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Spatial Area Determination Problem: Definition and Solution Method Based 

on Memetic Algorithm 

 

 

 

 

Abstract: Spatial area determination problem is defined herein as an optimization problem in 

which it is required to determine both the location and shape of a spatial area, given some 

constraints on the area (e.g., size) while maximizing or minimizing an objective function 

defined on spatial data (e.g., risk, cost, safety, security, etc.). The spatial area determination 

problem can be found in various domains such as hydrographic survey planning, conservation 

planning, military planning, etc., and it recently attracts research attention. Currently, there is 

no formal definition of the problem and the related solution methods are very limited. In this 

paper, first, the spatial area determination problem is defined and formulated, and then a 

solution method based on a Memetic Algorithm is developed to solve the problem. To deal 

with the constraints of the problem and to enhance the robustness of the traditional Memetic 

Algorithm, several innovations in the proposed Memetic Algorithm are introduced. Unlike the 

traditional Memetic Algorithm, the proposed Memetic Algorithm employs three crossover 

operators, two mutation operators, and a local search operator. In addition, the proposed 

Memetic Algorithm has a mechanism to automatically restart its search process if it gets stuck 

in the local optima. Moreover, parameters of the proposed Memetic Algorithm are 

systematically tuned by the Taguchi experimental design method to maximize its 

performance. The outperformance of the proposed Memetic Algorithm is validated through 

18 test instances, 24 T-tests, and a Friedman test against four popular optimization algorithms, 

namely Simulated Annealing, Particle Swarm Optimization, Genetic Algorithm, and 

traditional Memetic Algorithm. The results indicate that, on average, the proposed Memetic 

Algorithm provided 36.5%, 43.3%, 20.4%, and 22.4% better solution, compared to Simulated 

Annealing, Particle Swarm Optimization, Genetic Algorithm, and the traditional Memetic 

Algorithm, respectively. 

 

Keywords: Spatial area determination problem, Spatial data, Memetic algorithm, 

Optimization. 

 

 



1. Introduction 

Spatial data, also known as geospatial or geographic data, is the information about the 

geographic location of features and boundaries on the earth surface, such as natural features, 

land areas, ocean surfaces, etc. Spatial data can be mapped and usually stored as coordinates 

and topologies [1]. Spatial data is a foundation of a number of decision problems such as 

land-use planning [2], biodiversity conservation planning [3], maritime spatial planning [4], 

or military planning [5].  

 

Given some spatial data, determining the best zone(s)/area(s) for a particular purpose can be 

very challenging because of complex constraints. For example, in the conservation planning, 

how does one find the best area to protect the fauna/flora, given the environment, economics 

and government policy constraints? or in military planning, where is the best area for military 

exercise, given some constraints on security, cost, and effectiveness [6, 7]. 

 

These challenging decision making problems have recently attracted the attention of the 

industry, especially that of the French National Hydrographic and Oceanographic Service 

(Shom). The Shom is in charge of the national hydrography program which plans 

hydrographic surveys in maritime areas under French responsibility [8]. In hydrographic 

survey planning, given some spatial data on navigation (e.g., risk), determining the most 

reasonable ocean area, not just the riskiest area, to make a hydrographic survey with the given 

equipment, labor, and completion time is not a trivial task because of the complex constraints. 

 

These decision making problems can be modeled as optimization problems, in which the goal 

is to determine the best location and/or shape of a spatial area for a certain purpose, given 

some constraints. There are two sub-optimization problems here, i.e., optimal location and 

optimal shape of a spatial area. Solving these two sub-optimization problems simultaneously 

is a relatively new class of optimization problems, and not much research on it has been done 

in the literature. The main objective of this research is to address this type of optimization 

problems, which is called the spatial area determination problem (SADP). In this paper, first, 

the SADP is defined and formulated, and then an optimization solution method based on a 

Memetic Algorithm (MA) is proposed. Due to the nature of the constraints in the SADP, a 

new version of MA, with innovations in the chromosome encoding, crossover and mutation 

operators, constraint handling strategies, and algorithm structure, is developed herein. 



Thereby, this research has two major contributions to the literature: (1) Providing the first and 

formal definition and formulation of SADP; and (2) developing an improved version of MA 

to solve the SADP. 

 

The rest of the paper is organized as follows. In Section 2, the latest research related to the 

SADP and its resolution is reviewed. Section 3 proposes the formulation of the SADP. 

Section 4 presents the proposed MA for finding the optimal/sub-optimal solution(s) to the 

problem. Finally, the numerical results and conclusions are provided in Sections 5 and 6, 

respectively. 

 

2. Literature Review 

Finding an optimal spatial area/zone for particular purposes such as hydrographic survey, 

fishing, plant conservation, emergency evacuation, military exercise, etc. is not a trivial task, 

especially for complex inter-connected systems, since the decision maker usually faces a large 

number of conflict criteria and do not know exactly which solution is better. In a research of 

Hsu & Peeta [9], a risk-based spatial zone determination method was developed for disaster 

evacuation operations. In this method, the goal is to determine risk-based evacuation sub-

zones for stage-based evacuation operations in a disaster region so that information-based 

evacuation procedures could be done in real-time for the sub-zone(s) with the highest 

evacuation risk to maximize the evacuation system performance. As the name suggests, this 

method determines the optimal spatial zones based on the assessment of evacuation risk only. 

To overcome the drawbacks of almost all of the existing theories for spatial conservation 

planning (i.e., focusing on identifying no-take reserves), Klein et al. [10] developed a multi-

zone planning tool called “Marxan with Zones” for network design of four types of protected 

areas in the context of California's Marine Life Protection Act. This spatial marine zoning 

method can be used for both marine and terrestrial conservation planning. Data from this 

study shows that zoning configuration produced by the developed method is 9% better for 

every fishery while the conservation goal is not compromised. 

Geneletti and Duren [11] combined spatial multi-criteria and multi-objective evaluation 

methods to solve the protected area zoning problems in the context of the Paneveggio-Pale di 

S. Martino Natural Park (Italy). There are four steps to implement in this protected area 



zoning method. The first step is to partition the area into homogeneous land units which 

represent the basic spatial elements of the zoning mosaic. The second step is to perform three 

multi-criteria evaluations to map land suitability for different zone types with different 

protection levels. The third step is to assign each land unit to a protection level through a 

multi-objective land allocation procedure. The final step is to conduct the sensitivity analysis 

to check the robustness of the zoning scheme. 

