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ABSTRACT

We show in this work that learning a rich feature extractor from
scratch using only official training data is feasible. We achieve this
by learning representations using a supervised contrastive learn-
ing framework. We then transfer the learned feature extractor to
the sets of validation and test for few-shot evaluation. For few-
shot validation, we simply train a linear classifier on the negative
and positive shots and obtain a F-score of 63.46% outperform-
ing the baseline by a large margin. We don’t use any external
data or pretrained model. Our approach doesn’t require choosing
a threshold for prediction or any post-processing technique. Our
code is publicly available on Github : https://github.com/
ilyassmoummad/dcase23_task5_scl

Index Terms— Contrastive learning, representation learning,
transfer learning, few-shot learning

1. INTRODUCTION

Few-Shot Learning (FSL) is a machine learning problem where a
model has to learn to adapt to new categories of data unseen during
training with only few labeled samples. FSL is adapted for many
applications where acquisition or annotation is expensive or time
consuming. Sound Event Detection (SED) is the problem of lo-
cating onsets and offsets of certain sounds. In bioacoustics for in-
stance, recordings are usually long with few occuring events which
can be time consuming for labeling. FSL can be a solution to de-
tect these events with few labeled samples. This is the framework
of DCASE task 5. In the baseline of the challenge, prototypical
networks (ProtoNets) [1] are proposed as a learning framework to
solve FSL problem of detecting animal sound events. ProtoNets,
a meta-learning framework, have been state-of-the-art FSL audio
systems in the recent years. However, in Computer Vision, sim-
ple transfer learning methods are still outperforming sophisticated
meta-learning methods in FSL [2]. We follow the trend of using
transfer learning to solve FSL problems for this DCASE task [3].

As the quality of the feature extractor model is crucial for effi-
cient transfer learning, we propose to train a model on the training
set using the supervised contrastive learning (SCL) framework [4].
The idea behind SCL is to learn a latent space where samples shar-
ing the same class labels are pulled together whereas samples with
different class labels are pushed apart. This framework has shown
competitive transfer learning capabilities of its learned representa-
tions. After training the model using SCL, for each audio file we
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extract features of the positive and negative prototypes as well as
the query samples of the validation set independently. We then train
a binary classifier to output the query class either by freezing the
encoder layers or by finetuning them.

2. METHOD

2.1. Framework

SCL consists in learning an embedding space in which the samples
with the same class labels are close to each other, and the sam-
ples with different class labels are far from each other. Formally, a
composition of an encoder f and a shallow neural network h called
a projector (usually a MLP with one hidden layer) are trained to
minimize the distances between representations of samples of the
same class while maximizing the distances between representations
of samples belonging to different class. After convergence, h is
discarded, and the encoder f is used for transfer learning for down-
stream tasks. The supervised contrastive loss (SCL) is calculated as
follows:

LSCL =
∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp (zi · zp/τ)∑

n∈N(i)

exp (zi · zn/τ)
(1)

where i ∈ I = {1...2N} is the index of an augmented sample
within a training batch, containing two views of each original sam-
ple. These views are constructed by applying a data augmentation
function A twice to the original samples (see section 2.2). zi =
h(f(A(xi))) ∈ RDP where n ∈ {1...N} with N being batch size
and DP is the projector’s dimension. P (i) = {p ∈ I : yp = yi} is
the set of indices of all positives in the two-views batch distinct
from i sharing similar label with i, and |P (i)| is its cardinality,
N(i) = {n ∈ I : yn ̸= yi} is the set of indices of all negatives in
the two-views batch having different label from i, the · symbol de-
notes the dot product, and τ ∈ R+∗ is a scalar temperature param-
eter.

2.2. Training with Data Augmentation

We train our model from scratch on the training set using SCL.
Specifically, in each training batch, we use data augmentation to
create two views for each sample. We train a model to output sim-
ilar representations for each view created from the same original
sample as well as views sharing the same labels, and to output dis-
similar representations for views from samples with different class
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Table 1: Results on the validation set

System Precision Recall F1-score HB ME PB
Pr Re F1 Pr Re F1 Pr Re F1

Submission 1 71.41 55.19 62.26 77.14 81.57 79.29 65.45 69.23 67.28 72.64 36.17 48.29
Submission 2 73.93 55.59 63.46 82.95 82.32 82.63 67.69 84.61 75.21 72.72 33.33 45.71
Submission 3 72.90 55.14 62.79 79.73 89.72 84.43 74.60 90.38 81.73 65.57 31.06 42.19
Submission 4 67.08 51.58 58.32 81.20 91.38 85.99 58.75 90.38 71.21 65.00 27.65 38.80

2022 Winners S 1 [5] 77.5 71.5 74.4 - - 77.0 - - 90.0 - - 53.7
2022 Winners S 2 [5] 75.6 62.1 68.2 - - 85.8 - - 79.2 - - 48.1
2022 Winners S 3 [5] 66.5 51.8 58.5 - - 76.7 - - 64.2 - - 42.4

labels. We use the following augmentations from the audio repre-
sentation learning litterature [6, 7, 8]:

– Spectrogram mixing : we add background sounds using other
samples from the same batch using the formula : x̂1 = αx1 +
(1 − α)x2, where x̂1 is considered a view of x1 and x2 is a
random sample from the batch

– Frequency shift : we approximate frequency shift by shifting
upwards the spectrogram by few bands

– Random crop : we crop a patch from the spectrogram in the
time axis, preserving the global audio semantic

– Spectrogram resize : we resize the spectrogram to the original
size, combined with random crop approximate time stretching

– Power gain : we attenuate the power of the spectrogram by
multiplying it with a coefficient sampled uniformly between
0.75 and 1.

