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Reduction of rain-induced errors for wind
speed estimation on SAR observations

using convolutional neural networks
Aurélien Colin1,2, Pierre Tandeo1,3, Charles Peureux2, Romain Husson2, Ronan Fablet1,3,

Abstract—Synthetic Aperture Radar is known to be
able to provide high-resolution estimates of surface
wind speed. These estimates usually rely on a Geo-
physical Model Function (GMF) that has difficulties
accounting for non-wind processes such as rain events.
Convolutional neural network, on the other hand,
have the capacity to use contextual information and
have demonstrated their ability to delimit rainfall
areas. By carefully building a large dataset of SAR
observations from the Copernicus Sentinel-1 mission,
collocated with both GMF and atmospheric model
wind speeds as well as rainfall estimates, we were
able to train a wind speed estimator with reduced
errors under rain. Collocations with in-situ wind
speed measurements from buoys show a root mean
square error that is reduced by 27% (resp. 45%)
under rainfall estimated at more than 1 mm/h (resp.
3 mm/h). These results demonstrate the capacity of
deep learning models to correct rain-related errors in
SAR products.

Index Terms—Synthetic Aperture Radar, Deep
Learning, Oceanography, Wind.

I. INTRODUCTION

SYNTHETIC Aperture Radar (SAR) is a pow-
erful tool for studying the ocean surface. C-

Band SAR are sensitive to variations in sea surface
roughness, and have been used to detect various
meteorological and ocean processes, referred to
as metocean, such as atmospheric or ocean fronts
[1], icebergs [2], oil surfactants from pollution [3]
or generated by plankton [4], and some species
of seaweed [5]. They are particularly useful for
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France.

2 Collecte Localisation Satellites, Brest, France.
3 Odyssey, Inria/IMT, France

studying waves [6] and extreme events like cyclones
[7], [8]. There has been particular attention given to
estimating wind speed using these sensors.

As the number of satellite missions with C-
SAR sensors increases and archives of these data
accumulate, it is becoming easier to build large SAR
datasets. This paper focuses on the Sentinel-1 mis-
sion from the Copernicus program, which consists
of two satellites, Sentinel-1A (launched in 2014)
and Sentinel-1B (launched in 2016, which has been
out of operation since December 2021). Sentinel-1C
is planned to be launched in 2023. Ground Range
Detected Higher Resolution Interferometric Wide-
swath (GRDH IW) observations have a range of 250
km, an azimuth of about 200 km, and a resolution
of 10 m/px. These observations are mainly routinely
acquired over coastal areas. Systematic processes
are used to produce geophysical products from
these observations, including wind speed estimates.
Several Geophysical Model Functions (GMFs) have
been developed for this purpose, including CMOD3
[9], CMOD4 [10], CMOD5 [11], CMOD5.N [12],
CMOD6 [13], CMOD7 [14] and C SARMOD2
[15]. These GMFs use the vertical-vertical polariza-
tion, which is Sentinel-1’s default co-polarization in
coastal areas. However, the co-polarization channel
saturates at high wind speed [16]. Therefore, the
cross-polarization has also been used to estimate
the wind speed [7]. In particular, H14E [17] was
found to provide accurate wind speed measure-
ments even in extreme events such as category
5 hurricanes [18]. The cross-polarization has the
advantage of lower incidence and wind direction
dependency [19]. GMFs have also been developed
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for horizontal-horizontal polarization [20]. Bayesian
nonparametric wind speed estimation has also been
proposed, offering the advantage of not relying on
wind direction priors that are sensitive to meteo-
rological processes with rapid temporal and spatial
evolution [21].

However, these GMFs are sensitive to contami-
nation from non-wind processes. In particular, rain-
fall can either increase or decrease sea surface
roughness [22], making it difficult to correct for its
effects.

Deep learning models, particularly Convolutional
Neural Networks (CNNs), have demonstrated their
ability to detect rain signatures in SAR observations
[23]. These models are known to be able to tackle
denoising [24] and inpainting [25] tasks because
they use contextual information to estimate the
original signal. This paper is dedicated to estimating
wind speed in rainy areas using a model that does
not require an explicit rainfall prior and only uses
the parameters available to GMFs.