Kazemzadeh-Zow et al. [12] developed a spatial zoning approach simulating long-term 

expansion of Mashhad city in Iran. In this method, a mix of external and internal variables for 

predicting urban growth was considered. In addition, this spatial zoning method differentiates 

the local-scale urban dynamics in districts from the socio-economic characteristics. First, 

Thiessen polygons were used in this method to identify districts with different morphology 

and functional attributes. An urban growth was then simulated for each district using a multi-

layer perceptron neural network and Markov chains analysis. Finally, the multi-layer 

perceptron and Markov chains algorithms were used to derive transition maps from non-urban 

to urban use of land and to determine spatial evolution of built-up areas at the metropolitan 

scale. 

Regarding the maritime spatial zoning, there have been a number of studies. To manage 

southern bluefin tuna in the eastern Australia longline fishery, Hobday et al. [13] proposed a 

dynamic spatial zoning method, in which the habitat model conditioned with temperature 

preference data from satellite and the ocean model were combined to produce near real‐time 

habitat predictions. In the fishing region, several habitat types based on occurrence probability 

of southern bluefin tuna are identified, and then the manager will determine and regulate the 

fishers to access these fishing zones. Obviously, beside the habitat prediction model, this 

spatial zoning method relies on human judgement to determine the best zones for fishing.  

A research called zoning marine protected areas through spatial multiple‐criteria analysis was 

conducted by Villa, Tunesi & Agardy  [14] in which the case study of the Asinara island, 

national marine reserve of Italy, was used. This method used the spatial multiple‐criteria 

analysis for determining the suitability of marine areas for different uses and protection levels, 

by using geographic information systems (GIS) for land assessment/evaluation coupled with a 

formal statement of the design priorities as seen from the different viewpoints of all 

stakeholders. The objective data with the contrasting priorities of different stakeholders was 

integrated by multiple‐criteria analysis to determine the optimal spatial arrangement of 



different protection levels. In addition, Habtemariam and Fang [15] developed an 

interdisciplinary zoning method for multiple-use marine protected area, which combines 

spatial multi-criteria analysis, geographic information system and stakeholder consultation, 

with a case study of the Sheik Seid Marine National Park in Eritrea. 

Regarding spatial zoning optimization, Crossman et al. [16] developed a spatial optimization 

decision support system to determine optimal solutions to a maritime spatial problem of 

identifying comprehensive, adequate and representative locations for conservation planning in 

South Australia. In this method, a database of spatial layers (Geographic Information System 

environment - ESRI’s ArcGIS) describing the biophysical features of the marine environment 

(i.e., bathymetry, sea surface temperature, chlorophyll ‘a’ concentration levels, benthic and 

coastal habitat types, and shoreline exposure and type) was used to identify surrogate 

ecological regions. An integer programming algorithm (ILOG’s CPLEX) was then used to 

find the locations that most efficiently represent these surrogates of biodiversity 

In the research of Wie and Chai[17], an intelligent GIS-based spatial zoning system with 

multi-objective hybrid metaheuristic algorithm was developed to draw territory lines for 

geographical or spatial zones for the purpose of space control. In this method, a geographic 

information system and a hybrid metaheuristic (i.e., Tabu search and Scatter search 

algorithms) were used to generate non-dominated alternatives. Li et al. [18] attempted to use 

the urban cellular automata coupled with Ant Colony Optimization to solve a zoning 

protected natural area problem under a changing landscape. Outperformance of this method 

against three traditional optimization algorithms, i.e., Simulated Annealing, Iterative 

Relaxation and Density Slicing, has been tested and confirmed in the metropolitan region of 

Guangzhou, China, by using Geographical Simulation and Optimization System (GeoSOS) 

software. 

 

As can be seen from the literature review, the SADP has not been fully established yet - some 

important constraints of the problem such as the area size and the area shape were not 

simultaneously considered in the models. In addition, the existing optimization solution 

methods for the SADP are very limited. To fill these gaps, first, the SADP is formally defined 

and formulated, and then an optimization solution method based on MA for the problem is 

developed in this paper. Details of the problem definition and the developed MA will be 

presented in Sections 3 and 4, respectively. 

 



3. Problem Definition 

In this paper, the SADP is defined as follows. Given a spatial data and the required size of the 

interest area (e.g., 20 km2), the goal is to find the location and shape of an area that 

maximizes the coverage of the high-valued polygon(s), as illustrated in Fig. 1. The values of 

the spatial data in Fig. 1 are represented by their colors, e.g., black is for 0 and white is for 6. 

Obviously, without the area size constraint, the white polygon always contains the optimal 

solution(s). When considering the size constraint of the interest area, the optimal solution(s) is 

always located in the white polygon if the required size of the interest area is smaller than the 

size of the white polygon, as illustrated in the sub-figure (a). With the constraint of larger area 

size, the optimal solution(s) will be in the yellow polygons as shown in sub-figures (b and c); 

and with the constraint of very large area size, the optimal solution(s) can be located in the 

polygons as shown in sub-figure (d). As can be seen from Fig. 1, with the same spatial data 

and different area size constraints, the optimal solutions to SADP can be located in different 

polygons and can have different shapes. Therefore, SADP is a constrained optimization 

problem.  

  

 

Fig. 1: Locations of proposed area (white quadrangles with black frames) with different area 

size constraints 

 



SADP can have several applications, for example, in conservation planning (finding the best 

area to protect the fauna/flora, given the environment, economics and government policy 

constraints), in military planning (finding the best area for military exercise, given some 

constraints on security, cost, and effectiveness), or in hydrographic survey planning (finding 

the most reasonable ocean area, not just the riskiest area, to make a hydrographic survey with 

the given equipment, labor, and completion time, given some spatial data on navigation risk) 

[7]. 

 

The assumptions of the problem are listed as follows: 

• The spatial data is vector data, i.e., made of points, lines and polygons. 

• Each of these points, lines and polygons contains a value which can be an integer or a 

real number. 

 

The next step is to define the decision variables. In this paper, it is considered that the 

proposed area should be a quadrangle area with a given size (surface). To represent a 

quadrangle area on the spatial data, two main decisions are to be made: the location and the 

shape of the area. The location of the area is represented by a (x, y) coordinate in a Cartesian 

coordinate system and the shape of the area is determined by positioning the four corners of 

the area. Each corner can be positioned by two characteristics: 1) its angle to one of the 

coordinate axis and 2) its distance to the center of the area. In order to take all these variables 

into account, the following solution representation is proposed for a quadrangle area with four 

corners (C1 to C4): 

(�, �, ��, ��, ��, ��, �	, �	, �
, �
) 

 

where (as illustrated in Fig. 2):  

• �, � are the coordinates of the center O of the quadrangle area. 

• ��, ��, �	, �
 are four angles used to determine the locations of the four corners C1 to 

C4, related to the coordinate axes as shown in Fig. 2. 

