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A B S T R A C T
Rehabilitation is the process of helping people regain or improve lost or impaired function due to
injury, illness, or disease. To assist in tracking the progress of patients undergoing rehabilitation,
this paper proposes a lightweight graph-based deep-learning model for the automatic assessment of
physical rehabilitation exercises. The model takes as input the 3D skeleton sequence of a patient
performing a movement and outputs a continuous quality score, as a means for patient supervision that
could complement or even substitute the need for ordinary clinical exams. Two graph convolutional
networks (GCNs) are sequentially employed to learn spatial and temporal features, the first learning
key joint relationships per exercise category and the second exploiting frame correlation to focus
on relevant parts of the input sequence. Furthermore, in order to enhance the significance of the
scores derived from testing, we propose implementing a classification phase. This phase enables the
regression model to produce scores exclusively for sequences specifically tailored to each exercise,
which further ensures that an input sequence is assessed only if it corresponds to a complete movement
demonstration. The evaluation of the proposed approach on the publicly available KIMORE and UI-
PRMD datasets shows that our approach outperforms the state-of-the-art in terms of quality score
prediction as well as in terms of efficiency. Our project page is available online.

1. Introduction
Human motion analysis is a highly active research area

in computer vision. While most studies in the field focus
on action detection and recognition [1, 2, 3, 4], few ad-
dress the human movement quality assessment (HMQA)
task, which identifies and quantifies possible deviations from
valid movement patterns and optionally provides feedback
on the manner in which a person performs an action. HMQA
has applications in several domains, including functional ca-
pacity evaluation, sports movement optimization, ergonomic
risk assessment, physical therapy and rehabilitation settings.
According to estimates from the World Health Organization,
approximately 2.4 billion people need physical rehabilitation
treatments to recover from surgeries or manage various
musculoskeletal disorders [5]. This number is constantly
increasing as the prevalence of chronic diseases and injuries
rises.

On the other hand, assessment of human movement in
order to quantify the level of physical impairment requires
extensively trained physiotherapists and doctors. However,
human evaluation is bound to several limitations, including
the maximum permitted of patients per doctor, the long
duration and high cost of the examination procedure, and
the presence of human-evaluator bias. Additionally, the lock-
down during the COVID-19 pandemic further increased the
demand for a safe home-based rehabilitation system that
uses ordinary sensors to obtain skeletal data. This mitigates
the need for using high-edge and expensive Motion Capture
(MOCAP) systems, whose dependence on wearable markers
and multiple distributed sensors that need to be carefully
calibrated may be overly restrictive or cumbersome. From
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the patient’s point of view, MOCAP systems further incur a
sense of discomfort that could result in unnatural movements
and in turn, less reliable assessments. Currently, MOCAP
systems are only available in clinical settings, which un-
avoidably limits access to rehabilitation services.

In this regard, computer vision-based methods present
an effective and economical solution in remote areas. They
employ ordinary RGB cameras or low-cost RGB+Depth
sensors that are readily available and more affordable while
they do not require physical contact with the subject [6].
To predict the quality score of the input human skeleton
trajectory, they typically employ deep learning techniques,
such as convolutional neural networks (CNN) [7], often in
conjunction with long short-term memory networks (LSTM)
[8], so as to extract spatial and temporal features [9]. How-
ever, these methods do not explicitly exploit the topological
structure information of the human body. To address this
limitation, seminal studies have shown the potential of graph
neural networks (GNNs) [10, 11] for motion quality assess-
ment. However, these methods use fixed hand-crafted joint
relationships (adjacency matrix) to describe the connections
between human body joints. This can be restrictive, as it
can be difficult to capture the dependencies between phys-
ically disconnected parts of the body. Furthermore, fixing
the connections between joints for all actions may limit
spatial learning since each action should have different joint
relationship constraints.

Another limitation of existing HMQA methods is that
they opt for training a separate model for each exercise,
which is computationally expensive and requires a lot of
training data, especially when there are many exercises to
be considered [12]. These observations instigated us to train
a single model to assess all physical rehabilitation exercises,
rendering our approach more efficient to train and deploy.
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Fig. 1: The proposed pipeline analyzes 3D joint positions extracted from depth or RGB data through two primary components:
the exercise classifier (EC) and the validity classifier (VC). The validity classifier assesses the coherence of the sequence before
the quality score estimation (blue polygon). Our quality estimation model is trained to match the score of the clinical expert who
relies on a video stream as well as the 3D pose sequence so as to provide the ground truth score (green polygon).

Our network consists of two main modules, namely a spatial
GCN and a temporal GCN, which are trained in an end-to-
end manner. The spatial GCN learns an adjacency matrix
for each exercise to capture the implicit connections and
important spatial information between the joints. The tem-
poral GCN takes the output of the spatial GCN as input
to model the temporal evolution of the joint movements.
It considers the frames of the motion sequence as nodes
in a graph and links them using a learnable Gaussian-like
adjacency matrix. This allows the model to learn temporal
attributes by aggregating information from temporally close
frames.

Furthermore, we observe that current HMQA methods
rely on the very strong assumption of perfect exercise selec-
tion and execution [12, 13, 14, 9, 11]. However, real-world
scenarios frequently encompass variations in performance,
leading to inaccurate quality scores when users deviate from
the instructed exercise execution. To address this challenge,
our proposed approach incorporates two classifiers (Fig 1).
Firstly, an exercise classifier identifies the action category
before applying the regression. This ensures that the quality
score estimation model receives exercise-specific data. The
secondary classifier serves to validate the input sequence
by discerning between valid and invalid exercise sequences.
This prioritization ensures that scoring focuses on entire
movements rather than isolated segments, effectively captur-
ing the dynamic essence of real-world exercise and enhanc-
ing score precision across the entire session. Furthermore,
this classifier acts as a safeguard, preventing the model

from being misled by irrelevant or out-of-distribution move-
ments. Since the existing rehabilitation datasets are small-
scale [15, 16], we conduct various data augmentations and
preprocessing techniques to improve the performance of our
model and avoid overfitting. In summary, the contributions
of this work are as follows:

• We introduce an end-to-end lightweight HMQA net-
work that adapts GCNs to learn per-exercise adja-
cency matrices to capture the most relevant joint con-
nections. In addition, it extracts temporal features
using the correlation between nearby frames.

