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Abstract. The state of the atmosphere, or of the ocean, cannot be exhaustively observed. Crucial parts might
remain out of reach of proper monitoring. Also, defining the exact set of equations driving the atmosphere and
ocean is virtually impossible because of their complexity. The goal of this paper is to obtain predictions of
a partially observed dynamical system without knowing the model equations. In this data-driven context, the
article focuses on the Lorenz-63 system, where only the second and third components are observed and access
to the equations is not allowed. To account for those strong constraints, a combination of machine learning and
data assimilation techniques is proposed. The key aspects are the following: the introduction of latent variables,
a linear approximation of the dynamics and a database that is updated iteratively, maximizing the likelihood. We
find that the latent variables inferred by the procedure are related to the successive derivatives of the observed
components of the dynamical system. The method is also able to reconstruct accurately the local dynamics of
the partially observed system. Overall, the proposed methodology is simple, is easy to code and gives promising
results, even in the case of small numbers of observations.

1 Introduction

In geophysics, even if one has perfect knowledge of the stud-
ied dynamical system, it remains difficult to predict because
of the existence of nonlinear processes (Lorenz, 1963). Be-
yond this important difficulty, achieving this perfect knowl-
edge of the system is often impossible. Consequently, the
governing differential equations are often not known in full
because of their complexity, in particular regarding scale in-
teractions (e.g., turbulent closures are often assumed rather
than “known” per se). On top of these two major difficul-
ties, the state of the system is not and cannot be exhaustively
observed. Potentially crucial components are and might re-
main partly or fully out of reach of proper monitoring (e.g.,
deep ocean or small-scale features). Predicting a partially ob-
served and partially known system is therefore a key issue in

current geophysics and in particular for ocean, climate and
atmospheric sciences.

A typical example of such a framework is the use of cli-
mate indices (e.g., global mean temperature, Niño 3.4 index,
North Atlantic Oscillation index) and the study of their links
and their dynamics. In this context, the direct relationship be-
tween those indices is unknown, even if their more indirect
and complex relations exist, through full knowledge of the
climate dynamics. Also, it is highly possible that climate in-
dices are dependent on components of the climate that are
not currently considered key indices and so are not fully
monitored. However, these key indices could be sufficient
to describe the most important aspect of climate, leading to
accurate and reliable predictions and enabling cost-effective
adaptation and mitigation.
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Hence, an alternative to physics-based models is to use
available observations of the system and statistical ap-
proaches to discover equations and then make predictions.
This has been introduced in several papers using combina-
tions and polynomials of observed variables as well as sparse
regressions or model selection strategies (Brunton et al.,
2016; Rudy et al., 2017; Mangiarotti and Huc, 2019). Those
methods have then been extended to the case of noisy and ir-
regular observation sampling, using a Bayesian framework as
in data assimilation (Bocquet et al., 2019; North et al., 2022).
Alternatively, some authors used data assimilation and lo-
cal linear regressions based on analogs (Tandeo et al., 2015;
Lguensat et al., 2017) or iterative data assimilation coupled
with neural networks (Brajard et al., 2020; Fablet et al., 2021;
Brajard et al., 2021) to make data-driven predictions without
discovering equations.

However, many approaches cited above assume that the
full state of the system is observed, which is a strong as-
sumption. Indeed, in a lot of applications in geophysics, im-
portant components of the system are never or only partially
observed, such as the deep ocean (see, e.g., Jayne et al.,
2017), and data-driven methods fail to make good predic-
tions. To deal with those strong constraints, i.e., when the
model is unknown and when some components of the system
are never observed, combination of data assimilation and ma-
chine learning shows potential (see, e.g., Wikner et al., 2021).
Additionally, an option is to use time-delay embedding of the
available components of the system (Takens, 1981; Brunton
et al., 2017), whereas another option is to find latent repre-
sentations of the dynamical system (see, e.g., Talmon et al.,
2015; Ouala et al., 2020). In this study, we will show that
there are strong relationships between those two approaches.

