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Online Learning with Adversaries: A Differential Inclusion Analysis

Swetha Ganesh, Alexandre Reiffers-Masson, Gugan Thoppe

Abstract— We consider the measurement model Y = AX,
where X and, hence, Y are random variables and A is an a
priori known tall matrix. At each time instance, a sample of
one of Y ’s coordinates is available, and the goal is to estimate
µ := E[X] via these samples. However, the challenge is that
a small but unknown subset of Y ’s coordinates are controlled
by adversaries with infinite power: they can return any real
number each time they are queried for a sample. For such an
adversarial setting, we propose the first asynchronous online
algorithm that converges to µ almost surely. We prove this
result using a novel differential inclusion based two-timescale
analysis. Two key highlights of our proof include: (a) the use
of a novel Lyapunov function for showing that µ is the unique
global attractor for our algorithm’s limiting dynamics, and (b)
the use of martingale and stopping time theory to show that
our algorithm’s iterates are almost surely bounded.

I. INTRODUCTION

In this paper, we are interested in incrementally estimating
the mean µ of a random variable X when we are only
able to sample the random variable Y = AX for some
a priori known tall matrix A. The challenge is that some
coordinates of Y are controlled by adversaries with infinite
power: they can return any value each time they are queried
for a sample of their coordinate. Such estimation problems
with adversaries naturally are important challenges that com-
monly appear in different engineering applications such as
federated machine learning [6], sensor networks [7], Internet
of Battlefield Things [1], or network tomography [5].

This statistical problem has been tackled by two different
approaches. First the authors [7] assume that the matrix
A is given and the variance of X is 0, i.e., X and Y
are deterministic. Even with such simplified assumptions,
[7] shows that µ can be retrieved in adversarial settings
only under some specific conditions on A. There are some
extensions of this work (see [9] for instance) where X is
assumed to be a Multivariate normal distribution. In such
a line of work, the focus is more on the condition of the
recovery than the design of efficient algorithms. The other
approach is when it is possible to control the design of the
matrix A, as in federated machine learning. In this case, the
usual approach is to design a simple A which allows using
simple robust statistics such as geometric median or trimmed
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mean to control the influence of adversaries. However, such
approaches require algorithms to be synchronous.

In this work, we presume that the observation matrix A is
given to us. We also suppose that, at each instance, we have
access only to a sample of a randomly chosen coordinate of
Y. In these settings, we propose the first asynchronous online
algorithm that almost surely converges to µ. Importantly, our
scheme retrieves µ under the same condition that enabled [7]
to solve Y = AX when X is deterministic. Note that the
setup in [7] is also not online: the adversarial measurements
are not queried an infinite number of times.

A. Related works

Our work builds on the findings from [7]. In that paper,
the authors suggested an L1-based optimization problem to
recover the state of a dynamical system, when an adversary
corrupts a sparse number of observations. This work was
extended in [9] to a set-up where the observations are also
corrupted by Gaussian noise. There, the authors use an
extended version of the Kalman filter to estimate the state of
the dynamical system.

Our work is also related to distributed machine learning
under parameter server architecture, in the presence of ad-
versarial workers. In a parameter server architecture [8], it
is assumed that an unattackable parameter server manages
the parameter of the machine learning model. Usually, the
learning procedure used in such set-up can be described
in three steps: (1) the parameter server shares the current
parameters of the machine learning model with the workers;
(2) the workers, using the current value of the parameters of
the machine learning model, and using the data that that they
have access to, to compute the gradient associated to the loss
function of the model; (3) the workers send the computed
gradients to the parameter server which will aggregate them
to update the parameters of the model. In an adversarial
context, some of the workers can share a corrupted version
of their local gradients. Most of the works [13], [15], [4] are
focused on the design of h(·) which can handle corrupted
local gradient estimation and allows to build a good estimator
of the sum of the gradient computed by the workers. To do
so, they use aggregator functions such as trimmed mean or
geometric median.

The problem tackled in our set-up can be viewed as a
way to derive a gradient aggregation method that allows the
retrieval of the exact actual gradient even in the presence
of adversarial workers. Our algorithm is also asynchronous.
The solutions proposed in these papers suffer from two major
problems: (1) The problem with the geometric median and
trimmed mean is the fact that they are not guaranteed to



retrieve the gradient; and (2) All the algorithms proposed in
these papers require a high level of synchronicity.