• We incorporate a preceding action classification step
to prompt the model to generate quality scores exclu-
sively for valid sequences. This approach ensures that
the generated scores are pertinent to the context of the
given sequences.

• We conducted extensive experiments on two rehabil-
itation datasets (KIMORE [15] and UI-PRMD [16])
achieving superior performance compared to the state-
of-the-art. Additionally, our method is computation-
ally efficient and scalable, making it suitable for real-
time applications.

The rest of this paper is organized as follows. Section 2
reviews the related studies of our work. Section 3 explains
the proposed method in depth and describes the most impor-
tant modules of our framework. Section 4 describes the ex-
perimental settings. Section 5 analyzes the obtained results
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on two public datasets and compares the proposed approach
against the state-of-the-art. Finally, Section 6 presents the
conclusion of the study and the direction of future work.

2. Related work
In this section, we review the related assessment of phys-

ical rehabilitation exercises (APRE) methodologies, along-
side a discussion of associated literature in the domain of
GCNs that aligns with the scope of our research.
2.1. Assessment of physical rehabilitation exercises

In recent years, there has been a growing interest in using
artificial intelligence-based techniques to improve the accu-
racy and efficiency of APRE [17, 18]. Early studies focused
on probabilistic approaches like Hidden Markov models
(HMMs) [19, 20] and mixtures of Gaussian distributions
[21] for assessing exercises. However, these approaches re-
quire several preprocessing stages, such as feature extraction
and data cleaning. This can be time-consuming, and compu-
tationally expensive while identifying the optimal parameter
values that lead to the best performance can be particularly
challenging.

End-to-end deep learning models have demonstrated the
capacity to automatically assess a patient’s physical abili-
ties and limitations based on data collected from wearable
[22, 23] or vision sensors [24, 25]. First-generation methods
typically classify movements as either correct or incorrect
[26], without however providing details on the quality of the
movement. More recent methods overcome this limitation by
predicting a continuous score for each movement [9, 13, 27,
28] that can be more informative and allow the monitoring
of subtle progress over time.

Du et al. [29] introduced a method to quantify patient
performance using a Gaussian Mixture Model (GMM) log-
likelihood metric. They employed a scoring function to map
these performance metrics to a movement quality score
within the range of 0 to 1. Their model utilized hierarchical
processing of joint displacements across various body parts,
incorporating convolutional and recurrent layers to encode
correlations in movement data. Also, Kanade et al. [30]
proposed a transformer-based architecture and showed that
using data augmentations for generating movement quality
scores results in significant performance boosts over existing
methods. However, these methods do not explicitly consider
the topological structure of the human body. This means
that they do not take into account how the different parts
of the body are connected to each other and how they move
together. To address this limitation, many recent approaches
use GNNs to model skeletal constraints among neighboring
joints in a non-Euclidean space.
2.2. GCNs for action recognition and APRE

GNNs can extract features from data that are arranged in
an irregular graph structure. More particularly, GCNs have
been effectively applied to various tasks that involve ana-
lyzing skeleton sequences, such as in the domain of gesture
classification [31, 32], action recognition [33, 34, 35, 36],

and HMQA [37, 38, 39]. The spatio-temporal graph con-
volutional networks (ST-GCN) framework proposed by Yan
et al. [11] is the seminal work that captures both spatial and
temporal features from skeleton data, achieving remarkable
results in classifying actions.

In subsequent works, Chowdhury et al. [40] proposed a
model that uses a GCN to extract features from skeleton data,
followed by an LSTM to predict the output quality score of
an exercise. Chen et al. [41] proposed an ensemble-based
graph convolutional network (EGCN) for movement assess-
ment, which uses a combination of multiple GCNs to learn
more robust features from the movement data. Deb et al. [12]
proposed a GCN-based method that can process variable-
length inputs using LSTMs and employs self-attention of
body joints indicating their role in predicting assessment
scores. Following this work, [42] merges modified STGCN
and transformer architectures to handle spatio-temporal data
effectively and identify the most important joints. The atten-
tion mechanism within the transformer encoder selectively
focuses on pertinent segments of the input sequence. Also,
Réby et al. [24] used a transformer network to learn the
long-range dependencies in the input data, using a graph
network to learn the spatial and temporal relationships be-
tween the different body joints. However, these methods
do not identify the main joint connections for each distinct
exercise category, which could improve training and testing
performances. Additionally, they are computationally de-
manding, either because a separate model must be trained
for each exercise [12, 41] or because they use other complex
techniques such as LSTMs or transformers [40, 11]. In
contrast, our approach trains a single model that learns the
most important joint and frame connections based solely on
GCNs, which increases the efficiency of the method.

Some other related works in the action recognition field
revolve around learning a per-action adjacency matrix. More
particularly, [43] leverages ST-GCN in a multi-task learn-
ing framework to dynamically adjust the adjacency matrix,
enhancing its ability to represent intricate patterns and re-
lationships between joints. [44] introduces an adaptive ad-
jacency matrix designed with a unique partitioning strategy
for neighbor sets. This strategy decomposes the adjacency
matrix into three parametric matrices, enabling more flexible
and efficient feature extraction. Also, [45] integrates an ad-
jacency matrix generation module, which pre-analyzes node
sets and generates an adaptive adjacency matrix tailored
to the input data characteristics. Unlike previous methods
that utilize spatial and temporal layer blocks, our approach
prioritizes the identification of spatial relationships among
joints within individual skeletons. We then focus on learn-
ing temporal features between skeletons in sequence. This
methodology offers advantages in capturing dependencies
among joints and frames, as demonstrated in Section 5.

Ikram Kourbane et al.: Preprint submitted to Elsevier Page 3 of 14



Spatiotemporal sequential GCNs

Spatial
GCN

Learnable spatial
adjacency matrices

Learnable sequence
adjacency matrix

Temporal
GCN FC

Skeleton 1 features

Skeleton 2 features

Skeleton N features

...