Here, we propose a simple algorithm using linear and
Gaussian assumptions based on a state-space formulation.
This classic Bayesian framework, used in data assimilation,
is able to deal with a dynamical model (physics- or data-
driven) and observations (partial and noisy). Three main
ideas are used: (i) augmented state formulation (Kitagawa,
1998), (ii) global linear approximation of the dynamical sys-
tem (Korda and Mezić, 2018) and (iii) estimation of the dy-
namical parameters using an iterative algorithm combined
with Kalman recursions (Shumway and Stoffer, 1982). The
current paper is thus an extension of Shumway and Stoffer
(1982) to never-observed components of a dynamical system,
using a state-augmentation strategy. The proposed frame-
work is probabilistic, where the state of the system is approx-
imated using a Gaussian distribution (with a mean vector and
a covariance matrix). The algorithm is iterative, where a cat-
alog is updated at each iteration and used to learn a linear
dynamical model. The final estimate of this catalog corre-
sponds to a new system of variables, including latent ones.

The proposed methodology is based on an important as-
sumption: the surrogate model is linear. Although it can be
considered a disadvantage compared to nonlinear models,
this linear assumption also has interesting properties. Indeed,

nonlinear models combined with state augmentation are a
very broad family of models and may lead to identifiabil-
ity issues. Using linear dynamics already leads to a very
flexible family of models since the latent variable may de-
scribe nonlinearities and include, for example, any transfor-
mation of the observed or non-observed components of a dy-
namical model. Furthermore, it allows rigorous estimation of
the parameters using well-established statistical algorithms
which can be run at a low computational cost. The proposed
methodology is evaluated on a low-dimensional and weakly
nonlinear chaotic model. As this paper is a proof of concept,
a linear surrogate model is certainly well suited for this situ-
ation.

The paper is organized as follows. Firstly, the methodol-
ogy is explained in Sect. 2. Secondly, Sect. 3 describes the
experiment using the Lorenz-63 system. Thirdly, the results
are reported in Sect. 4. The conclusions and perspectives are
given in Sect. 5.

2 Methods

The methodology proposed in this paper is borrowed from
data assimilation, machine learning and dynamical systems.
It is summarized in Fig. 1 and explained below.

In data assimilation, the goal is to estimate, from partial
and noisy observations y, the full state of a system x. When
the dynamical model used to propagate x in time is avail-
able (i.e., when model equations are given), classic data as-
similation techniques are used to retrieve unobserved com-
ponents of the system. For instance, in the Lorenz-63 system
(Lorenz, 1963), if only two variables (x2 and x3 in the exam-
ple defined below) are observed, knowing the Lorenz equa-
tions (system of three ordinary differential equations), it is
possible to retrieve the unobserved one (x1 in our example
below). However, this estimation requires good estimates of
model and observation error statistics (see, e.g., Dreano et al.,
2017; Pulido et al., 2018).

Now, if the model equations are not known and observa-
tions of the system are available over a sufficient period of
time, it is possible to use data-driven methods to mathemati-
cally approximate the system dynamics. In this paper, a linear
approximation is used to model the relationship of the state
vector x between two time steps. It is parameterized with
the matrix M, whose dimension is equal to the square of the
state space. Moreover, a linear observation operator is intro-
duced to relate the partial observations y and the state x. It
is written using a matrix H, with its dimension equal to the
observation-space times the state-space dimensions. Nonlin-
ear and adaptive operators and noisy observations could be
taken into account but, for the sake of simplicity, only the
linear and non-noisy case is considered in this paper.