– Additive white gaussian noise : we add a small additive white
gaussian noise to the view

The above augmentations are applied sequentially in the presented
order and are applied twice on the same data, apart from spectro-
gram mixing which is applied only on one view (in our experiments,
this worked best). Details about the implementation are to be found
in our github page.

2.3. Evaluation

For each audio file, we retrieve the first five shots as the positive
prototypes. As for the negative prototypes, we consider the intervals
preceding each of the five shots. We follow the work of Tang et
al. [5] for the choice of adaptive window length, as for the window
shift we take half the window length as in the protonet baseline. We
train a linear binary classifier on top of the encoder using segments
from the negative and positive prototypes. Afterwards, we use the
final model (composition of the encoder and the classifier) to predict
the class (negative or positive) for each query segment. We do not
use any postprocessing technique.

3. IMPLEMENTATION DETAILS

3.1. Data

We use only the official training set for all the positive annotated
segments. We compute Mel spectrogram features with a FFT of
size 512, a hop length of 128, a number of mels of 128 and a sam-
pling rate of 22.05 kHz. Each positive annotated segment from the
training set is chunked into patches of length 200 ms with a slid-
ing window of length 100ms. We apply min-max normalization on

each patch.

3.2. Model architecture

We use a ResNet [9] of three blocks of three convolutions each with
feature maps of size 64, 128 and 256. Each convolution is followed
by a batch normalization and a leaky ReLU activation. We apply
max pooling after each block, with a kernel of size 2x2 for the
first and seconds blocks and 1x2 for the third block as not to pool
too much the frequency bands to preserve frequency information as
suggested by Hertkorn [10]. In order to maintain the same output
dimension with different input lengths, we apply an adaptive max
pooling with a desired output size of (8, 1) at the end of the network
to get a latent vector of size 8 x 256 = 2048. We add to the convo-
lutional encoder, a multi-layer perceptron projector with a hidden
layer of dimension 2048 and an output layer of dimension 512.

3.3. Data Augmentation

We use the following parameters for the chosen augmentations :

– Spectrogram mixing : α is sampled from β(5, 2) distribution
– Frequency shift : the shift size is sampled uniformly between

0 and 10
– Random crop : the crop is sampled uniformly between 60%

and 100% in the time axis
– Spectrogram resize : we resize the spectrogram to the original

size
– Power gain : we multiply the mel spectrogram with a coeffi-

cient sampled uniformly between 0.75 and 1
– Additive white gaussian noise : we add a gaussian noise with

zero mean and a variable standard deviation chosen uniformly
between 0 and 0.1

3.4. Training and Evaluation

We train our model from scratch on the training set using SCL
framework with a temperature τ = 0.06 using SGD optimizer with a
batch size of 128, a learning rate of 0.01 with a cosine decay sched-
ule, momentum of 0.9, and a weight decay of 0.0001 for 50 epochs.
We then discard the MLP projector and transfer the encoder on the
validation and evaluation sets. We submit four systems to the chal-
lenge: the first consists in freezing the learned layers from the train-
ing set and training only a linear binary classifier on top of it on the
five positive and negative prototypes. As for the second, third and
fourth submissions, we finetune the last, two last, and all the layers,
respectively, on the five positive and negative prototypes using ran-
dom resized crop in the time axis with a crop of size 90% and 100%
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Table 2: Comparison to baseline systems
Method Precision Recall F-score

Template Matching 2.42 18.32 4.28
Prototypical 36.34 24.96 29.59

Ours (Submission 2) 73.93 55.59 63.46
2022 Winners [5] 77.5 71.5 74.4

of the original size. We optimize our systems using Adam optimizer
with a learning rate of 0.01 for 20 epochs for the first system and
a learning rate of 0.001 for 40 epochs for the other systems. These
hyperparameters were chosen on the validation set.

4. RESULTS

We report the performance of our four systems on the validation set
in the upper part of Table 1. For PB dataset, where events are short,
the first system outperforms the others, suggesting that finetuning
hurts the performance when only few positive patches are present.
the third and fourth systems outperform the other systems on HB
dataset, where events are mostly long, suggesting that finetuning
more layers is practical when more positive patches are present. For
the second system where we finetune only the last layer, does okay
for all dataset but outperforms the other systems on average obtain-
ing an F1 score of 63.46%.

In the lower part of Table 1, we show the scores for DCASE
2022 challenge task 5 winners [5]. Please note that the result re-
ported includes the ML dataset in the validation set, which is not
present in the final validation set of the 2022 and 2023 challenge.
S 1, S 2, and S 3 are their submitted systems for frame-level, seg-
level and event-filter approaches, respectively. Our systems are
competitive with their S 2 (segment level) and S 3 (event filter),
but get outperformed by their S 1 (frame level). Table 2 shows the
scores of our best system with the baselines on the validation set as
well as the best system of the winners of the challenge 2022 edition.

5. CONCLUSION

We describe in this technical report the systems we submitted to
the DCASE 2023 challenge task 5. Our systems rely on learning a
useful feature extractor on the training set using data augmentation
and supervised contrastive learning, and training a binary classifier
on the positive and negative prototypes on each audio file of the
validation/evaluation set, independently. Importantly, we do not use
any other data source than the official training set, and our system
does not use any postprocessing. Our experiments show that our
approach outperforms the baseline by a large margin.
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