• ��, ��, �	, �
 are the direct distances of the four corners C1 to C4 to the area center O, 

respectively. 



 

Fig. 2: An interest area with its decision variables 

 

In the SADP, it is to maximize the coverage of the high-valued polygon(s) as the objective 

function, which is calculated by Eq. 1 and visually illustrated in Fig. 3. 

�  � �� ∗
�

���
(��)� 

 

(1) 

 

 

Fig. 3: A simplified example of how the objective function is calculated 

 

 



where: 

• �� is the overlapping area between the interest area and the  ��� polygon on the spatial 

data - for example, A1 and A2 as illustrated in Fig. 3. It should be noted that �� is a 

function of the decision variables: �, �, ��, ��, ��, ��, �	, �	, �
, �
 (�� 
��(�, �, ��, ��, ��, ��, �	, �	, �
, �
) and the spatial map. However, this function (i.e., 

an exact mathematical function expressing the direct relationship between the 

decisions variables �, �, ��, ��, ��, ��, �	, �	, �
, �
 and the overlapping area ��) 

cannot be generally determined because it depends on the spatial data and it is a 

“black-box” problem. A general procedure to calculate the overlapping area ��, given 

the decision variables: �, �, ��, ��, ��, ��, �	, �	, �
, �
 and the spatial data, is 

presented in Section 4.5. 

• �� is the value of the ��� polygon on the spatial data – it is like a value in a heat map 

(for example, V1 and V2 as illustrated in Fig. 3, or the values 0 to 6 represented by the 

colors in Fig. 1). 

• � is the scaling coefficient, which is used to adjust the importance of particular 

polygons on the spatial data to the objective function. For one spatial data, the value of 

c should be the same. If c is great than 1, the importance of the polygons with the top 

values will be increased; and if it is less than 1, the importance of the polygons with 

the top values will be decreased. 

• � is the number of polygons on the spatial data. For example, the spatial data in Fig. 3 

has only two polygons. For complex spatial data, n can be a large number. The 

minimum value of n is 1, which would be found in a simplest spatial data. 

 

The main input parameter of the problem is the required size of the interest area � (� > 0). 

 

Finally, the list of the constraints are provided as follows: 

• ∑ ������  � (the area size constraint, for example, � =20 !"�). 

• �#�� ≤ � ≤ �#%& (the x coordinate of the center of the spatial area must be in within a 

certain polygon determined by �#�� and  �#%&). 

• �#�� ≤ � ≤ �#%& (the y coordinate of the center of the spatial area must be in within a 

certain polygon determined by �#�� and  �#%&). 

• �#�� ≤ ��, ��, �	, �
 ≤ '
� − �#�� (the range of each angle �� to ensure the spatial area 

to be quadrangle, and not to be twisted). 



• �#�� ≤ ��, ��, �	, �
 ≤ �#%& (the range of each distance �� to ensure the spatial area 

to be quadrangle, and not to be twisted). 

• �#��, �#%&, �#��, �#%&  are the minimum and maximum coordinates of the spatial 

map. 

• �#�� > 0 (the minimum angle to ensure the spatial area to be quadrangle, and not to 

be twisted). 

• �#��, �#%&  > 0 (the minimum and maximum distances to ensure the spatial area to 

be quadrangle, and not to be twisted). 

 

As can be seen from the objective function and constraints, the SADP is a “black-box” 

optimization problem (i.e., a problem in which analytical or derivative information is not 

available [19]) because there is no general mathematical function expressing the direct 

relationship between the decisions variables �, �, ��, ��, ��, ��, �	, �	, �
, �
 and the objective 

function F (more precisely, the overlapping area ��).  

 

In general, optimization solution methods can be classified into two main categories: exact 

methods and approximate methods [20]. Each approach has its own advantages and 

disadvantages. Although exact methods are capable of guaranteeing the optimal solutions, 

they may fail when solving the “black-box” and/or complex optimization problems. Although 

approximate methods can work with any type of optimization problems, the optimal solutions 

may not be guaranteed [21, 22]. Generally speaking, when dealing with complex optimization 

problems, approximate methods are more popular than exact methods [23]. 

 

Because the SADP is a “black-box” optimization problem, exact optimization method is not a 

good option to solve it; instead, meta-heuristic algorithms (approximate methods) are used to 

solve the problem. Details of the proposed optimization solution method for the SADP will be 

presented in the next Section. 

 

4. Proposed Memetic Algorithm 

There have been a number of approximate (stochastic) optimization solution methods such as 

Genetic Algorithm (GA) [24], Particle Swarm Optimization (PSO) [25], Harmony Search 

(HS) [26], Cuckoo Search (CS) [27], Ant Colony Optimization (ACO) [28], Tabu Search (TS) 

[29], Pattern Search (PS) [30], Greedy Algorithm [31], Simulated Annealing (SA) [32], Hill 



Climbing (HC) [33], and Memetic Firefly Algorithm [34]. In addition, there have been 

various hybrid algorithms [35-38], in which two or more stochastic optimization algorithms 

are combined/integrated together to improve the solution quality. 

 

MA is a combination of an evolutionary search based optimization algorithm with the 

problem-specific local search to balance the exploration and exploitation of the algorithm to 

enhance the solution quality [39]. The main benefit of a MA is to combine a global search 

algorithm such as GA, PSO, ACO, etc. with a local search algorithm to improve the optimal 

solution [40, 41]. Recently, MAs have been proven to be powerful and effective in solving 

complex optimization problems [42-45]. 

 

In the research of Lu et al. [46], MA was used to solve the multiple traveling repairman 

problem with profits (TRPP). In this MA, a randomized greedy construction method for initial 

solution generation, a variable neighborhood search for local refinement, and a dedicated 

route-based crossover operator for solution recombination were combined. The effectiveness 

of the developed MA was demonstrated in solving a large set of instances of TRPP. Eremeev 

and Kovalenko [47] developed another MA with optimal recombination for the asymmetric 

travelling salesman problem. In this MA, a crossover operator based on an exact algorithm 

was used to solve the optimal recombination problem on cubic digraphs, and a mutation 

operator was employed to make random jumps in 3-opt or 4-opt neighborhoods. In addition, a 

greedy constructive heuristic was used in this MA to generate the initial population. Huang et 

al. [48] proposed a so called niching MA for multi-solution traveling salesman problem. In 

this MA, a niche preservation technique to enable the parallel search, an adaptive 

neighborhood strategy to balance the exploration and exploitation, a critical edge-aware 

method to provide effective guidance to the reproduction, and a local search strategy to 

improve the search efficiency were proposed. Comprehensive experiments were conducted to 

confirm the effectiveness of the proposed MA. 