In the first section, we present the SAR data used
to train the model and the ancillary information
available. The second section describes the method-
ology used to build the dataset, with special atten-
tion given to ensuring a balanced representation of
rainfall observations. The final section presents the
results on the training set and confirms them with
in-situ measurements from buoys, demonstrating
the model’s ability to correct for rain overestimates.

II. DATASET

The SAR measurements used in this chapter
come from 19,978 IW observations acquired glob-
ally between March 03rd, 2018 and the February
23rd, 2022, inclusive. Each of these observations
covers approximately 44 000 km² and has a reso-
lution of 100 m/px, downscaled from the GRDH
products available at 10 m/px. The radiometric
information used as input is the Sea Surface Rough-
ness (SSR) defined in [26] as the normalized radar
cross section σ0 divided by the σ0 of a wind of 10
m/s and a direction of 45° relative to the antenna
look angle. The σ0 of this neutral wind is given by
the GMF CMOD5.N.

Obtaining global information on rain that can be
used in conjunction with SAR observations can be
difficult. A previous study conducted using a global
Sentinel-1 dataset found only 2,304 partial colloca-
tions with the satellite-based radar GPM/DPR [27]
out of 182,153 IW. ”Partial collocations” refers to
instances where at least 20x20 km of a swath is
observed by the spaceborne weather radar 20 min-
utes before or after the SAR observation. Coastal
ground-based radars like NEXRAD [28] could pro-
vide rainfall estimates, but they are affected by
topography and may not capture all wind regimes.
Therefore, SAR-based rain estimation is preferred
to maximize the number of available observations
and simplify the collocation process. We used a
recent SAR rainfall estimator [23] that emulates
NEXRAD’s reflectivity and proposes three rainfall
thresholds that roughly correspond to 1 mm/h, 3
mm/h, and 10 mm/h.

Ancillary information, such as incidence angle
and satellite heading, is retrieved from Sentinel-1
Level-2 products. It also includes collocations with
atmospheric models from the European Centre for
Medium-Range Weather Forecasts, which provide
modelled wind speed and direction, as well as the
surface wind speed computed by the GMF. The
atmospheric models have a spatial resolution of
0.25x0.25 degrees and a temporal resolution of 3
hours [29], while the GMF is computed at a spatial
resolution of 1 km/px and corresponds to the ob-
servation itself. The GMF used in Level-2 product
is IFR2 [30] until July 2019 and CMOD5.N [12]
afterwards. The ancillary information contained in
the Level-2 products is available at a spatial resolu-
tion of 1 km/px. However, it is interpolated to 100
m/px to match the grid of the radiometric channels.

III. METHODOLOGY

This section presents the methodology for build-
ing the rain-invariant wind speed estimator. We first
describe the deep learning architecture of the model,
then we discuss the creation of the dataset, which is
biased to have a large number of rain examples. The
final section describes the evaluation procedure.
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A. Deep Learning Model

The architecture used in this chapter is the UNet
architecture [31] depicted in Fig. 1. UNet is an
autoencoder architecture with the advantage of be-
ing fully convolutional, meaning it has translation
equivariance properties (translations of the input
result in translations of the output). In addition,
skip connections between the encoder and the de-
coder facilitate training, especially by reducing the
vanishing gradient issue [32]). Introduced in 2015,
UNet has been used in various domains and has
demonstrated its importance for segmentation of
SAR observations [33], [23], [34].

The output of the model always contains a single
convolution kernel, activated by the ReLU function
to ensure that the prediction is in the interval [0,
+∞]. All convolution kernels in the hidden layers
are also activated by ReLU functions. The model is
set to take input of 256x256 pixels during training,
but since the weights only describe convolution ker-
nels, it is possible to use the model for inference on
images of any shape as long as the input resolution
remains at 100 m/px. Variants of the model are
trained with different numbers of input channels.
The architecture is modified by changing the size
of the first convolution kernel, which is defined as
a kernel of size (3, 3, c, 32), where c is the number
of input channels.