Mathematically, matrices (M, H) and vectors (x, y) are
linked using a Gaussian and linear state-space model such
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Figure 1. Schematic of the proposed methodology, illustrated using the Lorenz-63 system. The algorithm is initialized with a Gaussian
random noise for the hidden component (i.e., z1) and with partial observations of the system (i.e., y2 and y3). Then, an iterative procedure
is applied with a linear regression, a covariance computation, the Kalman recursions and a random sampling. This algorithm iteratively
maximizes the likelihood of the observations denoted L. After convergence of the algorithm, a hidden component z1 is stabilized and
represented by a Gaussian distribution represented by the mean xs

1 and variance P s
1 .

that

xt =Mxt−1+ ηt , (1a)
yt =Hxt + εt , (1b)

where t is the time index and ηt and εt are unbiased Gaus-
sian vectors, representing the model and observation errors,
respectively. Their error covariance matrices are denoted Q
and R, respectively. Those matrices indirectly control the re-
spective weight given to the model and to the observations. It
constitutes an important tuning part of the state-space models
(see Tandeo et al., 2020, for a more in-depth discussion).

In such a data-driven problem where only a part of the sys-
tem is observed, a first natural step is to consider that the state
x is directly related to the observations y. For instance, in the
example of the Lorenz-63 system introduced previously, ob-
servations correspond to the second and third components of
the system (i.e., x2 and x3, formally defined later).

In this paper, we propose introducing a hidden vector de-
noted z, corresponding to one or more hidden components
that are not observed. For this purpose, the state is augmented
using this hidden component z, the observation vector y does
not change, and the operator H is a truncated identity matrix.
The use of augmented state space is classic in data assimila-
tion and mostly refers to the estimation of unknown parame-
ters of the dynamical model (see Ruiz et al., 2013, for further
details).

The hidden vector z is now accounted in the linear model
M given in Eq. (1a) whose dimension has increased. The hid-
den components are completely unknown and thus randomly
initialized using Gaussian white noises and are parameter-
ized by σ 2, their level of variance. The next step is to infer z

using a statistical estimation method. Starting from the ran-
dom initialization, an iterative procedure is proposed based
on the maximization of the likelihood.

The proposed approach is based on a linear and Gaussian
state-space model given in Eq. (1) and thus uses the clas-
sic Kalman filter and smoother equations. The Kalman filter
(forward in time) is used to get the information of the likeli-
hood, whereas the Kalman smoother (forward and backward
in time) is used to get the best estimate of the state. The pro-
posed approach is inspired by the expectation-maximization
algorithm (denoted EM; see Shumway and Stoffer, 1982) and
is able to iteratively estimate the matrices M and Q. In this
paper, R is assumed to be known and negligible. The crite-
rion used to update those matrices is based on the innovations
defined by the difference between the observations y and the
forecast of the model M, denoted xf. The likelihood of the
innovations, denoted L, is computed using T time steps such
that

L , p
(
y1, . . .,yT |x

f
1, . . .,x

f
T

)
∝

T∏
t=1

exp
(
−

(
yt −Hxf

t

)>
6−1
t

(
yt −Hxf

t

))
, (2)

where 6t =HPf
tH>+R, with Pf

t =MPat−1M>+Q and
Pat−1 corresponding to the state covariance estimated by the
Kalman filter at time t − 1. The innovation likelihood given
in Eq. (2) is interesting because it corresponds to the squared
distance between the observations and the forecast normal-
ized by their uncertainties, represented by the covariance 6t .

At each iteration of the augmented Kalman procedure, the
estimate of the matrix M is given by the least-square estima-
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tor, using a linear regression such that

M(i)
=

T∑
t=2

(
x

(i−1)
t−1 (x(i−1)

t−1 )>
)−1

x
(i−1)
t (x(i−1)

t−1 )>

T − 1
, (3)

where x(i−1) corresponds to the output catalog of the previ-
ous iteration (the result of a Kalman smoothing and a Gaus-
sian sampling, explained in more detail below). Following
Eq. (1a), the covariance Q is estimated empirically using the
estimate of M given in Eq. (3), such that