Sequence
Features

Fig. 2: The overall architecture of the proposed end-to-end GCN-based method (cf. Quality score estimation model in Figure 1)
is as follows: The input sequence skeleton data H0

S is fed to the Spatial GCN to learn the spatial structure of each frame,
corresponding to the class of the input exercise to be optimized. The learnable features H0

T of the spatial GCN are then
concatenated and fed to the temporal GCN, which extracts features for the entire sequence based on a learnable adjacency
matrix. Finally, the output of the temporal graph is fed to a fully connected (FC) layer to estimate the quality score ȳ of the
input exercise sequence.

3. Methodology
Human actions can be viewed as a set of spatio-temporal

changes in motion. Inspired by the natural graph representa-
tion of the human body, we use GCNs (Section 3.1) to learn
the relationships between the joints in the human body. Fig. 2
shows the architecture of our method, which consists of
spatial and temporal GCNs trained in an end-to-end manner
(Section 3.2 and Section 3.3). We apply a classification
stage (Section 3.4) before the quality score regression to
ensure that the input sequence is permissible for training or
testing. The overall pipeline is complemented with different
data augmentation and pre-processing techniques that are
detailed in Section 4.2.

Unlike current GCNs-based action recognition meth-
ods that jointly interweave spatial and temporal processing
[43, 11], our sequential approach decomposes spatial and
temporal analysis to gain a deeper understanding of both
aspects. We begin by meticulously characterizing the spatial
relationships between joints within each individual frame.
This comprehensive analysis allows us to capture the intri-
cate interactions and dependencies within each skeletal pose.
Subsequently, we leverage this fine-grained understanding of
spatial configurations to learn how these relationships evolve
over time. As Fig. 2 shows, we concatenate the extracted
features from all frames to serve as input to the temporal
GCN that also learns the best frame connection pattern.

The output of the Temporal GCN is then directed to
a set of linear layers to estimate the quality score of the
input sequence. Given that we are dealing with a regression
problem, we employ the L1 loss function to quantify the
difference between the predicted value and the ground truth
quality score:

L1 =
s
∑

i=1
(‖y − ȳ‖) (1)

where s is the number of sequences in the dataset and y and
ȳ are the ground-truth and predicted quality score values,
respectively.

3.1. Graph Convolutional Networks
GCNs are a type of neural network that can be used to

learn representations of nodes in graphs. A graph, denoted
by G = (V ,E) is a data structure that consists of a set of
nodes, V , and a set of edges, E, where the edges represent
connections between the nodes. GCNs apply convolution
operations by taking into account the relationships between
the nodes in a graph represented by the adjacency matrix A,
enabling them to learn more complex patterns than ordinary
neural networks.

Specifically, an adjacency matrix A is a square matrix
used to represent a graph. For a graph with V nodes, the
adjacency matrix A is a V × V matrix where each element
Ai,j indicates the presence or absence of an edge between
nodes i and j. The values in the matrix can be binary or
weighted.

In human motion analysis, the adjacency matrix encodes
crucial information about the relationships between nodes. It
helps the model understand which nodes (e.g., body joints)
are more closely related, either spatially (e.g., anatomically
close joints) or temporally (e.g., movements occurring in
close succession). This structure enables the GCN to ef-
fectively aggregate and propagate information across the
network.

In our pipeline, the adjacency matrix is initially con-
structed based on a predefined human-topology. During
training, this matrix is updated to better capture the rela-
tionships between nodes, adapting to each exercise specific
characteristics. The reconstructed matrix converges towards
a form that emphasizes connections based on both spatial
and temporal proximity.

The adjacency matrix is used in the convolutional oper-
ations of the GCN to determine how features from different
nodes are combined. The matrix guides the convolution pro-
cess, ensuring that relevant information is shared between
connected nodes, thereby improving the model’s ability to
learn meaningful patterns in the data. The propagation rule
typically used in GCNs is defined as:

Hk+1 = ReLU (AHkW k) (2)
Ikram Kourbane et al.: Preprint submitted to Elsevier Page 4 of 14
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where ReLU is the activation function, Hk and W k are the
3D positions and the weights in the ktℎ layer, respectively,
where k >= 0. Our two classifiers, along with the spatial
and temporal GCNs, consist of two layers each (which sets
k=2), that have the internal structure presented in [10]. The
number of frames in the temporal GCN is fixed to a constant
M .
3.2. Learning spatial features using per-action

adjacency matrix
We learn a separate adjacency matrix for each of n dif-

ferent types of exercises so as to allow variable importance
to the body joint connections (Fig. 2). During inference,
our exercise classifier EC selects the adjacency matrix that
corresponds to the input sequence. To allow variable joint
connectivity depending on the temporal and spatial context
while assessing rehabilitation exercises, we generalize the
basic propagation rule to the following equation:

Hk+1
S = ReLU

(

EC
(

(A1|A2|....|An)Hk
SWSs

k)
)

(3)

where k >= 0 and the and H0
S represents the input feature

matrix for the first layer. Each row corresponds to the 3D
positional coordinates of a node (joint) in the input skeleton
sequence. We obtain the features for the second layer by
multiplying the adjacency matrix with H0

S and the learn-
able weights. The adjacency matrix is selected by EC and
is optimized to identify the nodes that will contribute to
information aggregation for that specific movement class.

Such an approach is advantageous compared to a con-
ventional setting of the adjacency matrix A according to a
predefined human body topology [11], that limits the ability
of the model to capture the feature information of nodes that
are far apart in the topology of the human body graph. For
example, the "squatting" action (cf. Figure 1 in [15]) requires
the model to be able to capture the relationship between the
shoulder and knee joints, despite being physically discon-
nected in the topology of the human body graph. As a result,
the model may not be able to learn to capture the subtle
nuances of this action because of the absent connections.
Another example can be observed in the context of actions
involving intricate movements spanning multiple body parts.
For instance, actions like pelvis rotation demand a model
capable of understanding the interplay between the pelvis,
spine, and shoulder joints. A global adjacency matrix might
miss these crucial connections, impairing the ability of the
model to accurately recognize and assess such complex
movements. Hence, incorporating a more flexible adjacency
matrix that captures a greater variability of movements can
significantly enhance performance and generalizability.

