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Abstract—In an urban environment, the Non-Line of Sight
(NLOS) target position can be determined by exploiting re-
flections on surrounding building, for instance using Matched
Subspace Filter (MSF). However, it has been shown that the MSF
output exhibits strong localization ambiguities when different
positions share similar paths measurements. This ambiguity
phenomenon is all the more exacerbated since the zones in the
research domain are generally not illuminated by the same num-
ber of paths. In this paper, the well-known Bayesian Information
Criterion (BIC) is considered to tackle this problem. Besides,
we adopt a multipath selection procedure to select the relevant
model for each position under test based on the Orthogonal Least
Squares (OLS) sparse approximation algorithm and combine it
with BIC as a stopping rule. These solutions, applied on both
simulated and experimental data, show better localization results
compared to the classical localization scheme.

Index Terms—NLOS target, around-the-corner radar, multi-
path, matched subspace filter, ambiguities, ray tracing simulation.

I. INTRODUCTION

Non-Line-of-Sight (NLOS) target detection/localization is a
quite recent topic in radar, that has strong application potential
in the fields of urban surveillance and autonomous vehicles.
First feasibility studies were introduced with experimentation
in works [1], [2], [3]. Since then, several works have been
carried out to further propose localization methods [4], [5],
(71, [8].

Unlike most other works on the topic, the localization
method of [9], based on Matched Subspace Filter (MSF) [10]
enables to formalize the detection and localization problems
directly in the target position parameter space [11]. In this
approach, each test cell stands for a position (x,y) in the
search domain that is represented by a subspace containing
several characteristic multipath signal vectors. The MSF esti-
mates the target position by selecting the test cell that yields
the maximum likelihood (ML) value for observed data. The
major problem is that positions under test may be characterized
by one or several paths with similar radar measurements with
each other, i.e. their corresponding subspaces do share pairwise
strongly correlated vectors. In this situation, their likelihood
have quite similar values, the target position estimation may be
strongly biased. This problem, called localization ambiguities
in [9], has been discussed in [12] where the authors showed

that enriching the model by an additional multipath informa-
tion such as the Direction-of-Arrival (DoA), at a much lower
cost than Doppler, helps to reduce the similarity measurement
of characteristic signals between positions and thus improve
localization performance. In this paper, we focus on two other
factors that contribute to increase localization ambiguities.
First, due to the urban scene configuration, the positions
under test may belong to zones that are illuminated by
different number of paths, and thus they are represented by
subspaces of signals of uneven dimensions. It turns out that
the higher the number of paths (i.e high subspace dimension),
the easier its corresponding model can fit observation, since
they provide more degrees of freedom. Hence, this may result
in biased estimation of target position. Since ML localization
criterion is not sufficient for comparing subspaces of dissimilar
dimensions, it is preferable to find another criterion to better
handle the trade-off between the goodness-of-fit and the model
complexity, for instance via model order selection approach.
Second, the multipath model of each position is often
constructed via the ray tracing simulation that is only based
on a rough description of the scene geometry [9]. Even
though it recovers most possible propagation paths, it tends
to exhibit more paths than necessary for both detection and
localization problems. It can be observed that the effective
number of paths is often smaller than that provided by ray
tracing simulation, due to multiple propagation factors, e.g.
destructive interference that makes some paths vanish in the
measurement. In [9], the authors proved that considering
too many paths can degrade detection performance and thus
proposed an algorithm to select an optimal number of paths in
terms of maximization of the detection probability. Here, the
same conclusion can be drawn for the localization problem:
too many paths selected for each position model increases
risk of localization ambiguities, as described earlier. In order
to reduce the number of paths, one needs to know which paths
are informative and how many paths are sufficient for the
localization problem. One possibility is to rely on observed
data to reasonably select the best model for each position.
To summarize, in order to achieve a better localisation
performance, it is necessary to solve two problems: first the
problem of heterogeneity of the number of paths amongst the
different positions, and second the problem of the selection of



the number of paths for a given position.