Q(i)
=

T∑
t=2

(
x

(i−1)
t −M(i)x

(i−1)
t−1

)(
x

(i−1)
t −M(i)x

(i−1)
t−1

)>
T − 1

. (4)

Then, a Kalman smoother is applied using the M(i) and
Q(i) matrices estimated in Eqs. (3) and (4). At each time t , it
results in a Gaussian mean vector xs

t and a covariance matrix
Ps
t . As input of the next iteration of the algorithm, the cata-

log x(i) is updated using a Gaussian random sampling using
xs
t and Ps

t at each time t . This random sampling is used to
exploit the linear correlations between the components of the
state vector that appear in the nondiagonal terms of Ps. The
random sampling is also used to avoid being trapped in a lo-
cal maximum, as in stochastic EM procedures (Delyon et al.,
1999).

The likelihood calculated at each iteration of the proce-
dure increases until convergence. The algorithm is stopped
when the likelihood difference between two iterations be-
comes small. The solutions of the proposed method are the
last Gaussian mean vectors xs

t and covariance matrices Ps
t

calculated at each time t . The component corresponding to
the latent component z is finally retrieved with information
on its uncertainty.

3 Experiment and evaluation metrics

The methodology is tested on the Lorenz-63 system (Lorenz,
1963). This three-dimensional dynamical system models the
evolution of the convection (x1) as a function of horizontal
(x2) and vertical temperature gradients (x3). The evolution
of the system is governed by three ordinary differential equa-
tions, i.e.,

ẋ1 = 10(x2− x1), (5a)
ẋ2 = x1(28− x3)− x2, (5b)

ẋ3 = x1x2−
8
3
x3. (5c)

Runge–Kutta 4-5 is used to integrate the Lorenz-63 equa-
tions to generate x1, x2 and x3. In this paper, it is assumed
that x1 is never observed: only x2 and x3 are observed on
10 model time units of the Lorenz-63 system every dt =
0.001 time steps (Fig. 2a). The observation vector is thus

y = [y2,y3]. In what follows, only those data are available,
not the set of Eq. (5).

The methodology is applied to the Lorenz-63 system,
adding sequentially a new hidden component in the state of
the system as follows. At the beginning, the state is aug-
mented such that x = [x2,x3,z1], where z1 is randomly ini-
tialized with a white noise, with variance σ 2

= 5. The obser-
vations are stored in the vector y = [y2,y3]. The observation
operator is thus the 2× 3 matrix H= [1,0,0|0,1,0]. After
30 iterations of the algorithm presented in Sect. 2, the hidden
component z1 has converged. After that, a new white noise
z2 is used to augment the state such that x = [x2,x3,z1,z2],
the vector y = [y2,y3] remains the same, and the iterative
algorithm is applied until stabilization of z2. As long as the
stabilized likelihood continues to increase with the addition
of a hidden component, this state-augmentation procedure is
repeated.

Note that several hidden components can be added all at
once, with a similar performance to the sequential procedure
described above (results not shown). In this all-at-once case,
the interpretation of the retrieved components is not as in-
formative, and thus we decided to retain the sequential case.
Note also that the methodology has been tested with larger
dt (i.e., 0.01 and 0.1). The conclusion is that, by increas-
ing the time delay between observations, it significantly in-
creases the number of latent variables (results not shown).
Finally, the assimilation window length corresponds to 104

time steps. By reducing this length (e.g., to 103, 102 or 101),
the conclusions remain the same as for dt = 0.001.

4 Results

Using the experiment presented in Sect. 3, three hidden com-
ponents z1, z2 and z3 were sequentially added. They are re-
ported in Fig. 2 with the true Lorenz components x1, x2 and
x3. Although they do not fit the hidden variable x1 of the
Lorenz system, the first two hidden components z1 and z2
show time variations. By contrast, z3 remains close to 0, with
a large confidence interval. This suggests that our method has
identified that two hidden variables are enough to retrieve the
dynamics of the two observed variables. This result is con-
sistent with the effective dimension of the Lorenz-63 system,
which is between two and three. Here, as the estimated dy-
namical model M is a linear approximation, the dimension of
the augmented state and the observed components is higher
than the effective one.