 

Yadegari et al. [49] proposed a MA for closed-loop supply chain network design. In this MA, 

a priority-based encoding/decoding method based on a flexible combinatorial neighborhood 

search strategy was developed. Moreover, a technique to convert the discrete representation to 

a continuous one was proposed to avoid time-consuming repair process in discrete solution 

representation. Finally, a multi-start simulation annealing is integrated into the MA to 

enhance the search performance. The outperformance of the proposed MA, compared to 



commercial solvers and GA, was validated in various test problems ranging from small size to 

large size.  

 

For the hub location and routing problem with distinct collection and delivery tours, Yang et 

al. [50] proposed a MILP model and the related MA to solve it. For scheduling and planning 

problems with a single objective, Rahman et al. [51], Alsmady et al. [52], Yağmur and Kesen 

[53], Jin et al. [54] have developed various versions of MA to them. For multiple objective 

optimization, there have been a number of research works using MA such as Gong et al. [42], 

Decerle et al. [55], Abedi et al. [56], Zhang et al. [57], Spencer et al. [58], Pistolesi and 

Lazzerini [59], Sun et al. [60]. MA has been used to solve many other optimization problems 

such as gene selection problem in microarray data [61], training recurrent neural networks for 

the energy efficiency problem [62], preventing epidemic spreading in networks [63], medical 

data classification [64], feature selection for handwritten word recognition [65], composing 

distributed data-intensive Web services [66], the 3-D protein structure prediction problem 

[67], etc. Nevertheless, there is no research work using MA to solve the SADP yet. To fill this 

gap, an improved version of MA is developed to solve the SADP in this paper. 

 

Fig. 4 shows our proposed MA for solving the SADP. To deal with the constraints of the 

spatial area determination problem and to enhance the robustness of the traditional MA, 

several innovations in the proposed MA are introduced. Unlike the traditional MA [40], the 

proposed MA employs three crossover operators, two mutation operators, and a local search 

operator during the search process. It is noted that the crossovers, mutations, and local search 

operators can be executed concurrently and/or consecutively – which depend on the PC 

processor and programming technique. In this article, consecutive computation was used for 

simplification. In addition, offspring chromosomes, which are generated by the three 

crossovers, two mutations, and the local search, can have a chance to compete with parent 

chromosomes for survival from one generation to the next. Moreover, the proposed MA has a 

mechanism to automatically restart its search process if it gets stuck in the local optima. In 

other words, the proposed MA is capable of restarting its search process whenever the quality 

of the best chromosome obtained so far is not improved within a prefixed number of 

generations (i.e., value P in Fig. 4). 

It should be noted that four notations ), *, + and , in Fig. 4 represent (1) the current number of 

successive generations where in the quality of the best chromosome obtained so far has not 



been improved, (2) the current number of generations of the proposed MA, (3) the prefixed 

number of successive generations where in the quality of the best chromosome obtained so far 

has not been improved, and (4) the maximum number of generations of the proposed MA, 

respectively. Initial population of the proposed MA is randomly generated, which contains a 

number of chromosomes (this number is equal to the population size). Every chromosome in 

the proposed MA must be feasible – which means that all the constraints of the problem under 

consideration in each chromosome must be satisfied. This initial population will be evolved 

along the iterations of the proposed MA, thanks to the crossover, mutation, local search, 

evaluation, and selection operators. In the final population, there is a solution(s) with the 

highest fitness value, which can be selected and considered as the optimal solution(s). 

Although, this selected solution may not be the global optimal solution, it is a good solution 

which is very near/close to the global optimal solution. The details of the proposed MA 

components such as chromosome encoding, crossovers, mutations, local search, fitness 

evaluation, selection mechanism, and parameter tuning will be presented in the subsequent 

Sections. 



 

Fig. 4: Innovative structure of the proposed Memetic Algorithm 

 

4.1. Chromosome Encoding 

The chromosome of the proposed MA, which represents a solution to the SADP, is shown in 

Fig. 5. Each chromosome has 10 decision variables (�, �, ��, ��, ��, ��, �	, �	, �
, �
) as 

shown in the highlighted cells in Fig. 5, and its encoded solution to the SADP is visualized in 

Fig. 2. 

 

Fig. 5: Chromosome encoding 

 

O C1 C2 C3 C4

x α1 α2 α3 α4

y d1 d2 d3 d4



It should be noted that chromosomes in MA are randomly generated. When solving 

constrained optimization problems, one has to handle some constraints in order to randomly 

generate feasible chromosomes. For the SADP, there are a set of constraints as explained in 

Section 3, and the hardest constraint is the required size (surface) of the interest area, called 

size constraint hereafter. To avoid solving an inverse problem (i.e., randomly generate the 

center O and 3 corners C1 to C3 of the interest area, and then solve the size constraint 

equation to find the last corner C4 - that would be computationally expensive), a simple but 

effective procedure is proposed, as illustrated in Figs. 6-7, to handle the size constraint of the 

SADP. The basic idea here is to repair infeasible chromosomes to meet the size constraint by 

incrementally making it bigger or smaller, by incrementally adding or removing small amount 

of ∆� to the all variables ��, ��, �	, �
 as illustrated in Figs. 6-7. The pseudo-code of 

generating feasible chromosomes is shown in Algorithm 1. The inputs of Algorithm 1 are 9 

parameters including: �#��, �#%&, �#��, �#%&, �#��, �#��, �#%&, ∆�, �; and the outputs are 

10 decision variables including: �, �, ��, ��, ��, ��, �	, �	, �
, �
. For more detailed meanings 

of the above parameters and decision variables, it is advised to refer to Section 3 and Fig. 6. It 

is noted that Fig. 8 shows 50 typical random chromosomes generated by the proposed 

procedure in Algorithm 1. As can be seen from Fig. 8, the chromosomes have various shapes 

but have approximately the same sizes. 

 

 

Fig. 6: Incrementally make infeasible chromosome smaller to meet the size constraint 

 



 

Fig. 7: Incrementally make infeasible chromosome bigger to meet the size constraint 

 

 

Algorithm 1: Pseudo-code to generate a feasible chromosome 

 

 

 



 

Fig. 8: 50 typical random chromosomes 

 

4.2. Crossover Operators 

To thoroughly explore the search space of the SADP, the proposed MA employs three 

crossovers, namely crossover 1, crossover 2 and crossover 3, applied to three different parts of 

the chromosomes, as shown in Figs. 9-11. For each crossover, one needs to exchange the 

values in the highlighted cells. The inputs of each crossover operator are two parents (one 

parent is randomly selected from the population, and another one is selected from the 

population using the roulette wheel selection rule [68]). The reason to select such two parents 

for the crossover operator is to balance the exploitation and exploration in the proposed MA. 