In this work, we introduce a solution for the localization of
a single moving target in NLOS radar in order to solve these
two problems. We first show that the localization problem can
be seen as a model selection problem. This offers an efficient
framework to deal with heterogeneous subspace dimensions.
Then the popular Bayesian Information Criterion (BIC) [13] is
introduced as a localization criterion that enables to penalize
high dimension models that overfit observed data. This allows
to solve the first problem. Second, in order to select the
number of paths for each position model, we also adopt
the BIC. However, since different combinations of paths are
possible, the classical procedure requires applying the BIC to
a large number of candidate models, which is computationally
intractable. To circumvent this drawback, we propose instead
the use of the well-known iterative algorithm for sparse
approximation Orthogonal Least Squares (OLS) [14], in which
the BIC acts as a stopping rule. This enables to reasonably
approximate the model selection procedure for each position
under test, thus to solve the second problem.

The paper is organized as follows: in Section II, the
multipath signal model and the classical detection/localization
scheme are introduced. Then the model selection approach for
localization problem is presented. In Section III, we present the
OLS-BIC multipath selection algorithm. Section IV provides
the experimentation setup and localization results on both
simulated and real data. In Section V, conclusions are drawn.

In this paper, we adopt the following notations: (.)7, (\)#
denotes transpose and Hermitian transpose, respectively; &
denotes the Kronecker product; ||.||]2 denotes the Euclidean
norm; R(A) denotes the range space of matrix A; P denotes
the projector onto the orthogonal complement subspace of A.
(A), stands for the i-th column of A.

II. PROBLEM FORMULATION
A. Received signal model

We consider the problem of locating a single NLOS target
with a radar system using a linear array antenna. First, let
us suppose a single omni-directional antenna transmitting a
narrow-band signal s(t). At the receiver side, we consider a
linear array of () receiving antennas. Multipath propagation
is modeled by ray tracing simulation where only specular
reflection is considered: diffraction effects are assumed to be
negligible for the considered frequency band (cf. Section IV).
Under the far field assumption, the signal scattered by a single
target at (x,y) and received by the ¢-th antenna at position
vector X, is

M(z,y) .
3" st — T (,y)e om0 g (8), (1)

m=1

Yq (t) =

where M (z,y) denotes the number of multipath returns pro-
vided by the ray tracing simulation; o, Tm(Z,¥), Om(z,y)
refer to the m-th unknown deterministic multipath complex
amplitude, round-trip delay and direction-of-arrival (DoA),
respectively; kg is the wave vector in the path receiving

direction 6; w,(t) is the circular complex white Gaussian
(CWGN) noise with (known) variance o2. In order to save
computer time and memory, we apply first the range matched
filter on both sides of Eq. (1) so as to discard unused range
bins, as suggested in [9]. Correlating both sides of Eq. (1)
with s(t) yields MF output:

M(z,y)
2(t) = Y amr(t - T (2,9))&/om s 1y (1), (2)
m=1

where z,(t), nq(t) and r(t) are obtained by correlation of
Yq(t), wq(t) and s(t) with s(t). Then, sampling each z,(¢)
at time period ¢, we obtain the N-dimensional observation
vector zq = [24(ts), 2¢(2ts), .. .,zq(Nts)]T. Stacking all Q
antenna observation vectors on top of each other, we obtain a
single data vector z, that writes

z =R(z,y)a + n, 3)
where
o= [og, 9, anp(ey)]” e CM(@y)x1 4)
n= [nf,ng,...,ng]TeCQNX17 5)
R(z,y) = [1‘1 (T,9) 5 Ty (CE»Z/)] € CQNXM(:E"U)&@

The latter denotes the matrix the columns of which stand for
multipath signal vectors that span the subspace corresponding
to the position (z,y). The m-th multipath signal vector can
be written as

T (2,) = 1(7m(2,9)) @ a(On(,3)) € CONXL (D)

where a (0,,(z,y)) = Kb (2 X1 ey e-jkﬂmevv)xQ}T de-
notes the steering vector for the direction 6,,(x, y).

For the sake of simplicity, the Doppler shift term is neglected
in our data model, although we keep in mind that this
information has been necessary in the preprocessing stage to
cancel the fixed echoes from the received raw signal.

