

1, . . . ,ψ
l
W} withW = 600. This setup generates observables

ΨdE(zt) = [xTt E
T ψl

1(zt) . . . ψ
l
W(zt)]

T ∈ R700×1 (dE = 700) with E the matrix formed by the eigenvectors of
the covariance matrix of the data.
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Figure 3. Linear simulation of the non-linear dynamical model (42) using the (E)DMD algorithm given partial observations of
the state variables. (a) DMD approximation. The colors correspond to simulations from different initial conditions. The lines
correspond to the non-linear dynamics of z2,t and the dots represent the DMD simulation. (b) (E)DMD Root Mean Squared
Error (RMSE) forecasting performance. This error is averaged across all the test set simulations (starting from different initial
conditions) for every model depicted here (DMD and EDMD with polynomial observables up to order 3).

Figure 4. Simulation of the non-linear dynamical model (42) using the LEDMDmodel constructed on partial observations of the
state variables. The colors correspond to simulations from different initial conditions. The lines correspond to the non-linear
dynamics of z2,t and the dots represent the LEDMD simulation. Even with partial measurements of the non-linear dynamics (42),
the proposed framework perfectly matches the ground truth.

Figure 5 illustrates the forecasting performance with respect to the true state, the projection of the true
state from the EOF basis, and the Hankel-DMD-based algorithm. This state-of-the-art model is built on a
singular value decomposition (SVD) of delay embedding coordinates of the EOF (we use the same EOF
decomposition as the on described above for the LEDMD) components (Kamb et al 2020). The delay
embedding is computed, for every EOF component, using a lag embedding equal to one time step. We test 3
different embedding dimensions of dE1 = 700, dE2 = 10000 and dE3 = 20000. These embedding
configurations generate three different Hankel DMDmodels that we refere to HDMDdE1 , HDMDdE2 and
HDMDdE3 . In all these Hankel DMDmodels,the dimension of the SVD is set to 150, which accounts for over
95% of the total variance of the delay embedding representations. The qualitative analysis of figure 5 shows
that the proposed architecture outperforms all Hankel-DMD based models by generating eddies that are
closer to the ones of the true state. These observations are validated through the computation of the RMSE of
each prediction time step (figure 6). Interestingly, even though increasing the embedding dimension of the
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Figure 5. Forecasted Shallow Water fields with respect to the projections and true states. First row: Ground truth; Second row:
Projection from the EOF basis; Third, fourth and fifth rows: Hankel-DMD based algorithms with the Hankel matrix features
dimension dE1 = 700, dE2 = 10000 and dE3 = 20000 respectively; Sixth row: Proposed EEKF model with dE = dE1 = 700. The
error time series of these experiment are provided in figure 6.

Hankel matrix improves the DMD representations based on these observables, the proposed architecture
leads to better results based on a smaller dimension of the set of observables.

5.3. Stochastic LEDMD representations
We now shift our attention to the stochastic version of the LEDMD framework. Let us consider the following
linear system in R4:

13



Mach. Learn.: Sci. Technol. 4 (2023) 025018 S Ouala et al

Figure 6. Prediction RMSE time series of the Koopman data-driven models in the SWE experiment. The LEDMDmodel is tested
with an embedding dimension dE = 700. The embedding dimension of the Hankel-EDMD algorithm is set to dE = 700,
dE2 = 1000 and dE3 = 2000.

Figure 7. Log likelihood of the observations under different stochastic Koopman approximations.

zk+1 = Azk + ek =


0.75 0.5 0.1 2
0 0.2 0.8 1
0 −0.8 0.2 0.5
0 0 0 −0.85

zk + ek (44)

with ek ∼N (0,σ2I) and σ2z = 1. We consider as observations 2000 samples of the first component of the
state vector zk with additional Gaussian noise i.e. xk+1 = Bzk+1 + bk with B= [1,0,0,0]T and bk ∼N (0,σ2I)
and σ2x = 1.5. We consider six different stochastic Koopman operators with increasing dE i.e. {KΩ,dE}

dE=6
dE=1.

These operators share the same EDMD observablesDM = {e∗1} and have an increasing number of latent
observables (from no latent observables to 5).DW = {ψl

1}.
We show in figure 7 the evolution of the log-likelihood of the observations for each tested stochastic

Koopman approximation. Overall, this score converges for the models {KΩ,dE}dE>3 which suggests that a
dimension of 4 is enough for modeling the observations. We also illustrate in figure 8 the estimated
eigenvalues of each model with respect to the true eigenvalues of A. When dE < 4, the stochastic Koopman
approximation is only able to match eigenvalues A with no imaginary parts which explain the low
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Figure 8. Eigenvalues of the LEDMDmodels {KΩ,dE}
dE=6
dE=1 with respect to the true eigenvalues of A. We plot the eigen values for

the models with dE ranging from 1 to 6 in figures (a)–(f) respectively.

log-likelihood score of figure 7 when compared to higher dimensions. At dE = 4 the associated Koopman
approximation has enough eigenvalues to correctly match the ones of the true RDS which explains the
increase in the log-likelihood score. At higher dimensions, KΩ,dE=5} and KΩ,dE=6} have similar likelihood
scores but with extra spurious eigenvalues.