Furthermore, fixing the adjacency matrix in all graph
convolutional layers and input samples is not the best choice
for action analysis, because the relevant connections be-
tween joints can vary depending on the action being per-
formed. In other words, different human actions may not
necessarily share the same relationship constraints, since
they do not have the same joint configurations. For example,

when doing a squat, the main joints involved are the knees,
hips, and ankles. However, when doing a push-up, the main
joints involved are the shoulders, elbows, and wrists.

Therefore, we suggest learning n adjacency matrices,
denoted as Ai, corresponding to the n in total possible move-
ments. These matrices are updated within the same model
which allows us to identify the relevant joint connections
during training. The adjacency matrices are initialized with
the skeleton-based topology, where each joint is only con-
nected to its immediate neighbors. The parameters of these
matrices are optimized during training using the L1 loss.
In test time, we learn the adjacency matrix corresponding
to the input skeleton sequence class identified by our action
classifier EC.
3.3. Learning temporal features using GCNs

Previous APRE methods employ GCNs to extract spatial
features and incorporate an LSTM [8] or transformers [46] at
the end of the architecture to extract temporal features from
the sequence.

Our approach extends GCNs to learn temporal informa-
tion directly, without the need for an additional temporal
module (Fig. 2). We achieve this by considering the frames
of the motion sequence as nodes in a graph and linking them
using a learnable temporal adjacency matrix AG. We have
observed that the learnable frame connections converged to
a Gaussian-like adjacency matrix. This indicates that the
model is more attentive to information from temporally close
frames than temporally distant frames, which is essential
for understanding the dynamic nature of human motion. For
example, the model can learn that the frame in which a
person’s knee begins to bend is temporally close to the frame
in which their hip begins to bend when performing a squat.
The forward pass of the temporal GCN is defined as follows:

Hk+1
T = ReLU (AGHk

TW
k
T ) (4)

where k >= 0 and H0
T are the output learnable spatial

features of the spatial GCN, which serve as the input features
for the first layer in our temporal GCN.

This approach proves more effective than previous GCN-
based temporal modules, such as [11], which restrict learn-
ing to only the previous and next frames. This is because
our method allows the model to learn temporal dependencies
over a broader range of frames, capturing more nuanced
motion patterns and transitions. Consequently, the model
gains a richer and more comprehensive understanding of the
temporal dynamics in human motion sequences, leading to
improved performances (see Section 5)
3.4. Out-of-distribution sequence identification

Current APRE approaches often operate under the unre-
alistic assumption that only valid sequences will be present
during testing, thus generating scores regardless of the input
sequence’s validity. In other words, they presuppose that
users will execute exercises in accordance with the pre-
scribed guidelines and without any interruptions in move-
ment sequences. Additionally, users are typically expected

Ikram Kourbane et al.: Preprint submitted to Elsevier Page 5 of 14
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Fig. 3: Examples of possible received sequences during testing
time. Rows from top to bottom represent: a valid lifting arm
movement, an incomplete lifting arm movement, an incorrect
exercise class represented by a trunk rotation movement from
the KIMORE dataset [15], and a dancing movement sequence
from an out-of-distribution dataset [47].

to designate which exercise class is about to be executed.
However, this assumption overlooks the inherent likelihood
of human errors and inconsistencies during exercise execu-
tion. Such errors can significantly impact the accuracy of
quality scores generated by these models, rendering them
unreliable for providing meaningful feedback. Therefore,
it is imperative for the model to possess the capability to
identify the situations, which are illustrated in Figure 3:

1. Incompletely executed movements
2. Incorrect exercise classes
3. Out-of-distribution movements
Our approach addresses the limitations of previous meth-

ods that struggled with scoring such sequences, by using the
previously described EC as well as a validity classifier VC
(cf. Figure 1). By incorporating an exercise classification
stage before regression, we enforce that the model will
generate a score for the correct exercise class. To do so,
we train our classifier using a dataset that represents in-
distribution data [15]. By incorporating this capability, users
can receive reliable feedback while our EC can select the
adjacency matrix that should be used in test time.

Sequences may sometimes be incomplete or include
movements that are not part of the dataset. These out-
of-distribution movements are either underrepresented or
entirely absent in the training data used to develop the
model. Since the model is unfamiliar with these sequences,

accurately estimating the quality score becomes challeng-
ing. Additionally, clinicians may not be interested in these
movements as they do not correspond to the typical or
expected patterns relevant to the specific clinical context or
diagnosis. Therefore, identifying and filtering out these out-
of-distribution movements is crucial to ensure that the model
outputs are clinically meaningful and reliable.

The role of the VC is to output a probability indicating
the validity of the sequence. To establish the ground truth
for training our VC, we manually remove outliers that are
caused by sensor errors or subjects engaging in activities
unrelated to the intended exercise, such as talking or walking
at the beginning of the exercise. Keeping only valid move-
ments makes the data more representative of the underlying
distribution.

After that, we randomly select a percentage between 25%
and 75% of the length of the original sequence to determine
the length of the incomplete sequence. In the sequel, another
random number is chosen to designate the starting position
of cropping. The newly extracted sub-sequence is then an-
notated as class 1, while the original complete sequence
is annotated as class 0. Additionally, we include sequences
from the NTU-60 dataset [47] into class 1 to represent
out-of-distribution movements. This augmentation further
enhances the model’s ability to discern between relevant
and irrelevant movements, enhancing its robustness and
adaptability to diverse scenarios.

We perform down/up sampling to standardize the size
of all cropped sequences and NTU sequences to a fixed
constant M . We employ the CrossEntropy loss function to
classify both the exercise class and the validity of the input
sequence as expressed as follows:

LCE =
c
∑

i=1
ti log(pi) (5)

where n is the number of classes, ti is the ground truth label
and pi is the SoftMax probability for the itℎ class.