B. Classical localization scheme

The search domain is decomposed into J positions that also
corresponds to J test cells. Given the signal model in Eq. (1),
the Matched Subspace Filter (MSF), derived from Maximum
Likelihood (ML) criterion is applied here for both detection
and localization problems. For a test cell (x;,y;), the MSF
output is given by [9]

Hi
Tusr(zj,y;) = [P (x5, 92 5 A, 8)
0

where )\ denotes the detection threshold, set according to the
desired false alarm rate Pr4 and

-1
P(xj,y;) = Rlzj,y;) (R(wj,9) " Rlzz,p5))  Rlxs,9;),

©))
is the orthogonal projector onto R(R(z;,y;)). Under single
target assumption, the classical criterion MSF (or ML) esti-
mates the target position among detected positions as

(ZvsrF, YmsF) = arg ax, Tarse(z),y;)- (10)



C. Localization as a model selection problem

According to Eq. (10), the MSF localization criterion is
supposed to choose from J test cells/positions the one that
subspace is most likely to fit the observed data. However,
as mentioned earlier, positions on the search domain are
not illuminated by the same number of paths. Thus, their
respective subspaces do not have similar dimensions. The
ML criterion, given by Eq. (10), will naturally tend to favor
subspaces with larger dimension, sometimes at the expense
of the true one. This leads naturally to reformulate the single
target localization problem as a model selection problem in
which each position (z;,y;) stands for a model:

Hj SZ:R(l‘j,yj)(X+l’l7 (11)

where H;, 1 < j < J denotes the candidate model/position
(xj,y;). This allows to adopt the well-known Bayesian In-
formation Criterion (BIC) as model selection or localization
criterion:

(ZBrc,yBIC) = arg1r<n'£] BIC(zj,y;), (12)

=7

where a robust form of the BIC, introduced in [15] has been
chosen thanks to its consistency in both large number of
samples N and high-SNR scenario:

N
BIC(zj,y;) = 2Nln&j2- +2M(zj,y;)In ()
™

J

i9 (13)
+(2M(z,y;) +2)In (;) .

Here &; is an estimator of the noise variance under the model
7 whose value is calculated as

2 _ |lz—P(xj,;)z3

c}j = N , (14)

and
o _ 213 s
ot =122, (15)

denotes the additional scaling factor intended to handle the
criterion consistency [15]. It is easy to see that contrary to the
MSF criterion, the BIC in Eq. (13) enables to take into account
each model complexity, hence penalizing the positions with
large number of paths that overfit observed data. Using the
BIC in that manner shall enable to solve the problem raised by
the heterogeneity of the number of paths/model order among
the different positions in localization problem.

III. MULTIPATH SELECTION ALGORITHM

The BIC considered in the previous section enables to
compare models of different dimensions in which each model
corresponds to a different position. It does not, nevertheless,
provide any clue on the way to select the number of paths for a
given position. Indeed, the ray tracing simulation provides all
possible propagation paths for a given urban scene configura-
tion, i.e. a maximum bound on the number of paths. However
exploiting all these paths for each position model would not be
judicious for localization problem. Indeed, first, as discussed

earlier, considering too many paths for each model increases
the number of strongly correlated signal vectors between
different subspaces, then can lead to localization ambiguities.
Moreover, it can be observed that some of modeled paths
may be in fact too weak due to multiple loss propagation
factor or because they are unresolved and may interfere
destructively with each other. This results in a discrepancy
between the ray tracing number of paths and the effective
number of informative paths. In the latter case, applying the
BIC localization criterion, as in Eq. (13), can considerably
penalize positions which do not actually have as many paths
as in the model. Therefore, one needs to restrict the number
of paths of each position model so as to better fit the reality.

To do this, one possibility is to select the most relevant
path subset according to the observed data, given the ray
tracing paths of each cell/position. Although this can be done
by a model selection criterion like the BIC, the number of
candidate models explodes since one needs to compare all
possible combinations of paths. In order to make the problem
computationally tractable, we propose here to use the well-
known Orthogonal Least Squares (OLS) greedy algorithm,
which consists in iteratively selecting paths in the ray tracing
dictionary in order to get a sparse approximation of the
observed data.