6. Discussion

Introduced about a century ago, the Koopman operator formalism helps describe the evolution of a state
sequence through the linear propagation of an infinite-dimensional set of observables. Finding finite rank
approximations of this operator motivated tremendous amounts of works, centered around several
questions, one of these interrogations concerns: which observables to use, in order to avoid loosely trading
the complexity of a potentially non-linear system for a higher dimensional linear one ?

In this context, several dictionary-based families of observables have been investigated, ranging from
non-linear polynomial expansions to autoencoders and deep learning. In the present work, a different
perspective is considered. Instead of fixing a dictionary (or a family of dictionaries) and solving for the
finite-dimensional approximation of Koopman, we write some of the Koopman observables as solutions to
an optimization problem. In this setting, it helps avoid any unnecessary constraint over the observables space
other than the ones constrained by the optimization of the forecasting cost of the observations. Through
different numerical experiments, the proposed framework appears very efficient for the data-driven
derivation of a finite-dimensional approximation of Koopman representations of dynamical systems.
Whereas most state-of-the-art algorithms heavily rely on the selection of a family of basis functions, the
proposed architecture can tackle several dynamical regimes, both given full or partial measurements of the
state space.

When compared to standard non-linear model identification techniques (Brunton et al 2016b, Chen et al
2018, Ouala et al 2020, 2023), point (or discrete) spectrum approximations of Koopman, such as the
proposed LEDMD framework and most of the state-of-the-art literature, can not represent the asymptotic
behavior of chaotic dynamical systems. However, from an application perspective, finding linear models of
non-chaotic dynamics as well as having simple predictive models of chaotic ones is highly valuable. In this
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context, investigating the relevance of the LEDMD in applications such as control and data assimilation is a
promising perspective. Building end-to-end trainable control/data assimilation algorithms based on this
architecture should allow learning dynamical priors and linear embeddings, based on a direct
application-oriented cost (such as a data assimilation cost in state reconstruction, an energy/performance
based cost in the context of control, . . .etc). Promoting sparsity in the proposed framework is also an
important perspective. As shown in figure 1, the optimized approximation of the infinitesimal generator of
Koopman contains terms that are close to zero, which emphasizes that encoding a sparsity prior to LEDMD
may help to promote generalizability.

When the EDMD dictionaryDM spans an (approximately) invariant subspace of the Koopman operator,
the latent observablesΨW can be omitted and the LEDMD becomes a standard EDMDmethod. From the
numerical experiments, we show that stacking the latent observables to the vector of EDMD observables
directs the LEDMD approximation towards an invariant subspace, especially when considering unknown
dynamics and partial observations of the state variables. However, applying a numerical optimization instead
of the standard inversion used in the EDMDmisses the convergence results (for an infinite amount of data
samples) of the EDMD to the Galerkin projection of the Koopman operator. This motivates studying the
convergence properties and conditions of the LEDMD.

The approximation of the stochastic Koopman operator, treated in this work, further reveals an
extremely important aspect, implicit to the proposed representation. Learning an LEDMDmodel in a
stochastic fashion allows for two distinct levels of approximation within the proposed framework, namely i)
the deterministic parameters, i.e. the approximate Koopman operator KΩ, and ii) the stochastic components
encoded through the process and observation noise covariances. When jointly learnt, those two components
can trade the complexity of some given measurements and may dissociate stochastic and deterministic
behaviors within a signal. In this context, investigating such aspects on more real world problems may
require a way of getting rid of the Gaussianity assumption of the noises.
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Appendix A. Additional application examples

A.1. Periodic orbits
Hankel matrix EDMD based representations (Kamb et al 2020) show great performance in modeling,
linearly, periodic dynamics. Considering Delay embeddings as observables appears to decompose the
non-linear periodic signal into a combination of linear oscillations, making the inversion of these sinusoidal
modes into a linear dynamical model trivial.