The outputs of each crossover are two offsprings (children). Except crossover 1, after doing 

the crossovers as shown in Figs. 9-11, some offsprings may become infeasible due to the 

violation from certain constraints of the SADP. Therefore, it is needed to check and repair all 

offspring chromosomes to ensure their feasibilities.  

  

It is noted that three crossovers 1-3 are not related to each other, and they usually have 

different inputs and outputs. Crossover 1 is quite straightforward to implement and its 

offsprings are always feasible (no offspring repair process is required). To do crossover 1, one 

just needs to select two parent chromosomes and then exchange the values in the highlighted 

cells as illustrated in Fig. 9 to get feasible offsprings. However, doing crossovers 2 and 3 are 

more complicated because they involve offspring repair processes. The pseudo-codes for 

implementing crossovers 2 and 3 are proposed in Algorithms 2 and 3, respectively. It should 

be noted that the inputs of each algorithm (Algorithm 2 or 3) are two parent chromosomes 

(one parent is randomly selected from the population, and another one is selected from the 



population using the roulette wheel selection rule [68]); and the outputs are two feasible 

offspring chromosomes. 

 

 

Fig. 9: Crossover 1 

 

 

Fig. 10: Crossover 2 

 

 

Fig. 11: Crossover 3 

 

x1 α11 α21 α31 α41 x2 α11 α21 α31 α41

y1 d11 d21 d31 d41 y2 d11 d21 d31 d41

x2 α12 α22 α32 α42 x1 α12 α22 α32 α42

y2 d12 d22 d32 d42 y1 d12 d22 d32 d42

Parent 1

Parent 2

Offspring 1

Offspring 2

x1 α11 α21 α31 α41 x1 α12 α22 α32 α42

y1 d11 d21 d31 d41 y1 d11 d21 d31 d41

x2 α12 α22 α32 α42 x2 α11 α21 α31 α41

y2 d12 d22 d32 d42 y2 d12 d22 d32 d42

Parent 1 Offspring 1

Parent 2 Offspring 2

x1 α11 α21 α31 α41 x1 α11 α21 α31 α41

y1 d11 d21 d31 d41 y1 d12 d22 d32 d42

x2 α12 α22 α32 α42 x2 α12 α22 α32 α42

y2 d12 d22 d32 d42 y2 d11 d21 d31 d41

Parent 1 Offspring 1

Parent 2 Offspring 2



Algorithm 2: Pseudo-code to employ crossover 2

 

 

Algorithm 3: Pseudo-code to do crossover 3

 



 

4.3. Mutation Operators 

To enhance the diversification capabilities of mutation operators to better explore the search 

space of the problem, the proposed MA employs two mutation operators, namely mutation 1 

(2 scenarios) and mutation 2 (8 scenarios), applied to different parts of the chromosomes, as 

shown in Figs. 12-21 . For each mutation, 2 values in the highlighted cells are exchanged as 

illustrated in Figs. 12-21. Like the crossover operators in Section 4.2, the inputs of each 

mutation are two parent chromosomes (one parent is randomly selected from the population, 

and another one is selected from the population using the roulette wheel selection rule [68]). 

The outputs of each mutation are two offspring chromosomes. 

 

Mutation 1 has two scenarios, one applied to x coordinate and another one applied to y 

coordinate, as shown in Figs. 12-13. Whenever the mutation 1 is called during the search 

process, the proposed MA will randomly select only one scenario to implement. To do 

mutation 1, the following steps are needed: (1) select two parent chromosomes using the rules 

mentioned above; (2) randomly select a mutation scenario; (3) exchange 2 values in the 

highlighted cells as shown in Figs. 12 or 13 to get the offsprings. As the offsprings of 

mutation 1 are always feasible, no repair process for offspring chromosomes is needed. 

 

 

Fig. 12: Mutation 1 – Scenario 1 

 

 

Fig. 13: Mutation 1 – Scenario 2 

x1 α11 α21 α31 α41 x2 α11 α21 α31 α41

y1 d11 d21 d31 d41 y1 d11 d21 d31 d41

x2 α12 α22 α32 α42 x1 α12 α22 α32 α42

y2 d12 d22 d32 d42 y2 d12 d22 d32 d42

Parent 1 Offspring 1

Parent 2 Offspring 2

x1 α11 α21 α31 α41 x1 α11 α21 α31 α41

y1 d11 d21 d31 d41 y2 d11 d21 d31 d41

x2 α12 α22 α32 α42 x2 α12 α22 α32 α42

y2 d12 d22 d32 d42 y1 d12 d22 d32 d42

Parent 1 Offspring 1

Parent 2 Offspring 2



 

Mutation 2 has 8 scenarios as shown in Figs. 14-21. Whenever mutation 2 is called during the 

search process, the proposed MA will randomly select only one scenario to implement. 

Mutation 2 is more complicated than mutation 1 because it involves an offspring repair 

process. Indeed, the offsprings of mutation 2 may be not feasible because the size constraint 

may be violated after the values as illustrated in Figs. 14-21. To handle the constraints 

involved, a pseudo-code as shown in Algorithm 4 is proposed for implementing mutation 2. It 

is noted that, similar to Algorithms 2 and 3, the inputs of Algorithm 4 are two parent 

chromosomes (one parent is randomly selected from the population, and another one is 

selected from the population using the roulette wheel selection rule [68]); and the outputs are 

two feasible offspring chromosomes. 

 

 

Fig. 14: Mutation 2 - Scenario 1 

 

Fig. 15: Mutation 2 - Scenario 2 

 

 

Fig. 16: Mutation 2 - Scenario 3 

 

x1 α11 α21 α31 α41 x1 α12 α21 α31 α41

y1 d11 d21 d31 d41 y1 d11 d21 d31 d41

x2 α12 α22 α32 α42 x2 α11 α22 α32 α42

y2 d12 d22 d32 d42 y2 d12 d22 d32 d42

Parent 1 Offspring 1

Parent 2 Offspring 2

x1 α11 α21 α31 α41 x1 α11 α21 α31 α41

y1 d11 d21 d31 d41 y1 d12 d21 d31 d41

x2 α12 α22 α32 α42 x2 α12 α22 α32 α42

y2 d12 d22 d32 d42 y2 d11 d22 d32 d42

Parent 1 Offspring 1

Parent 2 Offspring 2

x1 α11 α21 α31 α41 x1 α11 α22 α31 α41

y1 d11 d21 d31 d41 y1 d11 d21 d31 d41

x2 α12 α22 α32 α42 x2 α12 α21 α32 α42

y2 d12 d22 d32 d42 y2 d12 d22 d32 d42

Parent 1 Offspring 1

Parent 2 Offspring 2



 

