N

N

Stochastic Backpropagation through Fourier Transforms

Amine Echraibi, Joachim Flocon Cholet, Stéphane Gosselin, Sandrine Vaton

» To cite this version:

Amine Echraibi, Joachim Flocon Cholet, Stéphane Gosselin, Sandrine Vaton. Stochastic Backprop-
agation through Fourier Transforms. 29th European Signal Processing Conference (EUSIPCO), Aug
2021, Dublin ( virtual ), Ireland. 10.23919/EUSIPCO054536.2021.9616294 . hal-04165289

HAL Id: hal-04165289
https://imt-atlantique.hal.science/hal-04165289
Submitted on 7 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://imt-atlantique.hal.science/hal-04165289
https://hal.archives-ouvertes.fr

Stochastic Backpropagation through Fourier
Transforms

Amine Echraibi, Joachim Flocon-Cholet, Stéphane Gosselin

Orange Labs
Lannion, France

{amine.echraibi, joachim.floconcholet, stephane.gosselin} @orange.com

Abstract—Backpropagating gradients through random vari-
ables is at the heart of numerous machine learning applications.
In this paper, we present a general framework for deriving
stochastic backpropagation rules for any continuous distribu-
tion. Our approach exploits the link between the characteristic
function and the Fourier transform, to transport the derivatives
from the parameters of the distribution to the random variable.
Our method generalizes previously known estimators, and results
in new estimators for the gamma, beta, Dirichlet and Laplace
distributions. Furthermore, we show that the classical deter-
ministic backproapagation rule in neural networks, is a special
case of stochastic backpropagation with Dirac distributions, thus
providing a link between probabilistic graphical models and
neural networks.

Index Terms—Stochastic backpropagation, Variational infer-
ence.

I. INTRODUCTION

Deep neural networks with stochastic hidden layers have
become crucial in multiple domains, such as generative
modeling [1]-[3], deep reinforcement learning [4], and attention
mechanisms [5]. The difficulty encountered in training such
models arises in the computation of gradients for functions of
the form £(0) := E,~p, [f(z)] with respect to the parameters
6, thus needing to backpropagate the gradient through the
random variable z [6]. One of the first and most used methods
is the score function or reinforce method [7], [8], that requires
the computation and estimation of the derivative of the
log probability function. For high dimensional applications
however, it has been noted that reinforce gradients have high
variance, making the training process unstable [2].

Recently, significant progress has been made in tackling the
variance problem. The first class of approaches dealing with
continuous random variables are reparameterization tricks. In
that case a standardization function is introduced, that separates
the stochasticity from the dependency on the parameters 6.
This enables to transport the derivative inside the expectation
and to sample from a fixed distribution, resulting in low
variance gradient [1], [2], [9]-[12]. The second class of
approaches concerns discrete random variables, for which a
direct reparameterization is not known. The first solution uses
the score function gradient with control variate methods to
reduce its variance [3], [13]. The second consists in introducing
a continuous relaxation admitting a reparameterization trick of
the discrete random variable, thus being able to backpropagate
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low-variance reparameterized gradients by sampling from the
concrete distribution [14]-[17].

Although recent developments have advanced the state-of-the-
art in terms of variance reduction and performance, stochastic
backpropagation (i.e computing gradients through random
variables) still lacks theoretical foundation. In particular, the
following questions remain open: How to develop stochastic
backpropagation rules, where the derivative is transferred
explicitly to the function f for a broader range of distributions?
And can the deterministic case be interpreted in the sense of
stochastic backpropagation? In this paper, we provide a new
method to address these questions, and our main contributions
are the following:

o We present a theoretical framework based on the link
between the multivariate Fourier transform and the
characteristic function, that provides a standard method
for deriving stochastic backpropagation rules, for any
continuous distribution.

e We show that deterministic backpropagation can be
interpreted as a special case of stochastic backpropagation,
where the probability distribution pg is a Dirac delta
distribution.

o We generalize previously known estimators, and provide
new stochastic backpropagation rules for the special cases
of the Laplace, gamma, beta, and Dirichlet distributions.

o« We demonstrate experimentally that the resulting new
estimators are competitive with state-of-the art methods
on simple tasks.