Such methods are unable to obtain the true value of the
gradient because they do not account for the distribution of
the data functions among the workers. If we use our method
to design the aggregation function, and carefully distribute
the data among the workers we will be able to retrieve the
exact gradient. To the best of our knowledge, the only work,
so far, that has been able to tackle this issue is [6]. In this
paper, the authors are interested in solving an empirical risk
minimization problem for generalized linear models. The
focus is on the design of an encoding matrix such that
data is allocated properly between servers and it is possible
to estimate the gradient of the machine learning problem
even if some workers are adversarial. Moreover, they focus
on two distributed set-ups, data parallelism, and model
parallelism. They show that the problem can be reduced to
adversarial-resilient matrix-vector (MV) multiplication and
therefore focus on a specific encoding set-up. Their approach
is different from ours and the proposed algorithms in [6] is
a synchronous algorithm, as opposed to our method which
is an asynchronous algorithm.

More generally, our work is also related to the design
of optimization algorithms in presence of adversarial nodes
(see [12] and the references therein). Such works use similar
techniques as the one proposed in the context of distributed
machine learning algorithms (using trimmed mean and me-
dian) and share the same weaknesses.

B. Contributions

1) Algorithm: We propose the first asynchronous algo-
rithm with convergence guarantees for online learning
with adversaries. This algorithm works under the same
condition as given in [7]. Loosely, this condition (which
is both necessary and sufficient) ensures that the matrix
A doesn’t put a lot of mass on a small set of coordinates
and therefore captures the notion of redundancy. Our
algorithm also uses the sign function to ensure that the
contribution of every measurement is normalized.

2) Novel Analysis Framework: Our work uses a novel
Differential Inclusion (DI) based two-timescale analysis
to establish convergence of our proposed algorithm. To
the best of our knowledge, our work is the first to use
a DI to study learning in adversarial settings. There are
two key highlights of our proof technique:

a) Lyapunov Function: Our algorithm is based on the
gradient descent idea for minimizing ‖Ax− E[Y ]‖1.
Typically, for such algorithms, the objective function
is the natural Lyapunov function. However, in our
setup the adversary can make the above function in-
finite even at µ, and therefore it fails to be Lyapunov.
Instead, we show that ‖x − µ‖22 acts as a Lyapunov
function for our algorithm’s limiting dynamics.

b) Boundedness of Iterates: A key step in any ODE/DI
based analysis [3] of stochastic algorithms is to show
that the algorithm’s iterates are stable. In this work,
we use a novel martingale and stopping time based

approach to show that the algorithm’s iterates are
almost surely bounded.

II. SETUP, ALGORITHM, AND MAIN RESULT

We describe here the statistical problem we study, our
proposed algorithm to solve it, and our main result that
describes the limiting behavior of this algorithm.

Setup: X ∈ Rd is a random variable with finite mean and
finite covariance matrix entries. There are p agents to collect
statistics about X, but an unknown subset M, with |M | ≤ m,
are malicious or adversarial. Specifically, the i-th agent has
access to samples of the random variable Y (i) := aTi X,
where ai ∈ Rd is a known deterministic vector. At time n ≥
1, a central server picks index in uniformly at random from
{1, . . . , p} and queries agent in for an independent sample
of Y (in). Agent in returns an actual sample if it is non-
adversarial, and an arbitrary real number otherwise (the value
can change on each query and can depend on the history1).
In either case, Yn(in) denotes the obtained sample.

Goal: Develop an online algorithm to estimate µ := E[X]
using the sequence (Yn(in)).

Algorithm: Our approach is based on the gradient descent
idea for minimizing ‖Ax−E[Y ]‖1. Starting from an arbitrary
x0 ∈ Rd and y0 ∈ Rp, our proposed algorithm to learn µ at
the central server is, for n ≥ 0,

xn+1 = xn + αnain+1
[sign(yn(in+1)− aTin+1

xn)]

yn+1 = yn + βn[Yn+1(in+1)− yn(in+1)]uin+1 ,
(1)

where ui is i-th column of the p×p-identity matrix and, for
any r ∈ R,

sign(r) =


−1 if r < 0,

0 if r = 0,

1 if r > 0.

(2)

In (1), the variables indexed by n are known at time n, while
the ones by n + 1 are not. Note that the coordinates of yn
corresponding to malicious nodes are directly fed into xn’s
update rule.