4. Experimental settings
In this section, we thoroughly detail the datasets used,

including their sources and characteristics, while also re-
calling the evaluation metrics for model performance. We
further detail the protocols used for training and evaluation
for the sake of clarity and result reproducibility. Finally, we
explore data augmentation techniques aimed at bolstering
model robustness and generalization, and we elaborate on
preprocessing methods employed to prepare the data for
optimal model performance.
4.1. Datasets

We conducted our experiments using two publicly avail-
able, rehabilitation exercise datasets.

The KIMORE dataset [15] is a valuable resource for
research on human motion analysis and rehabilitation. It is
a well-curated dataset that has been carefully annotated by
medical experts. The KIMORE dataset includes a variety

Ikram Kourbane et al.: Preprint submitted to Elsevier Page 6 of 14
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of low-back pain exercises and has three data inputs: RGB,
depth videos, and skeleton positions for 25 joints acquired
using a Kinect sensor. It was collected from 78 subjects,
including 44 healthy subjects and 34 patients with pain and
postural disorder (Parkinson, back-pain, stroke). This dataset
also provides a set of clinical features, which are invariant
among people and selected on the basis of the scope of the
exercise.

The UI-PRMD dataset [16] contains human motion data
collected from healthy individuals performing ten common
rehabilitation exercises targetting different body regions.
The dataset includes positions and angles of the body joints
in the skeletal models provided by the Vicon and Kinect
sensors. For each exercise, ten healthy subjects perform ten
repetitions in both a correct and incorrect manner. Each
sequence is about 20 seconds, and the number of joints is 25
and 39 for Kinect and Vicon, respectively. The performance
scores are generated based on a Gaussian mixture model.
A scoring function is defined to map the performance metric
values into movement quality scores in the range [0, 1]. Since
this dataset is collected from healthy individuals, the data
may be less representative of the movements of patients with
injuries or disabilities.
4.2. Data augmentation and pre-processing
Data augmentation Due to the scarcity of annotated data,
there is a lack of rehabilitation exercise datasets. The KI-
MORE [15] and UI-PRMD datasets [16] are small-scale
and suffer from a data imbalance problem, where healthy
people outnumber unhealthy people by a large margin. In
this respect, training a model without data augmentation
could be problematic and lead to overfitting.

To alleviate this problem, we augment the size and
diversity of the datasets by generating new motion sequences
from the existing data. To generate sequences of different
speeds, we randomly add or remove L frames, respectively.
To ensure that the quality score of the newly generated
sequence is still relevant to the original, the selected random
number L is in the range [0%,25%] of the sequence length.

Relying on feedback received from clinicians, adjusting
the speed of the original sequence does not compromise
the quality score. This is because individuals may perform
actions at varying speeds, influenced by factors such as
age and physical condition. Besides, we conducted several
experiments to empirically validate this configuration for
data augmentation. We note that the used data augmentation
does not compromise the sequence’s validity, as the added
or removed frames are not consecutive. In contrast, the
sequence becomes invalid for the classifier if we crop or add
blocks of consecutive frames omitting significant motion
segments (25% and 75% of the length of the sequence),
which makes the linear interpolation harder.

Lastly, to enhance the dataset’s diversity and robustness,
we employed rotation augmentation that introduces con-
trolled variations in skeleton orientation, simulating differ-
ent poses and viewpoints. By doing so, we strengthen the

dataset’s ability to generalize across a wider range of real-
world scenarios, improving the model’s performance. We
also use a balanced data loader during training to ensure that
each batch of data contains samples from all classes in equal
proportions. This is important to avoid overfitting to majority
classes.
Pre-processing To ensure consistent origin points across
all sequences, we employ a sequence-based normalization
technique. In particular, we subtract the spine coordinates
of the first frame from each skeleton in the sequence. This
enhances the model performance since it standardizes the
starting position across all sequences, thereby mitigating
potential biases introduced by variations in initial skeleton
positions. By relying on such a uniformly set reference
frame, the model can more accurately learn the underlying
patterns and spatial dependencies of the data without being
influenced by irrelevant positional discrepancies. We ulti-
mately excluded the joints of the hands and feet as they were
deemed irrelevant and introduced additional noise into the
data. It is noteworthy that our comparisons are against state-
of-the-art (SOTA) methods employing 25 joints to ensure
a fair assessment. In the ablation studies, we presented the
findings of the 17-joint configuration to showcase its supe-
rior efficacy over the 25-joint configuration in the KIMORE
dataset [15].
4.3. Implementation Details

The proposed model is trained on the skeletal data of KI-
MORE and UI-PRMD datasets after data augmentation and
pre-processing as explained in section 4.2. The normalized
3D joint positions of the skeletons are used as input to the
Spatial GCN. Following [29], the network is trained on a
0.8/0.2 train/test. We utilized the Adam optimizer, known
for its efficiency and effectiveness in training deep learning
models, with an initial learning rate set to 0.0001. Addition-
ally, we set the batch size to 16, balancing computational
efficiency and the stability of gradient updates. A patience
value of 500 epochs is set to monitor the validation loss.

An extensive grid search was carried out for selecting
hyper-parameters of GCNs (). In particular, we set the num-
ber of layers to k=2 for both the spatial and the temporal
GCN and use the mean function to aggregate information
from adjacent joints at each layer in the two GCNs. We
set the number of frames M in spatial, temporal and our
classifiers-based GCN to 100.