B. Dataset balancing procedure

In this section, we describe the process for
building a balanced dataset. Our goals are to (I)
ensure that the wind distribution of each dataset
is close to the real-world distribution, (II) prevent
information leak between the training, validation,
and test subsets, (III) ensure that the groundtruth
wind speed, obtained from an atmospheric model,
accurately represents the real-world wind speed,
and (IV) include enough rain samples to allow the
model to learn from them.

a) Rain and rainless patches selection: As
discussed earlier, rainfall estimation is provided by
a deep learning model at a resolution of 100 m/px,
on the same grid as the SAR observation. Therefore,
it is possible to separate the observations into two

Fig. 1: Architecture of the UNet model used for
estimating the wind speed.

areas, A+ and A−, based on the 3 mm/h threshold
from the rainfall estimation.

A+ = {x : Rainfall(x) >= 3mm/h} (Eq. 1)

A− = {x : Rainfall(x) < 3mm/h} (Eq. 2)

However, most SAR observations do not con-
tain rain signatures. Collocations with GPM’s dual
polarization radar, a satellite-based weather radar,
indicated that the probability of rain rates higher
than 3 mm/h was 0.5%. Thus, by dividing the SAR
observations into tiles of 256 by 256 pixels, we
call ”rain patches” the tiles with more than 5% of
their surface predicted to have rain rates higher than
3 mm/h, and ”rainless patches” those without rain
signatures. We denote n+ as the number of rain
patches and n− as the number of rainless patches.
To ensure that the model will learn regardless of
the rain-situation, we set n+ = n−.

Fig. 2 indicates collocations between the reanaly-
sis from ERA5 and the satellite-based weather radar
GPM/DPR. It shows the wind speed distribution
for rainfall higher than 3 mm/h (a), 30 mm/h (b),
and the overall distribution (orange curve). Stronger
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rainfall is associated with a lower probability of
strong wind speeds. However, the impact is mostly
marginal at moderate rain rates.

(a)

(b)

Fig. 2: Distribution of ERA5 wind speed collocated
with surface rain rate from GPM/DPR for rainfall
higher than 3 mm/h (a) and 30 mm/h (b). They
amount for 0.55% and 0.02% of the collocations,
respectively. The orange curve in the figure shows
the wind distribution regardless of the rainfall.

b) Restriction to a priori Accurate Model
Wind Speeds: Atmospheric models have been
known to have coarse resolution (0.25x0.25 degrees
spatially, 3 hours temporally) and to be unable to
accurately depict fine-scale wind fields. However,
they are computed globally and independently of
the SAR observations. On the other hand, SAR-
based wind fields from the GMFs are known to
be accurate on rainless patches, but are diversely
affected by rainfall. At low and moderate wind
speeds, impinging droplets lead to an overestima-
tion of the wind speed. Under high wind speed
conditions, dominant attenuation results in an un-
derestimation of the wind speed. Because of the
difficulty of collocating a sufficient quantity of high
wind speed and rainfall events, this study mainly
aims to correct the wind speed overestimation. We

calculate ∆A− as the discrepancy between the GMF
and the atmospheric model on rain-free pixels.

∆A− = MSE|A−(Atm,GMF ) (Eq. 3)

In our experiments, the threshold was set at
∆A− < 1 m/s. All patches containing a higher
discrepancy between the two wind speed sources
were discarded. By ensuring agreement between the
atmospheric model and the SAR-based GMF on
rainless patches, we assume that the atmospheric
model is close to the real wind speed and use it as
a target for optimizing the deep learning model.

c) Balancing to the real-world wind distribu-
tion: It should be noted that this condition ensures
accurate modeled wind speeds and rain distribution,
especially because the rainfall estimator is known
to overestimate rainfall at high wind speeds.