Concretely, let Z denote the set of all indices i of
columns/paths r; of the ray tracing dictionary R of any posi-
tion (z,y). Each iteration k consists in selecting path of indice
i, that minimizes the residual energy when combined with all
previously selected paths, indices of which are contained in
the set Si,_1. According to [14], the OLS criterion is given by

2

. ‘51@H—1ri
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where
PL =1-Ps, =1-R, (RkHRk)_l RZ, (17
and

o=z —Ps,z=Pg z. (18)
The latter denotes the residual obtained by projecting the
data onto the orthogonal complement subspace of Si. The
algorithm is supposed to run until a certain stopping rule is
satisfied. Instead of setting a maximum number of paths for
each position and thus the number of OLS iterations, we adopt
again the BIC as the stopping rule, where it is thus applied here
to limit the number of paths of one position. This procedure
shall enable to solve the problem of selecting the effective
number of paths for a given position. By doing this, goodness-
of-fit is balanced with the model complexity: when the added
path does not contribute enough to diminish the residual, the
OLS stops. This procedure is applied for each position/cell
(z,y) of the search domain. The proposed OLS-BIC procedure
for multipath selection is summarized in Table 1.



Algorithm 1: Multipath selection OLS-BIC algorithm

Data: z, {R($j7yj)}1§j§J

Result: {R Ly }
esu (z5,95) 1<i<d

o7 5.
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end ~
R((le, y]) = Rk;

end

IV. EXPERIMENTAL RESULTS

We propose here an experiment in order to assess the
performance of proposed solutions in terms of localization
performance compared to other existing localization schemes.
The set up is described in the following section.

A. Measurement setup

Fig. 1: The radar system [16]

1) Measuring equipment: the radar system used for the
experiment is the EVAL-TINYRAD FMCW developed by
Analog Devices [16], shown in Fig. 1. It integrates a linear
array of () = 4 receiving antennas where the element spacing
is one-half of the wavelength. The signal s(¢) is emitted by a
single antenna, consists of chirp pulses with carrier frequency
fe = 24.05 GHz and bandwidth B = 235 MHz, thus results in
range resolution A, = ¢/2B = 0.65 m. The pulse repetition
interval PRI and the number of pulses IV, are set to 200
us and 400 pulses respectively in order to both guarantee no
range migration and a good Doppler resolution (A, = 0.07
m/s) to separate the target contribution from fixed echoes.

Fig. 2: A photo of the urban scene configuration.
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Fig. 3: The ray tracing simulation performed for the experi-
ment scenario.

Number of paths (ray tracing model)

Fig. 4: The map of number of multipaths of each test
cell/position in the search domain (ray tracing simulation).

2) Experiment scenario: we consider an urban scene as dis-
played in Fig. 2. The radar system is placed at the coordinates
(4.26;5.94). At first, the target, in this case a pedestrian, is
located at A(13.18,—5.05) which is in NLOS with respect



to the radar. Then he starts moving up to C'(25.41, —5.05)
where he appears in LOS for the first time at the point
B(20.58, —5.05). The radar system records the signal during
6.16 sec that covers the total target trip duration.

3) Ray tracing simulation: only the rough scene 2D geom-
etry is transcribed to the simulator (Fig. 3) so as to perform
ray tracing simulation. The latter is intended to build the
multipath model of each test cell in the search domain, also
defined in Fig. 3. To do this, one needs to divide the search
domain into 0.3 x 0.3 m cells that is approximately half of
the aforementioned radar range resolution. Then for each cell
(z,vy), the ray tracing simulation is run and rays information
is retrieved for constructing the multipath dictionary R(z,y)
according to Section II. Here the maximum number of ray
reflections in the simulation is set to 4 due to the fact that path
may suffer from severe attenuation beyond this value; the path
maximum range is limited to 76.5 m because of the maximum
range supported by the radar system. After building all test
cells model, the map of number of paths in the search domain
is drawn in Fig. 4, where different illuminated zones can be
identified: as mentioned earlier, it can be observed that the
number paths is highly heterogeneous from a zone to another.