II. BACKGROUND & PRELIMINARIES

Let (E,\) be a d-dimensional measure space equipped
with the standard inner product, and f be a square summable
positive real valued function on F, that is, f: £ — R, with
Julf(2)2A(dz) < oo. Let py be an arbitrary parameterized
probability density on the space E. We denote by ¢y its
characteristic function, defined as: @g(w) := E,p, [ei‘*’Tz]. We
denote by f the Fourier transform of the function f defined
as:

Fw) = F{f}(w) = /E Fe " Ndz). ()

The inverse Fourier transform is given in this case by:

16 = F A = [ f@)e ). @



where p(dw) represents the measure in the Fourier domain. In
this paper we treat the case where F is a continuous sub domain
of R4, thus, u(dw) = 27r)d Throughout the paper, we reserve
the letter i to denote the imaginary unit: 2 = —1. To denote
higher order derivatives of the function f, we use the multi-
index notation [18]. For a multi-index n = (ny,...,ng) € N,
we define:

ginl d
77 Wwhere \n|=2nj,

d
= w" = Hw
z ni
0z1"...0z, = e
To clarify the multi-index notation, let us consider the example
where d = 3, and n = (1,0, 2), in this case:
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and, w" = wlwg.
The objective is to derive stochastic backpropagation rules,
similar to that of [2], for functions of the form: £(6) :=
Ezp, [f(z)], for any continuous distribution py.

III. FOURIER STOCHASTIC BACKPROPAGATION

Stochastic backpropagation rules similar to that of [2] can in
fact be derived for any continuous distribution, under certain
conditions on the characteristic function. In the following
theorem we present the main result of our paper concerning
the derivation of Fourier stochastic backpropagation rules.

Theorem 1. Let f € C°(R? R), under the condition that
Vo log vy is a holomorphic function of iw, then there exists a
unique set of real numbers {a ()}, cna such that:

Vol = 3 n(O)Eeny, [02£(2)].

In|=0

3)

Where {a,(0)},ene are the Taylor expansion coefficients of
Vg log Yo (w)

Vologpg(w) = Y an(8)(iw)". )
n]>0
Proof. Let us rewrite £ in terms of f :
£0) = [ p(rA)
~ [me7 fiA:)
)

= [ 7@ [ me)e N aud)

/ftpe()

By introducing the derivative under the integral sign, and
using the reinforce trick [8] applied to ¢y, where Vgpp(w) =
vo(w)Vglog pg(w), (5) becomes:

Vol = [ o) Vologgon(d).  ©

Under analyticity conditions of the gradient of the log
characteristic function, we can expand the gradient term
Vo log vp(w), in terms of Taylor series around zero as:

Z an(0)(iw)™.

In1>0

Ve log pg(w) = (7)

Putting everything together, and replacing the characteristic
function by its expression, the gradient of £ becomes:

Vol = i iw? z
0 y f(o.))/ po(z)e
S a6

In|>0

w(dw)A(dz). (8)

By rearranging the sums using Fubini’s theorem a second time,
we obtain the following expression for the gradient:

VoLl =E;p, Wwe Z an(0)(iw)" f(w) 3 (z)
nl=0
= > OBy, [F7! {w = ()" fw) } ()]
In|>0
= 3" @Oy, 921
In|>0
©

IV. APPLICATIONS OF FOURIER STOCHASTIC
BACKPROPAGATION

Following from the previous section, we derive the stochastic
backpropagation estimators for certain commonly used distri-
butions.

The multivariate Gaussian distribution: In this case
po(z) = N(z; g, Xg). The log characteristic function is given
by: log pg(w) = iptw + %Tr [E@iwaT}. Thus by applying
theorem 1, we recover the stochastic backpropagation rule of

[2]:
v ﬁ—(a’““’)TE (V. f(2)}
0~ = 90 Z~po z
)
+510|(52) Bene (V21 @)

where, V., and V2, represent the gradient and hessian operators.
The multivariate Dirac distribution: py(z) = d,,(2), the log
characteristic function of the Dirac distribution is given by:
log pg(w) = iwT ap. Thus the stochastic backpropagation rule
of the Dirac is given by:

(10)

00

6@9 T
= (39) sz (a9)7
resulting in the classical backpropagation rule. In other words,

the deterministic backpropagation rule is a special case
of stochastic backpropagation where the distribution is a

VoL - (M)TEZN&,Q ./(2)

(an



Dirac delta distribution. This result provides a link between

probabilistic graphical models and classical neural networks.