We denote:
• P+ as the wind speed distribution on n+.
• P− as the wind speed distribution on n−.
• P as the wind speed distribution on n− ∪ n+.
Balancing the dataset to the real-world wind

distribution translates to the following condition:

∀x, P (x) =
n+P

+(x) + n−P
−(x)

n+ + n−
(Eq. 4)

As we choose to keep all rain patches and to set
n+ = n−, Eq. 4 leads to:

∀x, P−(x) =
1

2
(P+(x)− P (x)) (Eq. 5)

For some wind speeds x, P+(x) is higher than
twice P (x). In these cases, we relax the condition
from Eq. 5 in order to avoid removing rain patches.
Fig. 3 depicts the wind speed distribution for rain
and rainless patches. The mean squared error be-
tween P and 1

2 (P
+ + P−) reach 8.8%.

The dataset can be further balanced to ensure
that, for each wind speed, the number of rain and
rainless patches is equal. However, this leads to
remove of 84% of the data. Appendix 1 compares
the performance of this second dataset. As did not
provide improvements, this dataset is left out of the
main document.
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Fig. 3: Wind speed distributions for rain (blue) and
rainless (red) patches. Orange curve correspond to
the real world wind distribution.

1) Training, Validation and Test Set Division:
After extracting the patches following the distri-
butions P+ and P−, they are split into training,
validation, and test sets. Each subset preserves the
same distributions. Furthermore, to avoid informa-
tion leakage, if a patch from one IW is in a subset,
every patch from the same IW belongs to the
same subset. The stochastic brute forcing method
described in Algorithm 1 draws random IWs and
computes the distribution of the validation and test
subsets, compares them to the overall distributions,
and returns the solution that minimizes the differ-
ence. In this algorithm, P̄e indicates the wind speed
distribution multiplied by the number of patches
in e and divided by the total number of patches.
It ensures that the validation and test subsets each
contain approximately 10% of all the patches.

The initial 19,978 IW observations account
for 105,164 rain patches and 2,094,370 rainless
patches. At the end of the process, the distribution
in the subsets is as follow:

• 168,349 patches from 14,169 IWs in the train-
ing set;

• 20,944 patches from 1,763 IWs in the test set;
• 21,010 patches from 1,763 IWs in the valida-

tion set.

Before training the model, we compute the mean
and standard deviation of each channel on the
training set and use them to normalize the in-
puts during training, validation, and inference. The

Algorithm 1: Stochastic brute forcing
input : The list L of all swath i and their patch

distribution Pi.
output: Lval and Ltest, the list of the swaths

contained in the validation and test sets.

1 L = MAE;
2 emin = +∞;
3 n1 = len(L)/10;
4 n2 = len(L)/3;
5 for i← 0 to 1000000 by 1 do
6 n = random.integer(min=n1, max=n2);
7 candidate = random.choice(L, size=n,

replace=False);
8 cval = candidate[: n/2];
9 ctest = candidate[n/2 :];

10 eval = L(0.1P+, P̄−
cval

) + L(0.1P−, P̄−
cval

);
11 etest =

L(0.1P+, P̄+
ctest) + L(P

−, 0.P̄P−
ctest);

12 e =
2·eval· eetest
eval+etest

;
13 if e < emin then
14 Lval = cval;
15 Ltest = ctest;
16 emin = e;
17 end
18 end

output, however, is not normalized. We train the
model for 100,000 weight updates (i.e. steps of the
stochastic gradient descent) to minimize the Mean
Square Error (MSE) between the prediction and the
wind speed from the atmospheric model, with a
batch size of 16 and a learning rate of 10−5 using
the Adam optimizer.

C. Evaluation procedure

To evaluate the impact of each input channel, we
train various variants of the model:

• I uses only the VV channel.
• II uses the VV channel, the incidence angle

and the a priori wind direction.
• III uses both the VV and the VH channel,

the incidence angle and the a priori wind
direction.

• IV uses both the VV and the VH channel, the
incidence angle, the a priori wind direction
and the wind speed prior.

• V uses only the wind speed prior.
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All channels are interpolated to 100 m/px and
concatenated on the same grid.

Incidence angles and wind directions from
ECMWF atmospheric model are obtained from the
Level-2 products and notably used for the computa-
tion of the GMF. Therefore, architecture II contains
the same inputs as the GMF though interpolated at
a finer resolution.