Fig. 17: Mutation 2 - Scenario 4 

 

 

 

Fig. 18: Mutation 2 - Scenario 5 

 

Fig. 19: Mutation 2 - Scenario 6 

 

Fig. 20: Mutation 2 - Scenario 7 

 

 

Fig. 21: Mutation 2 - Scenario 8 

 

x1 α11 α21 α31 α41 x1 α11 α21 α31 α41

y1 d11 d21 d31 d41 y1 d11 d22 d31 d41

x2 α12 α22 α32 α42 x2 α12 α22 α32 α42

y2 d12 d22 d32 d42 y2 d12 d21 d32 d42

Parent 1 Offspring 1

Parent 2 Offspring 2

x1 α11 α21 α31 α41 x1 α11 α21 α32 α41

y1 d11 d21 d31 d41 y1 d11 d21 d31 d41

x2 α12 α22 α32 α42 x2 α12 α22 α31 α42

y2 d12 d22 d32 d42 y2 d12 d22 d32 d42

Parent 1 Offspring 1

Parent 2 Offspring 2

x1 α11 α21 α31 α41 x1 α11 α21 α31 α41

y1 d11 d21 d31 d41 y1 d11 d21 d32 d41

x2 α12 α22 α32 α42 x2 α12 α22 α32 α42

y2 d12 d22 d32 d42 y2 d12 d22 d31 d42

Parent 1 Offspring 1

Parent 2 Offspring 2

x1 α11 α21 α31 α41 x1 α11 α21 α31 α42

y1 d11 d21 d31 d41 y1 d11 d21 d31 d41

x2 α12 α22 α32 α42 x2 α12 α22 α32 α41

y2 d12 d22 d32 d42 y2 d12 d22 d32 d42

Parent 1 Offspring 1

Parent 2 Offspring 2

x1 α11 α21 α31 α41 x1 α11 α21 α31 α41

y1 d11 d21 d31 d41 y1 d11 d21 d31 d42

x2 α12 α22 α32 α42 x2 α12 α22 α32 α42

y2 d12 d22 d32 d42 y2 d12 d22 d32 d41

Parent 1 Offspring 1

Parent 2 Offspring 2



 

Algorithm 4: Pseudo-code to do mutation 2 

 

4.4. Local Search Operator 

Local search algorithm has been integrated with other algorithms to solve various complex 

optimization problems in the literature [69]. In this paper, to better explore the search space of 

the SADP, the proposed MA employs a local search operator (shown in Fig. 22) that applies a 

small change on a given solution to search the neighborhood of that solution thoroughly. As 

can be seen from Fig. 22, the local search has only one parent chromosome (initial solution 

for the local search) and one offspring chromosome. The parent chromosome of the local 

search is selected from the population using the roulette wheel selection rule [68]. The local 

search has 10 scenarios applied to 10 decision variables as shown in Fig. 22. Every time that 

the local search is called during the search process, the proposed MA will randomly select 

only one scenario to implement. It is noted that .�, .�, .�, .� in Fig. 22 are random small 

values that can be positive or negative. The offspring chromosome of the local search may be 

infeasible because some constraints can be violated after employing the local search operator. 

Therefore, the local search requires an offspring repair process. The pseudo code of the 

proposed local search operator is presented in Algorithm 5. 



 

 

Fig. 22: Local search operator 

 

   Algorithm 5: Pseudo-code to do the local search 

 

x α1 α2 α3 α4 x + δx α1 α2 α3 α4

y d1 d2 d3 d4 y d1 d2 d3 d4

x α1 α2 α3 α4 x α1 α2 α3 α4

y d1 d2 d3 d4 y + δy d1 d2 d3 d4

x α1 α2 α3 α4 x α1 + δα α2 α3 α4

y d1 d2 d3 d4 y d1 d2 d3 d4

x α1 α2 α3 α4 x α1 α2 α3 α4

y d1 d2 d3 d4 y d1 + δd d2 d3 d4

x α1 α2 α3 α4 x α1 α2 + δα α3 α4

y d1 d2 d3 d4 y d1 d2 d3 d4

x α1 α2 α3 α4 x α1 α2 α3 α4

y d1 d2 d3 d4 y d1 d2 + δd d3 d4

x α1 α2 α3 α4 x α1 α2 α3 + δα α4

y d1 d2 d3 d4 y d1 d2 d3 d4

x α1 α2 α3 α4 x α1 α2 α3 α4

y d1 d2 d3 d4 y d1 d2 d3 + δd d4

x α1 α2 α3 α4 x α1 α2 α3 α4 + δα

y d1 d2 d3 d4 y d1 d2 d3 d4

x α1 α2 α3 α4 x α1 α2 α3 α4

y d1 d2 d3 d4 y d1 d2 d3 d4 + δd

Scenario 3 Parent Offspring 

Scenario 4

Parent Offspring Scenario 1

Scenario 2 Parent Offspring 

Scenario 6 Parent Offspring 

Scenario 7 Parent Offspring 

Parent Offspring 

Scenario 5 Parent Offspring 

Scenario 10 Parent Offspring 

Scenario 8 Parent Offspring 

Scenario 9 Parent Offspring 



 

4.5. Evaluation and Selection Operators 

Fitness value of a chromosome (quality of a solution) is calculated using Eq. 1, and is visually 

illustrated in Fig. 23, wherein an interest area (i.e., the chromosome) overlaps with two 

polygons with data values of V1 and V2 on the spatial data. The most complex part in 

calculating the fitness value of a chromosome is the calculation of the overlapping area ��; 

and therefore, the following three-step procedure is proposed:  

Step 1: Build a quadrangle (i.e., a chromosome) using the decision variables 

(�, �, ��, ��, ��, ��, �	, �	, �
, �
) as illustrated in Fig. 23. 

Step 2: Find all of the geometries in the spatial data which intersect with the built 

quadrangle in Step 1. 

Step 3: Determine the area of each intersection in Step 2 (i.e., the overlapping areas: �� 

and  ��). 

 

For more complex spatial data, the chromosome may overlap with multiple polygons, and 

more computing time will be required to calculate the fitness value. 

 

Fig. 23: Fitness value calculation – A simple example 

 

In the proposed MA, the traditional roulette wheel selection [68] (also known as the fitness 

proportionate selection) is used to select chromosomes for the evolutionary process. 