We performed all experiments using the PyTorch frame-
work on a machine with an Intel i7 4.20 GHz processor and
Tesla T4 graphic card. In the context of human movement
quality assessment, the Mean Absolute Deviation (MAD) is
ordinarily used to measure the difference between the ground
truth movement quality scores and the predicted ones:

MAD = 1
b

b
∑

i=1
‖y − ȳ‖ (6)

where b is the sample size and y and ȳ are the ground-truth
and predicted quality score values, respectively. MAD is a
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Table 1
Results of ten exercises on the UI-PRMD dataset using the evaluation metric MAD (bold typeface shows best performances)
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]
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]
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9]

1 0.006 0.009 0.011 0.011 0.022 0.011 0.011 0.018 0.030
2 0.008 0.006 0.009 0.006 0.008 0.028 0.029 0.044 0.077
3 0.009 0.013 0.013 0.010 0.016 0.039 0.056 0.081 0.137
4 0.006 0.006 0.009 0.014 0.016 0.012 0.014 0.024 0.036
5 0.003 0.008 0.009 0.013 0.008 0.019 0.017 0.032 0.064
6 0.004 0.006 0.013 0.009 0.008 0.018 0.019 0.034 0.047
7 0.009 0.011 0.022 0.017 0.021 0.038 0.027 0.049 0.193
8 0.013 0.016 0.020 0.017 0.025 0.023 0.025 0.051 0.073
9 0.006 0.008 0.013 0.008 0.027 0.023 0.027 0.043 0.065
10 0.028 0.031 0.014 0.038 0.066 0.042 0.047 0.077 0.160

Avg 0.009 (-22%) 0.011 0.013 0.014 0.021 0.025 0.027 0.045 0.088

simple and effective measure of model performance where
lower values indicate better performance.

In addition to the MAD metric, we report Root Mean
Square Error (RMSE) and Mean Absolute Percentage Error
(MAPE), which are commonly used the field of APRE to
assess the accuracy of predictive models.

RMSE, measures the average magnitude of the errors
between predicted scores and the ground truth. In particular,
it is calculated by taking the square root of the average of
the squared differences between predicted and actual values.
It provides a single measure of the magnitude of prediction
errors, with lower values indicating better accuracy. It is sen-
sitive to large errors due to the squaring operation, making
it particularly useful for identifying outliers or extreme de-
viations in predictions. Mathematically, it can be expressed
as:

RMSE =

√

√

√

√
1
b

b
∑

i=1
(y − ȳ)2 (7)

MAPE, on the other hand, measures the average absolute
percentage difference between predicted and actual values.
Mathematically, it can be expressed as:

MAPE = 1
b

b
∑

i=1

|

|

|

|

|

|

y − ȳ
y

|

|

|

|

|

|

× 100 (8)

5. Results
In this section, we comprehensively evaluate our findings

by juxtaposing them against state-of-the-art methodologies
on the two referenced datasets [15, 16]. Additionally, we
offer a qualitative analysis that provides further insights into
the efficacy of our approach, we conduct several ablation
studies to meticulously validate our methodology and finally,

we present the results of our classifier validation, affirming
the reliability and accuracy of our models.
5.1. Comparison with state-of-the-art approaches

To ensure a fair assessment of our GCN-based model
against state-of-the-art deep learning techniques [42, 12, 13,
14, 9, 28, 48, 29, 11], our reported results are without using
the classification stage, which involves training the VC on
a filtered dataset. Our approach, denoted as STGCN-Seq,
underwent validation using the original datasets employed
in the aforementioned studies. We strictly adhered to the
same evaluation criteria and training-test partitioning as
specified in [9, 12, 42]. In particular, we report the results
of a 10-run evaluation to assess the performance of our
model. We conduct both training and testing ten times to
ensure the reliability of our results. For each run, we record
performance metrics such as MAD, RMSE, and MAPE.
After completing the ten runs, the values of these metrics are
averaged to provide a comprehensive measure of the model’s
performance. The standard deviation across different runs is
0.0001 for the UI-PRMD dataset and 0.002 for the Kimore
dataset. These small error bands highlight the low variability
and high robustness of the performance of the model. We
note that the metric scores provided in our comparison are
directly sourced from the original papers, ensuring accuracy
and reliability in our reporting. Additionally, the percentage
of improvement is calculated relative to the second-best
method in the comparison.

Initially, we present our findings based on the analysis
conducted on the ten exercises comprising the UI-PRMD
dataset. Subsequently, we provide detailed results for each
of the five exercises contained within the KIMORE dataset.
As illustrated in Table 1 and Table 2, our proposed model
exhibits superior performance across multiple evaluation
metrics, including MAD, RMSE, and MAPE. Notably, we
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Table 2
Results of five exercises on the KIMORE dataset (bold typeface shows best performances)
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[1
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[2
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[2
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M
AD

1 0.543 0.641 0.799 0.977 1.757 1.141 0.889 1.378 1.271
2 0.511 0.753 0.774 1.282 3.139 1.528 2.096 1.877 2.199
3 0.213 0.210 0.369 1.105 1.737 0.845 0.604 1.452 1.123
4 0.204 0.206 0.347 0.415 1.202 0.468 0.842 0.675 0.880
5 0.488 0.399 0.621 1.536 1.853 0.847 1.218 1.662 1.864

Avg 0.391 (-11%) 0.441 0.582 1.063 1.937 0.965 1.129 1.408 1.467

RM
SE

1 1.492 2.020 2.024 2.165 2.916 2.534 2.017 2.344 2.440
2 1.124 1.468 2.120 3.345 4.140 3.738 3.262 2.823 4.297
3 0.337 0.487 0.556 1.929 2.615 1.561 0.799 2.004 1.925
4 0.218 0.527 0.644 2.018 1.836 0.792 1.331 1.078 1.676
5 0.724 0.735 1.181 3.198 2.916 1.914 1.951 2.575 3.158

Avg 0.779 (-25%) 1.047 1.305 2.531 2.884 2.108 1.872 2.164 2.699

M
AP

E

1 1.362 1.623 1.926 2.605 5.054 2.589 2.339 3.491 3.228
2 0.766 0.974 1.272 3.296 10.436 3.976 6.136 5.298 6.001
3 0.620 0.613 0.728 2.968 5.774 2.023 1.727 4.188 3.421
4 0.514 0.541 0.824 2.152 3.901 2.333 2.325 1.976 2.584
5 1.412 1.217 1.591 4.959 6.531 2.312 3.802 5.752 5.620

Avg 0.934 (-6%) 0.993 1.268 3.196 6.339 2.647 3.266 4.141 4.170

achieve the lowest average scores on both the UI-PRMD
and KIMORE datasets, with particularly significant im-
provements observed on the KIMORE dataset. The superior
performance can be attributed to several factors. Firstly, the
KIMORE dataset encompasses a wider array of complex
exercises involving both healthy and unhealthy subjects, pro-
viding a more challenging and diverse training environment.
Additionally, the data collected from the Kinect v2 sensor
introduces noise and variability, contrasting with the more
precise poses obtained using Vicon in the UI-PRMD dataset.
This variability and complexity in the KIMORE dataset pose
a greater challenge for developing generalizable models. In
contrast, the controlled and straightforward nature of the UI-
PRMD dataset allows for various methods to demonstrate
relatively comparable performance levels.