Assumptions: Apart from the conditions on X, (in), and
Yn(in) stated in the setup, we presume that the matrix A
and stepsize sequences (αn) and (βn) satisfy the following.
1) Observation matrix: The matrix A is tall (p > d), has

full column rank, and satisfies∑
i∈Kc

|aTi x| >
∑
i∈K
|aTi x| (3)

for all x ∈ Rd \ {0} and K ⊆ {1, . . . , p} with |K| = m.
2) Stepsize: (αn) and (βn) are monotonically decreasing

positive reals such that max{α0, β0} ≤ 1,
∑
n≥0 αn =∑

n≥0 βn =∞, limn→∞ αn/βn = limn→∞ βn = 0, and
max{

∑
n≥0 α

2
n,
∑
n≥0 β

2
n,
∑
n≥0 αnγn} < ∞, where

γn =
√
βn ln(

∑n
k=0 βk). An example is αn = n−α,

α ∈ (2/3, 1], and βn = n−β , β ∈ (1/2, 1]∩(2(1−α), α).

Our main result is stated below and is derived using a
DI-based set-valued analysis. As we discuss in Section II-A,

1Such adversaries are commonly referred to as omniscient.



such an analysis is natural for (1) due to its sub-gradient
nature and, importantly, the presence of adversaries. Let h :
Rd → 2Rd

(the power set of Rd) be given by

h(x) =

{
1

p

p∑
i=1

aiλi : (λ1, . . . , λp) ∈ Λ(x)

}
, (4)

where Λ(x) includes all (λ1, . . . , λp) for which

λi ∈

{
{sign(E[Y (i)]− aTi x)}, i ∈M c and aTi x 6= E[Y (i)],

[−1,+1], otherwise.

Theorem 1. The following statements hold.

1) µ is the unique Globally Asymptotically Stable Equilib-
rium (GASE) for the DI

ẋ(t) ∈ h(x(t)). (5)

2) There exists some constant Λ > 0 such that

lim sup
n→∞

‖yn − E[Y ]‖Mc

γn
≤ Λ a.s.,

where ‖y‖Mc =
√∑

i∈Mc y2(i).

3) xn → µ a.s.

The DI in (5) corresponds to the update rule of xn in (1)
with yn(i) ≡ E[Y (i)] for i ∈ M c, and the sign expression
replaced with an arbitrary value in [−1,+1], otherwise. Our
first result states that every solution of this DI will converge
to µ, irrespective of the sign choices made at the adversarial
nodes (in a continuous time sense). The second statement
provides the asymptotic rate at which |yn(i)−E[Y (i)]| → 0,
i ∈ M c, on every sample path. While this result assumes
that the stepsizes are square-summable, it can be extended
to cover the case of even non-square summable stepsizes;
see [11] for details. Our third and final result states that
the actual (xn) iterates in (1) also behave like the solutions
of (5) and almost surely converge to µ. However, because
the sign function is not continuous, this is not a simple
consequence of the first two statements. Instead, we have
to rely on a more complex two-timescale DI analysis, and a
separate boundedness result for (xn) based on the theory of
martingales and stopping times.

A. Motivation for a DI-based Analysis

In this subsection, we give a simple example on why
our algorithm will converge to µ even in the presence of
adversarial measurements. We use a simplified set-up to
illustrate the necessity of the DI analysis.

Let A be a vector of all ones. This implies that EY (i) =
µ ∈ R, for all i. Our problem setup then reduces to
computing x ∈ R that minimises

∑p
i=1 |x − EY (i)|. The

solution to this minimisation problem is called the geometric
median [13]. Consider Algorithm (1) in the deterministic
setting, where all agents i are given EY (i), instead of having
to estimate it. Then, yn(i) will be µ, for i ∈ M c and any

Fig. 1. Error incurred by Algorithm 1 (‖xn − µ‖) against the number of
iterations (n). Within each subplot, the same measurement model is used
with the only difference being the number of adversaries. The first subplot
concerns the geometric median problem with p = 5, while the second
considers a generic matrix A (see Section II-A).

arbitrary value for i ∈M . It can be seen that the synchronous
version of update (1) can be written as:

xn+1 = xn+αn

[
|M c| sign(µ− xn)︸ ︷︷ ︸

Unperturbed subgradient

+
∑
i∈M

sign(en(i))︸ ︷︷ ︸
Adversarial noise

]
.