Parameters of the proposed MA such as population size, crossover rate, mutation rate, and 

local search rate are tuned by the Taguchi experimental design method [70].  More details 

about the parameter tuning will be presented in Section 5. The proposed MA was coded in 

Python and its effectiveness will be tested in the next Section. 

 

5. Test Cases  

Performance of the proposed MA is evaluated through 18 test cases with various 

configurations as shown in Table 1. These test cases are formed based on different area sizes 

(i.e., 20, 40, 60, 1000, 1500, and 2000 km2), three computing times (i.e., 30, 60, and 90 

seconds), and two spatial data shown in Figs. 23-24. The spatial data are in different scales 

and the values (risk scores) are represented by their colors. With each area size, our goal is to 

find the location and shape of an area that has a maximum coverage of the high-risk 

polygon(s). It should be noted that the optimal location of the solution to the SADP is not 

always in the polygons with the highest risk score, as illustrated in Fig. 1. In fact, the optimal 

location of the solution depends not only on the spatial data but also on the area size and the 

area shape. With the same spatial data, the location of the optimal solution can be changed if 

one changes the size and/or the shape of the area. That is why the SADP becomes an 

optimization problem and requires advanced algorithms to be solved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 1: Test cases 

 

 

 

Fig. 24: Spatial data 1 

 



 

Fig. 25: Spatial data 2 

 

The outperformance of the proposed MA is validated against four popular optimization 

algorithms, namely SA, PSO, GA, and traditional MA. All five optimization algorithms were 

coded in Python and ran on the same laptop computer with a processor: Intel(R) Core (TM) 

i5-6200U CPU @ 2.3 GHz, and RAM: 8.00 GB. It is noted that the traditional MA is exactly 

the same as the proposed MA except that the traditional MA does not have a mechanism to 

automatically restart its search process; and the GA is exactly the same as the traditional MA 

except that the GA does not have the local search operator. 

 

To make a fair comparison, the parameters of all the optimization algorithms, i.e., SA, PSO, 

GA, the traditional MA, and the proposed MA, were systematically tuned by Taguchi 

experimental design method [70]. The parameters and three experimental levels of the 

optimization algorithms are shown in Tables 3-5. 

 

 

 

 

 

 

 

 

 



Table 2: Parameters and experimental levels of the GA, traditional MA and proposed MA 

 

 

Table 3: Parameters and experimental levels of PSO 

 

 

Table 4: Parameters and experimental levels of SA 

 

 

Taguchi experimental layout and related experimental data related to the proposed MA, 

traditional MA, GA, PSO and SA are given in Tables 6 to 10, respectively. It is noted that 

throughout this paper, the scaling coefficient c in the objective function (Eq. 1) is set to 5; and 

the Taguchi experiments were conducted on the spatial data 2 with the area size of 1000 km2. 

As can be seen from Tables 6 to 10, the number of Taguchi experiments related to each 

algorithm is not the same because it depends on the number of parameters to be tuned. For 

example, 27 experiments were required for the GA, traditional MA or proposed MA, but only 

1 2 3

1 Number of particles np 50 100 150

2 Inertia constant ic 0.5 0.7 0.9

3 Cognitive constant cc 1 2 3

4 Social constant sc 1 2 3

Experimental level
CodeParameterNo.



9 experiments were required for the PSO and the SA algorithms. In addition, to make a fair 

comparison, the same computing time equal to 30 seconds is set for each experiment, and 

each experiment is repeated 5 times (5 independent runs), as shown in Tables 6-10. 

 

Table 5: Taguchi experimental layout and related experimental data (Proposed MA)

 

 



Table 6: Taguchi experimental layout and related experimental data (Traditional MA)

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 7: Taguchi experimental layout and related experimental data (GA) 

 

 

Table 8: Taguchi experimental layout and related experimental data (PSO)

 

 



Table 9: Taguchi experimental layout and related experimental data (SA)

 

 

With the data from Taguchi experiments (Tables 6-10), the main effects of the parameters as 

shown in Figs. 26-30 are plotted, which show the effects of the parameters on the objective 

function value or the fitness value. From these five main effect plots, the parameters of the 

algorithms are tuned as Table 10. These parameters stay fixed for all 18 test cases of Table 1, 

and the performance of the algorithms is compared in the next Section. 

 

 

Fig. 26: Main effect plot of the proposed MA 

 



 

Fig. 27: Main effect plot of the traditional MA 

 

 

 

Fig. 28: Main effect plot of GA 



 

Fig. 29: Main effect plot of PSO 

 

 

 

Fig. 30: Main effect plot of SA 

 

 

 

 

 

 

 

 



Table 10: Tuned parameters of the algorithms 

 

 

6. Results and Discussions 

To validate the effectiveness of the proposed MA, a comprehensive comparative study has 

been conducted, and various insights on the behaviour of the proposed algorithm as well as its 

potential applications in other domains are provided herein. The effectiveness of the proposed 

MA in 18 test cases is compared with those of 4 well-known optimization algorithms in the 

literature, i.e., SA, PSO, GA, and the traditional MA. 

 

Performances of SA, PSO, GA, the traditional MA, and the proposed MA in 18 test cases are 

reported in Table 11. For each test case, each optimization algorithm was independently run 

100 times to get a consistent result; and a set of performance measures including min, max, 

average, and standard deviation (std) of the fitness values (the values of the objective function 

found by different optimization algorithms) are reported. It is noted that the SADP is a 

maximization problem (as mentioned in Section 3) – therefore, the larger the fitness values, 

the better. 

 

 

 

 

 



Table 11: Performance comparison of the algorithms 

 

 

The comparison results as shown in Table 11 reveal that the proposed MA outperforms SA, 

PSO, GA and the traditional MA in all 18 test cases considering all four performance 

measures (min, max, average, and standard deviation (std) of the fitness values). In terms of 

the solution quality measured by the “Average” value, on average, in all 18 test cases, the 

proposed MA provided 36.5%, 43.3%, 20.4%, and 22.4% better solution compared to SA, 

PSO, GA, and the traditional MA, respectively. In addition, in terms of the solution quality 

measured by the “Max” value, on average, in all 18 test cases, the proposed MA was 6.9, 4.0, 

1.0, and 0.3% better than SA, PSO, GA, and the traditional MA, respectively. Furthermore, in 

terms of the solution quality measured by the “Min” value, on average, in all 18 test cases, the 

proposed MA performed 197.4, 108.3, 91.0, and 91.4% better than SA, PSO, GA, and the 

traditional MA, respectively. The consistency (robustness) of the algorithms in finding the 

same final solution is measured through the std value. In this regard, the proposed MA 

outperformed SA, PSO, GA, and the traditional MA, with 74.9%, 80.1%, 77.4%, and 80.0% 

better, respectively. The overall performance comparison in terms of the objective function 

values (the fitness values) found by 5 algorithms is shown in Fig. 31. Clearly, the proposed 

MA is better than the 4 benchmark algorithms. 