Each architecture is trained five times to reduce
the impact of random initialization on the evalua-
tion results. The results is presented as the mean
and standard deviation over these five independent
trainings.

We compare the results using the Root Mean
Square Error (RMSE) and the Pearson correlation
coefficient (PCC). The PCC is formulated in Eq. 6.

PCCY,Ŷ =
E[(Y − µY )(Ŷ − µŶ )]

σY σŶ

(Eq. 6)

The results are computed against both the
groundtruths from the atmospheric model, which
provides a large test set, and against collocations
with buoys, which have good temporal resolution
and are in-situ measurements.

IV. RESULTS

A. Benchmarking experiments

The performance of the models compared to
ECMWF are calculated on the test subset for each
input variant and the baseline GMF. The results of
this analysis can be found in Table I. It appears that
the most important input is the GMF itself, as both
IV and V have better results than the other variants.
I, II and III are unable to achieve better results than
the GMF, except under strong rainfall, even though
II and III have access to all the channels used by
the GMF.

Examples of rain-induced wind speed overesti-
mation are presented in Fig. 4. Fig. 4.a shows the
SSR on a logarithmic scale, with bright patterns
appearing in the observation and segmented as
rainfall in Fig. 4.c. These patterns correlate with
high wind speeds estimated by the GMF in Fig. 4.b.
The deep learning method in Fig. 4.d ignores this
spike in the SSR, but it also seems to underestimate

(a) (b)

(c) (d)

(e) (f)

Fig. 4: Observation from the November 11th 2018
at 04:56:47. Sea Surface Roughness (SSR) of the
VV channel in dB (a), geophysical model function
estimated wind speed in m/s (b), deep learning
estimated wind speed in m/s (d), prediction of the
rainfall estimator (c) and transects of the green (e)
and red (f) lines, with rainfall predicted higher than
10 mm/h indicated as grey areas.

the wind speed in the bottom-left quarter of the
observation. Both of these behaviours are especially
visible in the transect shown in Fig. 4.f.

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2023.3291236

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 7

RMSE PCCMODEL AND
CHANNELS RAIN RATE Balanced

Dataset
Neutral
Dataset

Balanced
Dataset

Neutral
Dataset

[0, 1[mm/h ♢ 1.38 [0.016] ♢2.40 [0.019] ♢ 89.9% [0.19%] ♢ 74.2% [0.42%]
[1, 3[mm/h ♢ 1.64 [0.046] ♢2.78 [0.038] ♢ 92.7% [0.39%] ♢ 79.5% [0.58%]
[3, 10[mm/h ♢ 1.59 [0.038] ♢3.18 [0.070] ♢92.7% [0.38%] ♢ 78.9% [0.62%]

I
[VV]

≥ 10mm/h ♢2.12 [0.052] ⋆3.27 [0.135] ♢81.7% [1.03%] ♢ 74.3% [0.90%]
[0, 1[mm/h ♢ 0.87 [0.009] ♢2.26 [0.019] ♢ 96.2% [0.06%] ♢ 77.7% [0.24%]
[1, 3[mm/h ♢ 1.04 [0.086] ♢2.87 [0.061] ♢ 97.2% [0.47%] ♢ 77.6% [0.24%]
[3, 10[mm/h ♢1.19 [0.053] ♢3.39 [0.193] ♢ 96.2% [0.37%] ♢ 75.0% [3.04%]

II
[VV, INC, WDIR]

≥ 10mm/h ♢2.27 [0.151] ♢ 3.86 [0.700] ♢81.7% [1.89%] ♢ 63.2% [9.19%]
[0, 1[mm/h ♢ 0.83 [0.002] ♢ 2.18 [0.006] ♢ 96.5% [0.02%] ♢ 79.3% [0.07%]
[1, 3[mm/h ♢ 0.93 [0.020] ♢2.73 [0.022] ♢ 97.7% [0.07%] ♢80.1% [0.29%]
[3, 10[mm/h ♢1.09 [0.022] ♢3.25 [0.052] ♢96.7% [0.07%] ♢ 78.0% [0.44%]