While our framework can benefit from known basis of observables that can be used for instance inΨM,
the restriction ofΨM to direct measurements of the state variables (or generally, to measurements of state
variables) leads to a Fourier decomposition of the measurements. Specifically, in such situations the LEDMD
writes the non-linear oscillation as a composition of a finite number of linear ones with trainable frequencies
encoded, for instance in the eigenvalues of the Koopman operator (or more precisely, in the eigenvalues of
the infinitesimal generator).

In order to highlight this aspect, the Van der Pol oscillator, governed by the following equation, is
considered. {

ż1,t = z2,t

ż2,t = µ(1− z1,t)z2,t − z1,t
. (45)
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Figure 9. Time series of the data-driven Koopman models with respect to the true non-linear oscillator. (a) Proposed LEDMD
model; (b) Hankel-DMDmodel.

This dynamical system is widely used in state-of-the-art data-driven Koopman representations and can
be translated into a Koopman linear model using several state-of-the-art algorithms. We show in this
experiment that our proposed framework is also relevant in this context. Considering the true states as
observations i.e. withH=M= I2, we trained the proposed framework with dE = 100 on a simulated
trajectory of size 5000 (the trajectory was computed using the LOSDA ODE solver (Hindmarsh 1983) with a
sampling rate h= 0.1). The Hankel-EDMD algorithm was tested with a lag embedding of a single time step
and an embedding dimension dE = 100. The dimension of the SVD is set to 16, which accounts for over 99%
of the total variance of the delay embedding representation. The forecasting performance of the proposed
model is shown in figure 9.

A.2. Air passenger time series
The previous experiment motivated the evaluation of the proposed model in forecasting real quasi-periodic
signals. In this context, we consider the international Airline Passengers prediction problem. The data ranges
from January 1949 to December 1960 with 144 observations in units of 1000. The first 100 data points were
used as training data and we tested our approach on the remaining 44 observations. Figure 10 illustrates the
forcasting performance of the proposed framework with respect to the Hankel DMD framework.

Appendix B. Generation of the data and parameterization of the non-linear equations

The data we use in our experiments are simulated by solving the systems of differential equations as follows:

• The parameters of the dynamical system (42) are set in the experiments to µ=−1 and α=−10. The train-
ing set is a single trajectory, simulated using the LOSDA ODE solver (Hindmarsh 1983) from t= 0 up to
t= 6 and sampled at h= 0.01. The initial condition of this training set is zT0 = [12.0,−1.0]. The test set
consists on a collection of 289 trajectories, simulated and sampled similarly to the training sequence, but
starting at different initial conditions with z1,0 =−40,−35, . . .,40 and z2,0 =−400,−350, . . .,400.

• The SWE dynamics used in this work is geverned by the following set of equations:



∂vx
∂t

− Fvx =−gr
∂η

∂x
∂vy
∂t

− Fvy =−gr
∂η

∂y

∂η

∂t
+
∂(η+H)vx

∂x
+
∂(η+H)vy

∂y
= 0

(46)
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Figure 10. International air passenger time series forecasting performance. (a) Hankel-DMDmodel; (b) Proposed LEDMD with
ΨM set to direct measurements.

where x and y represent the 2D directions of the fluid. η is the fluid surface elevation, and (vx,vy) is the
fluid’s horizontal flow velocity. gr is the acceleration due to gravity which is taken to be equal to 9.81 m s−2.
H corresponds to the total depth (hereH= 100 m) of the fluid and f = f0 +λy is the Coriolis forcing where
f0 = 1E− 4s−1 and λ= 2E−11(m× s)−1.
The direct numerical simulation of the two-dimensional shallow-water equation is carried using an ordin-
ary, forward in time, centered in space finite difference scheme for the momentum equation and for the
linear term of the continuity equation. The non-linear term of the continuity equation is in the other hand
discredited using an upwind scheme. The length of the domain is set to 1000 km× 1000 km with a corres-
ponding regular discretization of 80× 80. The temporal step size is set to satisfy the Courant–Friedrichs–
Lewy condition (h= 40.41 s). 100000 simulation time steps are generated from this configuration. The
transient first 2500 time steps are omitted and we use the post-transient first 49 701 time-steps as training
data. The remaining sequence is used as a test set.

Appendix C. Training

The trainable parameters of the LEDMDmodels i.e. the approximate Koopman operator and the latent
observablesΨW are initially sampled from a uniform distribution. Furthermore, in the SWE and the VDP
experiments, the eigenvalues of the KdE are constrained to be on the unit circle by imposing KdE = eAdE with
AdE =

1
2 (BdE −B

T
dE
). The training of all models is carried using the Adam optimizer. We use a varying

learning rate (from 0.9 to 0.001) in the experiment 5.1, a fixed learning rate of 0.001 and 0.01 in the
experiments 5.2 and 5.3 respectively.
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