Here, sign(µ− xn) is the subgradient of |x− EY (i)| when
i ∈ M c and sign(en(i)) is the perturbed subgradient given
by the adversary. The above update rule cannot be analysed
using traditional ODE based approaches. Firstly, the update
can now take a set of values at each xn. This is because
sign(en(i)) can take any value in [−1, 1], regardless of xn.
Moreover, sign(µ−x) is discontinuous at x = µ, while ODE
approaches require that this function be Lipschitz continuous.
Thus, the differential inclusion approach is preferred since
it is capable of handling discontinuities and capturing the
evolution of a set-valued map. The associated DI for the
above update is given by:

ẋ(t) ∈

{
|M c|sign(µ− x) +

∑
i∈M

vi : vi ∈ [−1, 1]

}
,

when x 6= µ and

ẋ(t) ∈

{
p∑
i=1

vi : vi ∈ [−1, 1]

}
,

when x = µ. The DI is modified at x = µ to make it
continuous in a set-valued sense.

Note that if |M c| > |M | (equivalent to (3)), it follows that
limt→+∞ x(t) = µ. The intuition is as follows: if µ 6= x,
the sign of |M c|sign(µ− x) +

∑
i∈M vi will be always the

same as the sign(µ− x) and therefore the drift of the DI is
controlled by the sign(µ−x) and not by the adversaries. The
performance of our algorithm for this problem with p = 5 is
shown in Figure 1. Here, condition (3) holds if |M | = 2, but
not when |M | = 3. Consequently, our algorithm converges



in the presence of two advsersaries but diverges in presence
of three adversaries.

More generally, condition (3) is necessary and sufficient
for our algorithm to converge. We emphasize that this
condition is necessary even in the absence of noise and thus
cannot be relaxed. A less obvious case where condition (3) is
required is shown in Figure 1. For matrix A in this example,
the condition holds for |M | = 1, but not when |M | = 2.

III. PROOF OF THEOREM 1

We first discuss our proof strategy and then provide the
details. Since yn(i)’s estimate for i ∈ M c is not influenced
by the Y samples of other nodes, one would intuitively
expect ‖yn − E[Y ]‖Mc → 0. Hence, (5) is the natural
object for studying (xn)’s behaviors. However, because the
sign function is discontinuous, (xn)’s evolution cannot be
viewed as a simple perturbation of (5)’s solutions as in [3,
pg. 17]. Instead, we rely on a two-timescale DI analysis [14].
Henceforth, ‖ · ‖ will denote the Euclidean norm.

A. Informal Outline of Two-timescale Analysis

Our algorithm (1) is of a two-timescale nature because
αn/βn → 0. Thus, the changes in xn values eventually
appear negligible compared to that of yn, which, in turn,
implies (xn) and (yn)’s behaviors can be studied in a
decoupled fashion. Loosely, our analysis proceeds via the
following prescribed steps from [14].
1) (yn)’s analysis: We set xn ≡ x for some arbitrary x, and

look at yn(i)’s evolution for i ∈ M c; we ignore what
happens at the adversarial nodes. In our case, yn(i)’s
evolution is not influenced by the value of x in any
way. Further, its limiting ODE can be guessed to be
ż(t) = 1

p (E[Y (i)] − z(t)). Since this scalar ODE is
linear and has E[Y (i)] as its unique GASE, it follows
from a standard single-timescale stochastic approximation
analysis [3, Chapters 2 and 3] that |yn(i)−E[Y (i)]| → 0.

2) (xn)’s analysis: From (xn)’s perspective, (yn) would
appear to have converged to its limit point. Accordingly,
in xn’s update rule, we now set yn(i) = E[Y (i)], for
i ∈ M c, and allow for arbitrary values for adversarial
i’s. This leads to the set-valued DI dynamics (5). In the
rest of this section, we formally prove that µ is its only
attractor (Section III-B), the original (xn) sequence in (1)
is almost surely bounded (Section III-C), and it almost
surely converges to µ (Section III-D).

B. Analysis of the DI in (5)

We first check that (5) is a well-defined DI. Recall that,
for an (autonomous) ODE to be well-defined, one sufficient
condition is that its driving function be Lipschitz continuous.
In particular, this guarantees the existence and uniqueness of
a solution for any initial point. Similarly, a DI is well-defined
when its set-valued driving function h is Marchaud, i.e.,
Lipschitz continuous in a set-valued sense (defined below).
In general, solutions of a DI from a given starting point are
not unique, but the above condition ensures existence.