III
[VV, VH,

INC, WDIR] ≥ 10mm/h ♢2.13 [0.050] ♢3.68 [0.310] ♢83.9% [0.66%] ♢ 70.8% [2.95%]
[0, 1[mm/h ⋆0.64 [0.007] ⋆1.90 [0.028] ⋆97.9% [0.04%] ⋆85.0% [0.33%]
[1, 3[mm/h ⋆0.63 [0.015] ⋆2.29 [0.075] ⋆98.9% [0.03%] ⋆87.1% [0.56%]
[3, 10[mm/h ⋆0.78 [0.040] ⋆2.55 [0.132] ⋆98.4% [0.08%] ⋆87.1% [1.12%]

IV
[VV, VH,

INC, WDIR, GMF] ≥ 10mm/h ⋆1.63 [0.162] ♢3.37 [0.113] ⋆90.9% [1.17%] ♢ 73.4% [2.31%]
[0, 1[mm/h ♢0.67 [0.003] ♢ 3.16 [2.650] ♢97.7% [0.02%] ♢ 80.7% [17.55%]
[1, 3[mm/h ♢0.68 [0.005] ♢ 4.17 [3.582] ♢98.8% [0.01%] ♢82.5% [12.67%]
[3, 10[mm/h ♢0.88 [0.021] ♢ 4.53 [3.739] ♢98.0% [0.03%] ♢83.4% [8.19%]

V
[GMF]

≥ 10mm/h ♢1.94 [0.087] ♢ 4.79 [2.917] ♢87.9% [0.66%] ♢ 74.0% [8.19%]
[0, 1[mm/h ♢ 0.77 ♢ 2.41 ♢ 97.0% ♢ 81.2%
[1, 3[mm/h ♢ 0.84 ♢ 3.16 ♢ 98.1% ♢ 80.0%
[3, 10[mm/h ♢ 1.25 ♢ 3.42 ♢ 96.5% ♢ 81.9%GMF

≥ 10mm/h ♢ 4.65 ♢ 3.70 ♢ 52.5% ⋆ 75.4%

Table I: Comparison of the five variants of the model and the two datasets. RMSE and PCC are computed
on the respective test set and for five training with random initialization. Results are given as mean and
standard deviation in brackets. The best result for each metric is indicated by ⋆. Results better than the
GMF are in bold.

B. Application to SAR observation with
groundtruthed in-situ data

However, ECMWF wind speeds are model data
and not in-situ, which can be obtained using
anemometers on buoys. Using the dataset created
in [35], 4732 collocation points between Sentinel-1
and NDBC buoys are identified. The rain predic-
tion model estimates that 4643 of these points are
rainless, 75 record rainfall of more than 1 mm/h,
and 14 record rainfall of more than 3 mm/h. On a
side note, the height at which in-situ measurements
were taken varies, with most being between 3.8 m
and 4.1 m above sea level. As mentioned in [35],
the SAR inversion and deep learning prediction are
both normalized to the altitude of the corresponding
in-situ measurement. Denoting w the wind speed at
10 m estimated from the SAR, the wind speed at
elevation h is given by the exponential law [36]:

wh = w ·
(

h

10

)0.11

(Eq. 7)

Table II indicates that the performances of the
deep learning are higher than the GMF for both
the Root Mean Square Error and the Pearson
Correlation Coefficient for all rain ranges. The
RMSE decreases by 0.04, 0.37 and 1.33 m/s for
rainless, light rain, and moderate rain-situations,
respectively. The bias decreases by 0.26 and 1.01
m/s under light and moderate rain, but increases
by 0.02 m/s for rainless situations. Table II also
demonstrates the importance of the dataset building
scheme as a dataset composed of collocations with-
out the aformentionned sample selection, referred
to as the ”neutral dataset,” consistently has lower
performances than the balanced dataset.