Namely, when using neural networks we are indirectly using a

probabilistic graphical model and making the strong assumption

that the hidden layers follow a parameterized Dirac distribution

knowing the previous layer.

The exponential distribution: pg(z) = &£(z; ), in this

case the log characteristic function is given by: log ¢y (w) =
—log (1 — —9), using the Taylor series expansion for the

logarithm, we get the following stochastic backpropagation
rule for the exponential distribution:

Vol =—

L OA g5 {dnf( )] (12)

Yo 00 2= g e [ g

The Laplace distribution: pg(z) = L(z; g, bg), in this case
the log characteristic function is the following: log ¢y (w) =
ipgw — log(1 + biw?), using the Taylor series expansion
for the function x ﬁ, we get the following stochastic
backpropagation rule for the Laplace distribution:

Vol = 88‘;91& {df( )}
e, k)]

1 9bj &

b2 80
The gamma distribution: py(z) = I'(z; kg, pe), the log
characteristic function of the Gamma distribution is given
by: log vp(w) = —kelog(l — ippw). By expanding it using
Taylor series of the logarithm function, we obtain the following
stochastic backpropagation rule:

Vol = Z [1 5/€9 ko 3#9] 1By, [d /

o 00 dzn
The estimator of (14) gives a stochastic backpropagation rule
for the gamma distribution and, hence also applies by extension
to the special cases of the Erlang, and chi-squared distributions.
The beta distribution: py(2) = Beta(z; ag, 8p), in this case
the characteristic function is the confluent hypergeometric
function: pg(w) = 1F1(g; ap + Be;iw). A series expansion

(13)

(z)} . (14)

of the gradient of the log of this function is not trivial to derive.

However, we can use the parameterization linking the gamma
and beta distributions to derive a stochastic backpropagation
rule. Indeed, if C1 ~ T'(ap,1) and {3 ~ T'(By,1) , then

z=9({1,¢8) = (1+C ~ Beta(wy, fp). By substituting in
the gamma stochastic backpropagation rule, we obtain:

3Oéo o f ¢1
Vot = Z { 00 B {aCn <C1+C2>}

nl

e i (are)])
90 ¢ lag \G+¢& /)

The Dirichlet distribution: py(z) = Dir(z; K, o), following
the same procedure, as for the beta distribution and using

+ (15)

the following parameterization: z; = with, { ~

F(aék), 1), we obtain:

e E1E

" f C1 CK
Eevj | 22 o 6)
e [agk (Zf_le Zile)]}

V. TRACTABLE CASES & APPROXIMATIONS OF FOURIER
STOCHASTIC BACKPROPAGATION

Ck
ZJI'{=1 9]

dal

The Fourier stochastic backpropagation gradient as presented
in previous sections presents two major computational bottle-
necks for non-trivial distributions. The first is the computation
of infinite series, and the second is evaluating higher order
derivatives of the function f. Depending on the application, the
function f could be chosen in order to bypass the computational
bottlenecks. A trivial example, is if the higher order derivatives
of the function f vanish at a certain order: 97f = 0.
Another example, is the exponential function f(z) = exp(e’ 2).
From the fact that it obeys the following partial differential
equation aa—( ) = € f(2), one can deduce that the stochastic
backpropagatlon rule reduces in this case to:

VoL = Vylog g (;) Eonpo [f(2)]

In most real world applications however, the infinite sum
will not often reduce to a tractable expression such as that of
the exponential. An example of this case is the evidence lower
bound of a generative model with Bernoulli observations. In
this case, the natural solution is to truncate the sum up to a
finite order. The assumption is that the components associated
to higher frequencies of the spectrum of the gradient of the
log characteristic function, do not contribute as much. And by
analogy to the signal processing field, we apply a Low-pass
filter to eliminate them. In this case the gradient of the log
characteristic function of (7) becomes:

Y an(®)(iw)" + of (iw)").

n<N

a7

Vo log po(w) = (18)

VI. EXPERIMENTS

In our experimental evaluations, we test the stochastic
backpropagation estimators of equations (13) and (14) for the
gamma and Laplace distributions. In the case of the gamma
estimator, we use toy examples where we can derive exact
stochastic backpropagation rules without truncating the infinite
sum. As for the Laplace stochastic backpropagation rule, we test
the estimator in the case of Bayesian logistic regression with
Laplacian priors and variational posteriors on the weights. We
compare our estimators with the pathwise [19], [20], and score
function estimators, in addition to the weak reparameterization
estimator in the gamma case [10]. We do not use control
variates in our setup, the goal is to verify the exactness of the
proposed infinite series estimators and how they compare to
current state-of-the-art methods in simple settings. In all our
experiments, we use the Adam optimizer to update the weights
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Fig. 2: Training loss and log variance of the gradients for the different estimators for f(z) = 24:1 exp(—ez;) for d €

{1,10,100}.

[21], with a standard learning rate of 10~3. In all the curves,
we report the mean and standard deviation for all the metrics
considered over 5 iterations.

A. Toy problems

In the toy problem setting, we test the gamma stochastic
backpropagation rule following the same procedure as [22].
we consider the following cases:

Toy problem 1: £(0) = E,,, [||z — €|[?], where py(2)
H;l:l (255 k5, 1), 0 = {k, pn}, and € = .49. In this case, we
only need to compute the first and second order derivatives of
the function f.

Toy problem 2: L(0) = E,,, {ijl exp(—ezj)J, in this
case, the infinite sum transfers to e, which results in the
following estimator: VgL = Vg log @g (i€) E,vp, [f(2)].

In figures 1 and 2 we report the training loss and log variance
of the gradient across iterations of gradient descent for different
values of the dimension d € {1,10,100}. The stochastic
backpropagation estimator converges to the minimal value
in all cases faster than the other estimators and the variance
of the gradient is competitive with the pathwise gradient.

J

B. Bayesian logistic regression with Laplacian Priors

We evaluate the Laplace stochastic backpropagation estimator
using a Bayesian logistic regression model [23], similarly to
[22]. In our case, we substitute the normal prior and posterior
on the weights with Laplace priors and posteriors. We adopt
the same notations as in [24], where the data, target and weight
variables are respectively: z,, € R?, y,, € {—1,1}, and w. The
probabilistic model in our case is the following:

d
pw) =[] L(w;,0,1)  plylx,w) =o(yx"w), (19)
j=1

where o represents the sigmoid function. We consider Laplacian
variational posteriors of the form:

d
pe(w) = HL(wj7ujabj)a (20)
j=1

with 8 = {u, b}. The evidence lower bound of a single sample
is given by:

L(Tn,Yn; 0) = Ewep, [logo(ynziw)] — Drrlpellp], (21
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Fig. 3: Bayesian Logistic Regression with Laplacian priors

where the Kullback-Leibler divergence between the two Laplace
distributions is the following:

1

d
Drcelpolid = Y- {lsttse ™ < togt; -1} @)
j=1

We test the model on the UCI women’s breast cancer dataset
[25], with a batch size of 64 and 50 samples from the posterior
to evaluate the expectation. In the case of the stochastic
backpropagation estimator we truncate the infinite series for
the scale parameter b of equation (13) to N =4 and N = 8.
In figure 3, we report the training evidence lower bound, the
log variance of the gradient, and the accuracy computed on
the entire dataset for the different estimators. The stochastic
backpropagation estimator converges faster than the considered
estimators and the variance is significantly lower. We also
notice that the truncation level of the infinite series for the
scale parameter has little effect on the outcome.

VII. CONCLUSION

In conclusion, in this paper we presented a new method to
compute gradients through random variables for any probability
distribution, by explicitly transferring the derivative to the
random variable using the Fourier transform. Our approach,
gives a framework to be applied for any distribution, where the
gradient of the log characteristic function is analytic, resulting
in a new broad family of stochastic backpropagation rules, that
are unique for each distribution.
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