For x ∈ Rd, let Z(x) := M ∪ {i : aTi (x− µ) = 0}.

Lemma 1. The function h defined in (4) is Marchaud, i.e.,

1) h(x) is convex and compact for all x ∈ Rd;
2) ∃Kh > 0 such that, for all x ∈ Rd, supy∈h(x) ‖y‖ ≤

Kh(1 + ‖x‖); and
3) h is upper semicontinuous or, equivalently, {(x, θ) ∈

Rd × Rd : θ ∈ h(x)} is closed.

Hence, the DI in (5) is well-defined.

Proof: The first two conditions are easy. For h’s upper
semi-continuity, it suffices to check if (xn) and (θn) are such
that xn → x, θn ∈ h(xn) ∀n, and θn → θ, then θ ∈ h(x).

For i ∈ Z(x)c, aTi (x − µ) is either > 0 or < 0. This
fact along with xn → x then implies ∃n0 ≥ 0 such that, for
n ≥ n0, we have sign(aTi (xn − µ)) = sign(aTi (x − µ)) for
all i ∈ Z(x)c and, hence, Z(x)c ⊆ Z(xn)c. Consequently,
h(xn) ⊆ h(x) for all n ≥ n0, which implies (θn)n≥n0

⊆
h(x). The desired result now follows since h(x) is compact.

We now show that µ is (5)’s unique GASE.
Proof of Statement 1, Theorem 1: It suffices to show

that V (x) = 1
2‖x−µ‖

2 is a Lyapunov function [2] for the DI
in (5) with respect to {µ}. Clearly, V (x) = 0 if and only if
x = µ. Further, for any x 6= µ and θ ≡ 1

p

∑p
i=1 aiλi ∈ h(x),

∇V (x)T θ

=
1

p

p∑
i=1

λia
T
i (x− µ)

=
1

p

[
−
∑
i∈Mc

|aTi (x− µ)|+
∑
i∈M

λia
T
i (x− µ)

]
(6)

≤ 1

p

[
−
∑
i∈Mc

|aTi (x− µ)|+
∑
i∈M
|aTi (x− µ)|

]
(7)

< 0, (8)

where (6) holds since λi ∈ sign(−aTi (x − µ)) for i ∈ M c,
(7) is true because r ≤ |r| for any r ∈ R and |λi| ≤ 1, while
(8) follows from (3) since |M | ≤ m.

The claim now follows from [2, Proposition 3.25].

C. Almost Sure Boundedness of (xn)

We use martingale and stopping time theory to show that
(xn) obtained using (1) is almost surely bounded.

Our proof needs a few intermediate results. In relation to
(xn) and (yn) in (1), define the following. For n ≥ 0, let

bn =
1

p

∑
i∈Mc

ai[sign(yn(i)− aTi xn)

− sign(E[Y ](i)− aTi xn)], (9)

g(xn, yn) =
1

p

∑
i∈Mc

aisign(E[Y ](i)− aTi xn)

+
1

p

∑
i∈M

aisign(yn(i)− aTi xn),



and

Mn+1 = aTin+1
[sign(yn(in+1)− aTin+1

xn]

− g(xn, yn)− bn. (10)

In the above terms, the update rule in (1) can be written as

xn+1 = xn + αn[g(xn, yn) + bn +Mn+1]. (11)

Note that g(xn, yn) ∈ h(xn). Therefore, one can view
g(xn, yn) as the update direction that is prescribed by (5),
bn as a perturbation that arises since, for i ∈ M c, yn(i) 6=
E[Y (i)] a.s. for any finite n, and Mn+1 as the noise.

Lemma 2. The following statements are true.
1) For x ∈ Rd, let φ(x) = 1

p

∑
i∈Mc

|aTi x| − 1
p

∑
i∈M
|aTi x|.

Then there exists η > 0 such that φ(x) ≥ η‖x‖ ∀x.
2) |(xn − µ)T bn| ≤

2
√
|Mc|
p ‖yn − E[Y ]‖Mc .

3) (x− µ)T θ ≤ −η‖x− µ‖ for any θ ∈ h(x).
4) Let CM := sup1≤i≤p ‖ai‖. Then, for any n ≥ 0,

‖xn+1 − µ‖2 ≤ ‖x0 − µ‖2 +

n∑
k=0

αk(xk − µ)TMk+1

+
2

p

n∑
k=0

αk‖yk − E[Y ]‖Mc + C2
M

n∑
k=0

α2
k.