Fig. 5 presents a comparison of the performances
against NDBC buoys for various wind speeds. Un-
fortunately, collocations are scarce at very low and
high wind speeds, which are the intervals where
both the GMF and deep learning models have
higher errors.
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Balanced
Dataset

Neutral
Dataset

GMF
B

ia
s < 1mm/h ♢ 0.73 [0.04] ♢ 1.32 [0.04] ⋆ 0.71

[1, 3]mm/h ⋆1.38 [0.04] ♢1.47 [0.04] ♢ 1.64
> 3mm/h ⋆0.92 [0.07] ♢ 1.96 [0.29] ♢ 2.38

R
M

SE

< 1mm/h ⋆1.44 [0.03] ♢ 1.76 [0.12] ♢ 1.48
[1, 3]mm/h ⋆1.81 [0.04] ♢1.95 [0.18] ♢ 2.18
> 3mm/h ⋆1.60 [0.10] ♢2.42 [0.21] ♢ 2.93

PC
C

< 1mm/h ⋆93.6% [0.16%] ♢ 92.9% [0.20%] ♢ 93.4%
[1, 3]mm/h ⋆96.3% [0.22%] ♢ 93.4% [0.19%] ♢ 95.3%
> 3mm/h ⋆95.9% [0.35%] ♢93.4% [2.04%] ♢ 91.3%

Table II: Bias, Root Mean Square Error, and Pear-
son Correlation Coefficient of model IV, the GMF,
for each rainfall level. The best result for each
metric and rainfall level is indicated by ⋆. Results
better than the baseline are in bold. Results are
given as mean and standard deviation in brackets.

(a) (b)

Fig. 5: Evaluation of the Root Mean Square Error
across the wind speed (a) and number of collocation
with NDBC buoys in rainless areas (b).

In the following, we observe two cases where
rainfall was detected on the buoy position at the
time of observation.

1) 2017-01-08 01:58:19 at NDBC 46054: The
observation from 2017-01-08 01:58:19 covers the
north of the Californian Channel Islands (Fig. 6.a).
Several meteorological buoys are dispersed over the
channel, including NDBC 46054 and NDBC 46053,
which are indicated as red dots. The wind speed
over the area is mostly around 6 m/s, but a squall
line appears at the position of NDBC 46054 and
spans over a dozen kilometers. A surge in the air
column reflectivity is recorded by weather radar
from the NEXRAD network. The ground station
is located at 119 km. The GMF indicates very

Fig. 6: Sea surface roughness from the January 08th

2017 at 01:58:19 in VV channel (a), zoom on an
area of 35x35 km centred on the buoy NDBC 45054
(b), NEXRAD base reflectivity acquired at 01:57:58
(c), wind speed given by the GMF (d) and by the
deep learning model (e).

high wind speeds, higher than 20 m/s (Fig. 6.d).
The deep learning model attenuates these values to
between 6 m/s and 8 m/s (Fig. 6.e).

For NDBC 46054, only one measurement of wind
speed and direction per hour is available. It recorded
a wind speed of 6.3 m/s eight minutes before the
SAR observation. The GMF and the deep learning
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model estimated wind speeds of 15.1 m/s and 5.9
m/s, respectively. While the temporal resolution of
NDBC 46054 is one measurement per hour, NDBC
46053 records data every ten minutes. Furthermore,
the gust front appears to be moving toward the right
part of the observation. This can be seen in the
time series in Fig. 6 as a large variation in wind
direction between 02:40:00 and 03:00:00. The vari-
ation in wind speed seems to precede the variation
in direction, first increasing then decreasing to a
lower wind regime. On NDBC 46053, the GMF
and the deep learning model agree on a wind speed
of 4.5 m/s, which is slightly lower than the in-situ
data of 5.4 m/s. Since the distance between NDBC
46054 and NDBC 46053 is approximately 60 km,
the progression of the gust front can be estimated to
be around 90 km/h. With a width of around 5 or 6
km, the whole system would pass the buoys in three
minutes. This means that even NDBC 46053 may
not have been able to accurately estimate the wind
speed due to its low temporal resolution. However,
it is worth noting that even the gust speed at NDBC
46054, defined as the maximum wind speed over a
given number of seconds, does not record a speed
higher than 9 m/s.