To further demonstrate the effectiveness of our method,
we visualize the ground truth and predicted movement qual-
ity scores for all the test sequences in the KIMORE dataset as
shown in Figure 4. As can be observed, the predictions of our
model were very close to the clinicians’ assessments, which
is a strong indicator that our method can capture the subtle
nuances of human movement quality (ideal performance is
drawn as the diagonal blue line). The commendable results
achieved by our method can be attributed to several factors.
Firstly, the utilization of per-action adjacency matrices en-
hances the accuracy of quality score estimation, indicating
the efficacy of this approach in capturing the nuanced rela-
tionships between joints for each specific exercise. Further-
more, our findings underscore the effectiveness of sequential
learning of spatial and temporal features through GCNs.

This methodology demonstrates its potential in achieving
good performance.

Finally, our analysis indicates that the model perfor-
mance varies between healthy and pathological subjects.
Specifically, we observed that the model generally achieves
higher accuracy in estimating quality scores for sequences
collected from healthy subjects (MAD = 0.379) compared
to those from pathological subjects (MAD = 0.422). This
discrepancy is likely due to the greater variability and com-
plexity in the movement patterns associated with pathologi-
cal conditions, which can challenge the ability of the model
to generalize effectively.
5.2. Computational Cost

Our proposed method undergoes rigorous testing, evalu-
ating both computational efficiency and accuracy in quality
score estimation on Ex5 of the KIMORE dataset. Testing
on a single Tesla T4 GPU with 16 GB of RAM reveals
that our model processes a video in 8.3 milliseconds on
average, demonstrating its efficiency and capacity for real-
time performance. With a modest parameter count of 123K,
our model stands out as lightweight compared to contem-
porary approaches, notably in contrast to Deb et al. [12],
which boasts 772K parameters and ranks as the second-
best performer in UI-PRMD and third-best in KIMORE.
This efficiency is attributed to our approach’s avoidance of
LSTMs for processing entire 3D skeleton input sequences
and eschewing attention mechanisms, which typically de-
mand substantial computational resources. The reported ex-
ecution times position our method as particularly suitable
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Table 3
Computational cost for KIMORE dataset.

Method Phase # of videos Score estimation
time

# of parameters Classification
time

Deb et al. [12] Train 373 27h 772K -
STGCN-Seq Train 373 58min 123K 50 min
Deb et al. [12] Test 100 6s 772K -
STGCN-Seq Test 100 1s 123K 0.8s
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Fig. 4: Comparison of the prediction of the proposed approach
ȳ against the clinical assessment y for the KIMORE dataset.

for rehabilitation applications, where timely processing is
paramount.

Furthermore, our proposed classification stage requires
less time compared to the quality score estimation task.
Despite this, it has a crucial impact as it alerts the user (clini-
cian) if the selected sequence does not include a complete or
properly executed movement, which is essential for clinical
and diagnostic applications.
5.3. Feedback and effect of joints in different

rehabilitation exercises
In support of our proposal in learning separate adjacency

matrices per exercise type (cf. Section 3.2), we provide
illustrations of the learnable adjacency matrices, which ef-
fectively highlight the significance of joint connections in
each specific exercise (see Figure 5).

For instance, examining the adjacency matrix for the
squat exercise reveals a pronounced emphasis on the inter-
connections between the base of the spine and the knees,
highlighting their pivotal roles in executing the exercise
accurately. Similarly, the adjacency matrix for the pelvis ro-
tation exercise highlights the heightened significance of the
spine and the hips, indicating their crucial roles compared
to the knees in this specific exercise. Moreover, the findings
reveal the model’s ability to discern and learn connections

among joints that are physically distant from each other, ex-
emplified by its comprehension of the relationship between
the left knee and the right knee in the squatting exercise.

Additionally, Figure 5) presents the Standard Deviation
(STD) matrix for all the KIMORE dataset to highlight the
effectiveness of adopting a per-action adjacency matrix over
a global one for the entire dataset. The non-negligible differ-
ences in cell values within the STD matrix suggest that it is
more informative to capture the subtle variations unique to
each action as opposed to having a single global adjacency
matrix, which reinforces the effectiveness of our approach in
accurately modeling intricate movement patterns.
5.4. Ablation studies

We conducted several ablation studies in the KIMORE
dataset to examine the specific contributions of individual
components within our STGCN-Seq model. This decision
was pivotal, as the KIMORE dataset encompasses data from
both healthy and unhealthy subjects, providing a more com-
prehensive assessment compared to the UI-PRMD dataset,
which is restricted to healthy participants.

In the B experiment, we trained a model that learned a
global adjacency matrix for all the exercises. Quantitative
results in Table 4 shows that learning a global adjacency
matrix for the entire dataset exercises results in inferior
performance compared to our per-action adjacency matrix
STGCN-Seq, which further outperforms the model that uses
a skeleton-based adjacency matrix (see experiment C). In
this case, spatial features are learned from only physically
connected joints as done in [11].