Proof: The first statement is trivially true for x = 0.
Hence, suppose x 6= 0. It suffices to show that ∃ η > 0 such
that φ(x) ≥ η for any x with unit norm. However, this holds
since (a) φ is continuous and {x ∈ Rd : ‖x‖ = 1} is a
compact set: thus, φ attains its minimum; and (b) φ(x) > 0
for any x 6= µ on account of (3).

For the second statement, note that

|sign(r1 − r0)− sign(r2 − r0)| ≤ 2δ|r1−r2|≥|r0−r2|

for any r0, r1, r2 ∈ R, where δ denotes the indicator function.
Combining this with the fact that E[Y (i)] = aTi µ, for i ∈
M c, gives

|(xn − µ)T bn|

≤ 2

p

∑
i∈Mc

|aTi (xn − µ)|δ|yn(i)−E[Y (i)]|≥|aTi xn−aTi µ|

≤ 2

p

∑
i∈Mc

|yn(i)− E[Y (i)]|δ|yn(i)−E[Y (i)]|≥|aTi xn−aTi µ|

≤ 2

p

∑
i∈Mc

|yn(i)− EY (i)|

≤
2
√
|M c|
p

‖yn − E[Y ]‖Mc ,

as desired.
We now discuss the third statement. Let θ ∈ h(x) be

arbitrary. Then,

(x−µ)T θ

≤ 1

p

[
−
∑
i∈Mc

|aTi (x− µ)|+
∑
i∈M
|aTi (x− µ)|

]
≤ − φ(x− µ),

where the first relation follows as in (7), and the second
relation holds from φ’s definition. The claim now follows
from our first statement above.

Finally, we derive the fourth statement. From (11),

‖xn+1−µ‖2 = ‖xn−µ‖2+α2
n‖g(xn, yn)+bn+Mn+1‖2

+ 2αn(xn − µ)T [g(xn, yn) + bn +Mn+1].

Statement 3 along with the fact that g(xn, yn) ∈ h(xn)
shows (xn−µ)T g(xn, yn) ≤ −η‖xn−µ‖, while Statement
2 gives the bound on (xn−µ)T bn. Separately, ‖g(xn, yn) +
bn +Mn+1‖ = ‖ain+1

‖ ≤ CM . It now follows that

‖xn+1 − µ‖2 ≤ ‖xn − µ‖2 − αnη‖xn − µ‖

+
2
√
|M c|αn
p

‖yn−E[Y ]‖Mc+αn(xn−µ)TMn+1+C2
Mα

2
n.

The desired claim is now easy to see.
Presuming Statement 2 in Theorem 1 holds, we are now

ready to show that (xn) is bounded almost surely,

Proposition 1. sup
n≥0
‖xn‖ <∞ a.s.

Proof: Let (γn) be as in Theorem 1. Fix an arbitrary

integer r ≥ 1, and let Cr :=
2r
√
|Mc|
p

∑∞
k=0 αkγk +

C2
M

∑∞
k=0 α

2
k < ∞, and T (r) be the stopping time

inf
{
n ≥ 0 : 1

γn
‖yn − E[Y ]‖Mc > r

}
. Next, for n ≥ 0, let

Sn = ‖x0 − µ‖2 + 2

n−1∑
k=0

αk(xk − µ)TMk+1 + Cr.

Clearly, (Sn) and, hence, (Srn) ≡ (Sn∧T (r)) is a martingale.
Let (xrn) ≡ (xn∧T (r)). Then Statement 4 of Lemma 2

shows ‖xrn − µ‖2 ≤ Srn ∀n ≥ 0. This implies (Srn) is a
non-negative martingale and, hence, converges almost surely.
Therefore, (xrn) is bounded almost surely.

Finally, note that

E :=

{
sup
n≥0
‖xn‖ =∞

}
∩

[ ∞⋃
r=1

{
sup
n≥0

‖yn − E[Y ]‖Mc

γn
≤ r
}]

=

∞⋃
r=1

{
sup
n≥0
‖xrn‖ =∞, sup

n≥0

‖yn − E[Y ]‖Mc

γn
≤ r
}
(12)

⊆
∞⋃
r=1

{
sup
n≥0
‖xrn‖ =∞

}
,

where (12) follows from the fact that supn≥0
‖yn−E[Y ]‖Mc

γn
≤

r implies xn = xrn for all n. Since (xrn) is almost surely
bounded for any r ≥ 1, we get P(E) = 0. From Statement 2
in Theorem 1, we also have that

P

( ∞⋃
r=1

{
sup
n≥0

‖yn − E[Y ]‖Mc

γn
≤ r
})

= 1.