This is confirmed by the evaluation of the likelihood of the
observations y2 and y3 with different linear models, obtained
with or without the use of hidden components z (Fig. 3). This
likelihood is useful for diagnosing the optimal number of di-
mensions needed to emulate the dynamics of the observed
components. As the proposed method is stochastic, 50 in-
dependent realizations of the likelihood are shown for each
experiment. The 50 realizations vary from the random values
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Figure 2. True components of the Lorenz-63 model (a) and hidden components estimated using the iterative and augmented Kalman proce-
dure (b). The shaded colors correspond to the 95 % Gaussian confidence intervals.

given to the added hidden variable at the beginning of the
iterative procedure. In the naive case where the state of the
system is [x2,x3] (black dashed line), the likelihood is small.
Then, adding successively z1 (green lines) and z2 (red lines),
after 30 iterations of the proposed algorithm, the likelihood
significantly increases. Finally, due to a significant increase
in the forecast covariance Pf in Eq. (2), the inclusion of z3 re-
duces the likelihood (purple lines). This suggests that a third
variable is not needed and is even detrimental to the skill of
the reconstruction. Those results indicate that the best lin-
ear model for predicting the variations of the observations y2
and y3 is the one using two hidden components. Thus, for the
rest of the paper, the focus is placed on the model with the
following augmented state: x = [x2,x3,z1,z2].

The question is now the following: what is the significance
of those hidden components z1 and z2 estimated using the
proposed methodology? Are they correlated with the unob-
served component x1 or with the observed ones x2 and x3?
Are they somehow proxies of the unobserved component?
Using symbolic regression (i.e., using basic mathematical
transformations of x2 and x3 as regressors to explain z1 and
z2), it has been found that the hidden components z corre-
spond to linear combinations of the derivatives of the obser-
vations such that

z1 = a2ẋ2+ a3ẋ3, (6a)
z2 = b1ż1+ b2ẋ2+ b3ẋ3. (6b)

When developing Eq. (6b) using Eq. (6a), the second hidden
component is written as z2 = b2ẋ2+b3ẋ3+b1a2ẍ2+b1a3ẍ3.
It shows that z1 uses the first derivative of x2 and x3, whereas
z2 uses the second derivatives. This result makes the link
with the Taylor and Takens theorem, which shows that an
unobserved component (i.e., x1) can be replaced by the ob-
served components (i.e., x2 and x3) at different time lags.

Note that, due to the stochastic behavior of the algorithm, the
a and b coefficients are not fixed, and several combinations
of them can reach the same performance in terms of likeli-
hood. This is illustrated in Fig. 3a, with 50 independent re-
alizations of the proposed algorithm. When considering only
z1 (green lines), the algorithm converges to various solutions
but is mainly restricted around two solutions (correspond-
ing to a minimum and a maximum of likelihood). As shown
in Fig. 3b, the minimum likelihood corresponds to a3 = 0
and the maximum likelihood corresponds to a2 = 0. Thus,
the likelihood of z1 = a3ẋ3 is higher than z1 = a2ẋ2. This
suggests that ẋ3 is more important than ẋ2 in explaining the
variations of the Lorenz system (this is consistent with the
investigation of Sévellec and Fedorov, 2014, in a modified
version of the Lorenz-63 model). Interestingly, the scatter
plot between a2 and a3 shows a circular relationship. This
is also the case for b2 and b3 (results not shown). Then, in
Fig. 3a, when considering z1 and z2 (red lines), the 50 inde-
pendent realizations reach the same likelihood after 30 iter-
ations. This means that if a3 = 0 when considering only z1,
then b3 6= 0 when introducing z2. In terms of forecast per-
formance, this is similar to a2 = 0 and b2 6= 0, because the
likelihoods converge to the same value (red lines after 30 it-
erations).