2) SAR-20191006T232853 NDBC-41009:
The observation from 2019-10-06 23:28:53 was
recorded on the east coast of Florida. While
most of the swath covers the marshes around
Orlando and Cap Canaveral rather than the ocean,
convective precipitation can be observed in the
right part of the image (Fig. 8.a). The cells are
moving downward (north-north-east), as indicated
by the stronger gradient of the convective front.
Since the wind from the convection is opposing
the underlying wind regime, an area of lower wind
speed appears as an area of lower backscatter.
Rainfall was detected by a weather radar from the
NEXRAD network located at 64 km (Fig. 8.c).
The GMF is impacted by these rain signatures and
estimates a very high local wind speed (Fig. 8.d).
The deep learning model is less affected by the
rain signatures, but also appears to blur the low
wind speed area (Fig. 8.e).

The time serie from NDBC 41009 in Fig. 9
indicates that the lower backscattering was indeed

(a)

(b)

Fig. 7: Time series of the NDBC buoy wind mea-
surements around January 08th 2017 01:58:19 for
NDBC 46054 (a) and NDBC 46053 (b), and the
estimation from the GMF, the deep learning model
and the atmospheric model.
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Fig. 8: Sea surface roughness from October 06th

2019 at 23:28:53 in VV channel in dB (a), zoom on
an area of 35x35 km around the buoy NDBC 41009
(b), NEXRAD observation acquired at 23:27:33 (c),
wind speed given by the GMF (d) and by the deep
learning model (e).

Fig. 9: Time series of the NDBC buoy wind mea-
surements around October 06th 2019 at 23:28:53 for
NDBC 41009, and the estimation from the GMF,
the deep learning model and the atmospherical
model.

caused by a drop in wind speed rather than a change
in direction, as the latter does not significantly
change during the passage of the convective cell
(possibly because the underlying wind regime is
strong). It does record a sudden drop in wind speed
to 7.5 m/s one minute after the SAR observa-
tion, while the GMF and the deep learning model
estimated wind speeds of 13.7 m/s and 8.9 m/s,
respectively.

V. CONCLUSION

Previous studies have shown that high-resolution
rain signatures can be automatically extracted from
SAR observations. Using this SAR rainfall seg-
menter, we built a wind estimation dataset where
50% of the patches contain rainfall examples. Sam-
ples were chosen so that a SAR-based and a SAR-
independent wind speed model agree on non-rain
pixels, ensuring that their estimates are close to the
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true wind speed. A UNet architecture was trained
on this dataset to estimate wind speeds based on
the SAR-independent atmospheric model. We tested
several input combinations and found that the most
important parameter was the wind speed prior from
the geophysical model function, which the deep
learning model had difficulty emulating.

Collocations with buoy in-situ measurements
show that the model outperforms the current Geo-
physical Model Function (GMF) on rain areas,
reducing the RootMean Square Error (RMSE) by
27% (resp. 45%) for rain rates higher than 1 mm/h
(resp. 3 mm/h). On rainless areas, performances are
similar with a small reduction of the RMSE by
2.7%. However, since the buoys have a time res-
olution of ten minutes, some quick sub-mesoscale
processes, such as gust fronts, are difficult to reg-
ister. The limited spatial range of the buoys also
makes it challenging to observe rare phenomena.
Future work should address these concerns.

APPENDIX

A secondary dataset was created differing with
the main dataset by Eq. 4. Here, the balancing
policy is defined as:

∀x, P (x) = P+(x) = P−(x) (Eq. 8)

The distributions P+ and P− are presented in
Fig. 10. The balancing is performed for every wind
speed, which lead to remove 84% of the rain patches
-especially at 5 and 10 m/s- since the number of rain
patches at 8 m/s is limited.

Models were optimized under the same training
process as in subsection III-B1, in particular with
the same number of weight updates. Comparison
with the first balancing scheme display lower per-
formances despite the more accurate balancing, as
indicated Table III.
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