The desired claim now follows since, for any events E1 and
E2, P(E1) = 1 and P(Ec2 ∩ E1) = 0 imply P(E2) = 1.



D. Rest of the Proof

In this section, we discuss the proofs of Statements 2 and
3 of Theorem 1.

Statement 2 follows from [10, Theorem 1], which provides
a law of iterated logarithm type result for generic stochastic
approximation algorithms. That work assumes that the iter-
ates almost surely converge, but this can be shown using the
results in [3, Chapters 2 and 3], as discussed in Section III-A.

To prove Statement 3, we rely on [14, Theorem 4], which
looks at convergence of generic two-timescale algorithms
with set-valued limiting dynamics. Specifically, this latter
result assumes (xn)’s limiting DI has a global attractor
(see A10 there), and states that, if ten other conditions
(labelled A1 - A9 and A11 there) hold, then xn converges
to this global attractor a.s. These ten conditions concern the
behaviors of xn and yn’s driving functions, stepsizes, and
noise. Below we provide a brief commentary on why these
assumptions hold for (1). The reader should note that the role
of xn and yn is flipped in [14]: the changes in yn eventually
appear negligible compared to that of xn. The analysis there
also accounts for Markov noise, but it can ignored using the
approach suggested in Remark 3 there. Finally, for all of
(yn)’s analysis below, we ignore the evolution at adversarial
nodes: instead, we account for them directly in the definition
of the DI in (5).

Assumptions A1 and A2 of [14] hold when the limiting
DIs associated with xn and yn are Marchaud. For (1),
this can be established like in the proof of our Lemma 1.
Assumptions A3 and A4 concern Markov noise and, hence,
trivially hold true in our case. Assumption A5 is on stepsizes
and it holds in our case because we also assume those
conditions. Assumption A8 there holds if the (xn) and
(yn) iterates are bounded almost surely. Proposition 1 here
proves it for (xn), while, for (yn), it follows easily from [3,
Chapter 3, Theorem 7] due to its linear nature. Assumptions
A6 and A7 hold if the contributions of the additive noise
terms are eventually negligible. This can be established as
in [3, Chapter 2, (2.19)], which holds in our case because our
iterates are bounded a.s. and the noise growth rate condition
of (2.13) trivially holds in our context. Assumptions A9 and
A11 hold, if for each fixed x, the limiting DI for (yn) has
a unique GASE. As discussed in Section III-A, in our case,
the dynamics of (yn) is not influenced by the value of x
and {E[Y (i)] : i ∈ M c} is the global attractor for any x.
Finally, Assumption A10 requires that (xn)’s limiting DI has
a unique global attractor. We established this in Statement 1
of our Theorem 1.

IV. GENERALISATIONS

In this section, we discuss simple extensions of our work,
where we can relax certain assumptions.

Non-zero kernel: The condition (3) fails for all matrices
A with a non-zero kernel. Thus, Theorem 1 cannot be used
for fat matrices or tall matrices with non full rank. However,
we can obtain a similar result by relaxing condition (3) to
hold only for points outside the kernel of A. Note that in
this case, there are several x ∈ Rd such that Ax = EY .

Under this modified assumption, it can be shown that the
DI always converges to one such point. To see this, the
function 1

2‖x−µ‖
2
2, with µ as solution of Ax = EY , would

remain a Lyapunov function in this case. Applying a variant
of LaSalle’s invariance theorem would then give us that the
DI converges to an invariant subset of {x : Ax = EY }.

Perturbed samples: Suppose that, instead of being pro-
vided samples of Y (i) = aTi X , we only have access to sam-
ples of form Y (i) = aTi X+b(i), where b(i) is some random
or deterministic perturbation. The only condition imposed on
b(i) is that its magnitude remains bounded by some constant
B for each i. We can extend the result in Theorem 1 to this
setting using similar arguments as discussed in the previous
case. However, the Lyapunov function would need to be re-
defined and may have discontinuous derivatives.

Non-linear function: The results in this work are appli-
cable for solving problems of form Ax − E[y] = 0. An
extension to problems of form f(x) = 0 could be achieved
by replacing aTinxn − y(in) with aTinf(xn) in (1).
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