To compare the performance of the naive linear model M
with [x2,x3] and the ones with [x2,x3,z1] or [x2,x3,z1,z2],
their forecasts are evaluated. After applying the proposed al-
gorithm, the M̂ and Q̂ estimated matrices are used to derive
probabilistic forecast, starting from the last available obser-
vation yt , using

E[xt+1|y1, . . .,yt ] = M̂E[xt |y1, . . .,yt ], (7a)

Cov[xt+1|y1, . . .,yt ] = M̂Cov[xt |y1, . . .,yt ]M̂
T
+ Q̂, (7b)
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Figure 3. Likelihoods as a function of the iteration of the augmented Kalman procedure (a) and estimation of the a2 and a3 parameters
(b). Different dynamical models are considered, from none to three hidden components in z, whereas only x2 and x3 are observed in the
Lorenz-63 model. The likelihoods of 50 independent realizations of the iterative and augmented Kalman procedure are shown.

with E and Cov the expectation and the covariance, respec-
tively. To test the predictability of the different linear models
(i.e., with or without hidden components z), a test set has
been created, starting from the end of the sequence of obser-
vations (y1, . . .,yT ) used in the assimilation window. This
test set also corresponds to 104 time steps with dt = 0.001.
It is used to compute two metrics, the root mean square error
(RMSE) and the coverage probability at 50 %. The RMSE is
used to evaluate the precision of the forecasts, comparing the
true x2 and x3 components to the estimated ones, whereas
the coverage probability is used to evaluate the reliability of
the prediction, evaluating the proportion of true trajectories
falling within the 50 % prediction interval of x2 and x3. Ex-
amples of predictions are given in Fig. 4. It shows bad lin-
ear predictions of the model with only [x2,x3] (dashed black
lines). As the M operator is not time-dependent, the predic-
tions are quite similar, close to the persistence. Then, adding
one (green) or two (red) hidden components in the M opera-
tors creates some nonlinearities in the forecasts.

In Fig. 5, the predictions are evaluated over the whole test
dataset for different lead times. By introducing hidden com-
ponents, the RMSE decreases for both x2 and x3 components
(panels a and b). For instance, for a lead time of 0.05, when
considering two hidden components, the RMSE is halved
when it is compared to the naive linear model without hidden
components. The coverage probability metric is also largely
improved (panels c and d). Indeed, the results with two hid-
den components are close to 50 %, the optimal value.

To evaluate where the linear model with [x2,x3,z1,z2]

performs better than the one with [x2,x3], the Euclidean dis-
tances between the forecasts (for a lead time of 0.1) and
the truth are computed. Those errors are evaluated at each
time step of the test dataset, in the (x2,x3) space. Based on
those errors, Fig. 6 shows the relative improvement between
the model without and the model with hidden components.
When the two models have similar performance, values are
close to 0 (white), and when the model including z1 and z2
is better, values are close to 1 (red). Figure 6 clearly shows
that error reduction is not homogeneous in the attractor. The

improvement is moderate on the outside of the wings of the
attractor but important in the wing transition. This suggests
that the introduction of the hidden components z1 and z2
makes it possible to provide information on the position in
the attractor and thus to make better predictions, especially
in bifurcation regions.

5 Conclusions

In this article, the goal is to retrieve hidden components of
a dynamical system that is partially observed. The proposed
methodology is purely data-driven, not physics-driven (i.e.,
without the use of any equations of the dynamical model).
It is based on the combination of data assimilation and ma-
chine learning techniques. Three main ideas are used in the
methodology: an augmented state strategy, a linear approxi-
mation of a dynamical system and an iterative procedure. The
methodology is easy to implement using simple strategies
and well-established algorithms: Kalman filter and smoother,
linear regression using least squares, an iterative procedure
inspired by the EM recursions and Gaussian random sam-
pling for the stochastic aspect.