 



 

Fig. 31: Visualization of the overall performance comparison 

 

It is noted that like other stochastic optimization algorithms, SA, PSO, GA, the traditional 

MA and the proposed MA could not provide exactly the same solutions in different runs - that 

is why in this research, each optimization algorithm was independently run 100 times to get a 

consistent result, as mentioned before. In addition, to deal with the stochastic nature of the 

stochastic optimization algorithms, well-known statistical tests (i.e., T-test and the Friedman 

test) were used here to compare and validate the performances of the optimization algorithms. 

 

A set of 24 T-tests were conducted to confirm the outperformance of the proposed MA, 

against SA, PSO, GA, and the traditional MA. The results of these tests have been provided in 

Table 12. Based on the solution scales, 18 test cases were divided into 6 groups for more 

accurate comparison. In each group, four T-tests for four hypotheses (i.e., the proposed MA is 

significantly better than SA, the proposed MA is significantly better than PSO, the proposed 

MA is significantly better than GA, and the proposed MA is significantly better than the 

traditional MA) were conducted. Statistically speaking, the results of Table 12 confirms that 

the proposed MA is significantly better than SA, PSO, GA, and the traditional MA, with 95% 

confidence intervals. 

 

 



Table 12: Set of T-test for confirming the outperformance of the proposed MA 

 

 

Furthermore, in order to evaluate the overall performance of the five algorithms in all 18 test 

cases, the Friedman test was conducted using Minitab and the result is shown in Fig. 32. As it 

can be seen from Fig. 32, the proposed MA outperforms the traditional MA, GA, PSO, as well 

as SA. More specifically, the proposed MA has the median of 574.525 while the traditional 

MA, GA, PSO, and SA have 456.155, 464.615, 400.619, and 430.164, respectively. In 

addition, the sum of ranks of the proposed MA is 90, while those of the traditional MA, GA, 

PSO, and SA are 53, 60, 27, and 40, respectively. Moreover, the very small P-value (0.000) 

indicates that the performance differences between the proposed MA and the other algorithms 

are statistically significant. 

 



 

Fig. 32: The result of the Friedman test 

 

The results from T-test and Friedman test as shown above confirm that the proposed MA 

outperforms the traditional MA, GA, PSO, and SA. There are two main reasons behind the 

success of the proposed MA. First, the proposed MA has multiple crossover operators, 

multiple mutation operators and a local search; therefore, it can explore the complex search 

space of the problem better than the traditional MA, GA, PSO, and SA. Second, the proposed 

MA has a mechanism to automatically restart its search process if it gets stuck in the local 

optima. With these two innovations, performance of the proposed MA is significantly 

enhanced, and it is better than the existing optimization algorithms in the literature. These 

innovations in the proposed MA can be applied to other stochastic search-based optimization 

algorithms such as GA and PSO to enhance their performances. In addition, parallel 

computation techniques can be used to execute the crossover, mutation, and local search 

operators to shorten the computing time. Furthermore, the proposed MA can be customized to 

solve various real-world optimization problems such as product planning and scheduling 

optimization problems, vehicle routing problems, timetable scheduling problems, work-flow 

scheduling problems in hotels and hospitals, etc. For more details about the innovative 

structure of the proposed MA, it is advised to refer to Fig. 4. 

 

Regarding the scalability and potential applications in other research fields, the proposed MA 

can be extended to solve other optimization problems with the same and/or larger number of 

decision variables. To do so, one needs to update the chromosome encoding, crossover, 



mutation, objective function, and constraints; the rest of the MA can be kept the same. In 

addition, to maximize the algorithm performance when solving new problems, its parameter 

set (i.e., population size, crossover rate, mutation rate, and local search rate) needs to be tuned 

again using Taguchi experimental design method as shown in Section 5. 

 

Although the proposed MA works very well in solving the problem under investigation (i.e., 

spatial area determination problem), it might have the following limits when being applied to 

solve highly constrained large-scale optimization problems in other research fields. First, 

there is no general method or rule for selecting the effective chromosome encoding for the 

proposed MA to solve a given optimization problem – which depends on the problem to be 

solved. Second, designing the effective crossovers and mutations requires a deep knowledge 

of the problem (especially the constraints) and the user experience in stochastic optimization 

algorithms. Finally, finding the optimal parameters of the proposed MA, using Taguchi 

experimental design method, might be complex and time-consuming. Each optimal parameter 

set should be applied to one problem only; for a new problem, one should do the parameter 

tuning again. In addition, a large number of experiments and ANOVA analysis are required in 

each parameter tuning as shown in Tables 5-9 and Figs. 26-30 in Section 5. 

 

7. Conclusions and Future Work 

In this paper, the spatial area determination problem, which can be found in various domains 

such as hydrographic survey planning, conservation planning, military planning, etc., has 

been defined and formulated. To solve the problem, an innovative solution method based on 

MA has been developed. For this aim, 18 test cases were used to demonstrate the 

outperformance of the proposed MA. The results indicate that in terms of solution quality, on 

average, the proposed MA provided 36.5%, 43.3%, 20.4%, and 22.4% better solution; and in 

terms of consistency, the proposed MA has 74.9, 80.1, 77.4, and 80.0% better consistency, 

compared to four popular optimization algorithms, namely SA, PSO, GA, and the traditional 

MA, respectively. Finally, a set of 24 T-tests and the Friedman test confirmed that the 

proposed MA is significantly better than the four benchmarking optimization algorithms. 

 

As the future research directions, the applicability of the SADP in reality will be investigated, 

and the robustness of the proposed MA on more complex spatial data will be tested. In 

addition, finding the Big O notation, for example O(n!) or O(2^x), to express the 



computational complexity of the proposed MA (a stochastic optimization problem) will be 

done in the future. Furthermore, developing a multi-objective mathematical model for the 

SADP with conflicting objectives could be an interesting research direction. Moreover, other 

meta-heuristic algorithms can be developed that may outperform the proposed MA in terms of 

solution quality and computational effort. In this regard, data-driven meta-heuristics can be 

developed that use machine learning techniques to improve the performance of classical meta-

heuristics [71, 72]. In fact, data-driven meta-heuristics have shown superior performance 

when solving a wide variety of optimization problems [37, 38, 73]. Finally, parallel 

computation techniques can be used to execute the crossover, mutation, and local search 

operators of the proposed MA as shown in Fig. 4 to shorten the computing time. 
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