4) Signal preprocessing: the radar system output yields
the sampled beat signal of each received channel, stored
in a fast-time-slow-time matrix in which classical 2D-FFT
processing can be applied. Here fixed echoes are cancelled
by simply filtering out all zero-Doppler components from the
signal spectrum. Then, as it is not intended to use Doppler
information in our data model, the range-dependent only
data vector z, can be extracted from the 2D-FFT matrix by
selecting, for each range bin, the corresponding Doppler bin
with highest peak. This can be done under the assumption that
each multipath only occupies a single range-Doppler bin with
dominant magnitude. Thus, displaying the data vector over
time yields the target range-time profile as shown in Fig. Sa.

B. Localization results

In this section, we compare the localization results of several
localization schemes on both simulated an real data: 1) The
classical MSF localization criterion, described in Section II-B;
2) The MSF localization criterion coupled with the path selec-
tion procedure for maximizing detection probability proposed
in [9], that we call MAX-PD; 3) The BIC localization criterion
(cf. Section II-C) based on ray tracing model, called RT-
BIC; 4) The MSF localization criterion coupled with the path
selection procedure OLS-BIC (cf. Section III), called OLS-
BIC; 5) The BIC localization criterion coupled with the path
selection procedure OLS-BIC, called OLS-BICZ. It should be
highlighted that the detection test in Eq. (8) is first performed
for all positions with Pry = 107%. Then only detected
positions are considered for localization problem. Especially,
the detection of LOS positions is assumed to depend only on
the direct path SNR as in classical radar detection problem. In
order to assess the robustness of these localization schemes,
we have also done 20 Monte Carlo (MC) of the proposed
experiment in which both random target fluctuation loss,

assumed to follow the Swerling 3 model and the CWGN are
considered. A realization of the target range-time profile is
shown in Fig. 5d.

Fig. 5 shows the simulation localization error curves of
the considered localization schemes averaged over 20 MC
simulations. It can be stated that applying the BIC localization
criterion RT-BIC, the OLS-BIC path selection procedure, or
coupling them together (OLS-BIC?) allows to improve the
localization performance compared with the classical MSF
localization scheme, notably in the NLOS zone where the
number of paths is quite small. This improvement can be also
observed in real data localization results in Fig. 5f. Indeed, real
data localization error curves seem to present larger values and
be more distinct within each other. This can be explained first
by the fact that simulated data error curves have been averaged
over MC simulations, and second of course real data are more
involved. Especially, the OLS-BIC? scheme reveals to be more
robust in zones with larger number of paths compared to the
RT-BIC. This complies with our remark in Section III that is
the OLS-BIC enables to refine the number of paths of each
position and hence makes the BIC penalty more relevant. We
also want to highlight that the MAX-PD procedure, designed
for optimal detection problem, is not efficient for localization.
Its large error can be explained by the fact that when certain
paths are already too strong, it tends to discard other weaker
but actually informative paths that help to dissociate the target
position and false estimated position.

Fig. 5b and Fig. 5e show the number of paths of the
estimated subspace considered by each localization scheme
in simulated and real data, respectively. Despite a smaller
number of exploited paths compared with the MSF which uses
the whole ray tracing dictionary, both OLS-BIC and OLS-
BIC? still yield better localization results. Besides, the OLS-
BIC procedure tends to select more informative paths than the
MAX-PD one. It follows that the OLS-BIC procedure offers
a reasonable way to select paths for the localization problem.

V. CONCLUSION

In this paper, we introduced two solutions to deal with two
problems that affect the performance of in locating a single
NLOS target: heterogeneity of number of paths in the search
domain and selecting the informative paths for the localization
problem. Both simulated and experimental localization results
show that the target position is more accurately estimated using
the BIC localization criterion coupled with the proposed OLS-
BIC multipath selection procedure compared to the classical
localization scheme.
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