The methodology is tested on the Lorenz-63 system,
where only two components of the system are observed in
a short period of time. Several hidden components are intro-
duced sequentially in the system. Although the hidden com-
ponents are initialized randomly, only a few iterations of the
proposed algorithm are necessary to retrieve relevant infor-
mation. The recovered components are expressed with Gaus-
sian distributions. The new components correspond to linear
combinations of successive derivatives of the observed vari-
ables. This result is consistent with the theorems of Taylor
and Takens, which show that time-delay embedding is useful
for improving the forecasts of the system. In our case, this is
evaluated using the likelihood, a metric that evaluates the in-
novation (i.e., the difference between Gaussian forecasts and
Gaussian observations).

Using our methodology, we do not retrieve the true miss-
ing Lorenz component and need two hidden variables to rep-
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Figure 4. Example of three statistical forecasts of x2 (a) and x3 (b) with their 50 % prediction interval using three different linear operators
with no hidden component (dashed black), one hidden component (green) and two hidden components (red). These predictions are obtained
using sequential statistical forecasts, as explained in Eq. (7), on an independent test dataset.

Figure 5. Root mean square error (a, b) and 50 % coverage probability (c, d) as a function of the lead time (x axis) for the reconstruction of
the components x2 (a, c) and x3 (b, d). These metrics are evaluated on an independent test dataset.

resent a single missing one. The reason for this mismatch is
two-fold and is mainly the linear approximation of the dy-
namical system, which implies that (1) the true missing com-
ponent, which does not have to be linear combinations of the
observed variables, is impossible to retrieve in our frame-
work and (2) two variables, using combinations of the time
derivatives of the observed variables, are needed to accu-
rately represent the complexity of the dynamics. However,
it is important to note that, even if two variables are needed
to replace a single one, the dynamical evolution of the sys-
tem is relatively well captured, for short lead times, with
our methodology. This correct representation of the evolution

might ultimately be the most important (e.g., for accurate and
reliable forecasting).

The proposed methodology uses a strong assumption: the
linear approximation of the dynamical system is global (i.e.,
fixed for the whole observation period). A perspective is to
use adaptive approximations of the model using local lin-
ear regressions. This strategy is computationally more ex-
pensive because a linear regression is adjusted at each time
step but shows some improvements in chaotic systems (see
Platzer et al., 2021a, b). In this context of an adaptive lin-
ear dynamical model, the proposed methodology could be
easily plugged into an ensemble Kalman procedure based on

https://doi.org/10.5194/npg-30-129-2023 Nonlin. Processes Geophys., 30, 129–137, 2023
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Figure 6. Relative forecast improvement measured as 1 minus the ratio between two Euclidean distances: the one calculated with model
[x2,x3,z1,z2] (at the numerator) and the one calculated with model [x2,x3] (at the denominator). The Euclidean distances are calculated in
the (x2,x3) space and correspond to the error between the forecasts (for a lead time of 0.1) and the truth, evaluated on an independent test
dataset.

analog forecasts (Lguensat et al., 2017). In future works, we
plan to compare the global and local linear approaches (i.e.,
a fixed or adaptive linear surrogate model). We also plan to
compare them to nonlinear surrogate models, based on neu-
ral network architectures with latent information encoded in
an augmented space or in hidden layers (e.g., long short-term
memory – LSTM).

In this paper, we have demonstrated the feasibility of the
method on an idealized and comprehensive problem using
the Lorenz-63 system. In the future, we plan to apply the
methodology to more challenging problems, like the Lorenz-
96 system or a quasi-geostrophic model. For application to
real data, we plan to use a database of observed climate in-
dices and try to find latent variables that help to make data-
driven predictions.

Code and data availability. The Python code is available at
https://github.com/ptandeo/Kalman under the GNU license and the
data are generated using the Lorenz-63 system (Lorenz, 1963).
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