In the D experiment, we investigated the effectiveness
of our learnable temporal adjacency matrix. To do so, we
trained a model with an adjacency matrix that linked each
frame with its immediate next and previous frame. Our
results showed that the learnable adjacency matrix signif-
icantly improved the performance of our full model. To
further prove the effectiveness of our model, we compare it
against the E experiment that uses an LSTM instead of our
temporal GCN. In particular, we implemented two LSTM
layers, each comprising 128 hidden units. The Rectified Lin-
ear Unit (ReLU) activation function was utilized to introduce
non-linearity and facilitate the model’s learning process.
To prevent overfitting, a dropout rate of 0.1 was applied,
randomly deactivating a portion of the neurons during train-
ing. For optimization, we employed the Adam optimizer,
initializing it with a learning rate of 0.0001. Additionally,
the sequence length was set to 100, aligning with the input
size of the temporal GCNs.
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(a) STD Adjacency (b) Pelvis rotation adjacency matrix (c) Squatting adjacency matrix

(d) Human skeleton model (e) Important joints in pelvis rotation (f) Important joints in squatting

Fig. 5: The visualization illustrates the standard deviation matrix for all per-action learnable adjacency matrices within the
KIMORE dataset along with the human topology model. Additionally, we provide examples of the pelvis rotation and squatting
exercises, displaying their respective learnable adjacency matrices and emphasizing the key joints for each exercise. The size of
the circles reflects the significance of the joints in their respective exercises.

Table 4
Ablation studies of the proposed approach on the KIMORE dataset using the MAD metric.

Adjacency Data
Method Per-action Global Skeleton Temporal Prev-next GCN-LSTM Augmentation Normalization 17-joint MAD
STGCN-Seq ✓ ✓ ✓ ✓ 0.391
B ✓ ✓ ✓ ✓ 0.704
C ✓ ✓ ✓ ✓ 0.548
D ✓ ✓ ✓ ✓ 0.586
E ✓ ✓ ✓ ✓ 0.553
F ✓ ✓ ✓ 0.591
G ✓ ✓ ✓ 0.454
H ✓ ✓ ✓ ✓ ✓ 0.379

Table 4 shows that our approach attains better perfor-
mances using only GCNs, which are more efficient.

In the F and G experiments, we conducted a compara-
tive analysis of our model’s performance with and without
data augmentation and preprocessing. Our findings under-
scored the critical role of data augmentation in enhancing the
model’s overall performance, highlighting its significance in
achieving improved results in the MAD metric. Additionally,

we observed that the used preprocessing technique helps to
get more accurate quality scores.

In the final experiment H, our model STGCN-Seq was
deployed after omitting the joints associated with the hands
and feet. Specifically, we utilized 17 joints instead of the 25
joints typically included in the Kinect-based model. Remark-
ably, we observed a notable improvement in performance
on the KIMORE dataset subsequent to this adjustment. This
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Table 5
Ablation studies of the used hyper-parameters on the KIMORE dataset using the MAD metric.

# of GCN layers Aggregation function in GCN # of frames
Method 1 2 3 mean max sum 50 100 200 MAD
STGCN-Seq ✓ ✓ ✓ 0.391
I ✓ ✓ ✓ 0.677
J ✓ ✓ ✓ 0.421
K ✓ ✓ ✓ 0.412
L ✓ ✓ ✓ 0.399
M ✓ ✓ ✓ 0.430
N ✓ ✓ ✓ 0.473

enhancement can be ascribed to the recognition that these
omitted joints hold less relevance for the actions within this
dataset. Moreover, their exclusion helped mitigate noise and
pose tracking complexities, especially concerning the Kinect
V2 sensor’s performance.

In the second part of our ablation studies, we conducted
a comprehensive evaluation to determine the optimal hyper-
parameters for our GCNs (Table 5). We tested various con-
figurations, including the number of layers and aggregation
functions. Additionally, we selected the optimal number of
frames M to resize the input sequence.

• Number of layers: we experimented with using 1, 2,
and 3 layers (baseline I, baseline STGCN-seq experi-
ment, and baseline J) in both the spatial and temporal
GCN components. The purpose of these tests was to
determine the optimal depth for capturing spatial and
temporal dependencies in the data.(Table 5 indicates
that a two-layer configuration achieves the best per-
formance, likely due to its balance between model
complexity and the ability to capture essential features
without overfitting.

• Aggregation function: we explored different strate-
gies for aggregating information from adjacent joints
within each layer of the GCNs. We compared the
use of maximum (baseline K), summation (baseline
L), and average (mean) functions to integrate the fea-
tures from neighboring nodes. The results inTable 5
demonstrated that using the mean function in baseline
STGCN-seq consistently provided better performance
than the other methods. This may be attributed to
the mean function’s ability to smooth out noise and
maintain a more stable representation of the joint
information, which is crucial for accurate movement
analysis and prediction.

• Number of frames: we also investigated the impact
of selecting different numbers of frames M on the
performance of our model. We observed that using
100 frames provided a balanced representation of the
input sequence, capturing sufficient temporal informa-
tion without overwhelming the model with excessive
data(Table 5). In contrast, using only 50 frames (base-
line M) resulted in a loss of crucial temporal details,

Fig. 6: Confusion matrix of our exercise classifier and validity
classifier on the KIMORE dataset.

while 200 frames (baseline N) introduced unneces-
sary complexity and noise, ultimately degrading the
model’s performance.

5.5. Validation of the classification module
Beyond assessing the quality score estimation, we offer

a thorough evaluation of the action classification task’s
performance. The accuracy metric yielded a score of 0.96
for the exercise classifier and 0.93 for the validity classifier.
Furthermore, we provide the confusion matrices of both
classifiers in Figure 6, enabling a detailed examination of the
classification performance across different action categories.

We also assessed the impact of our proposed classifica-
tion stage on the quality score regression performance. The
MAD results, with a value of 0.348, demonstrate a signif-
icant enhancement, indicating an 11% improvement com-
pared to the model without the classification stage (MAD=
0.391). This highlights the effectiveness of the validity clas-
sifier, which not only constrains the model’s output to valid
sequences but also strengthens the robustness and accuracy
of our exercise performance assessment.

6. Conclusions and future work
In this work, we adopt GCNs to learn spatial and tempo-

ral features for APRE. Our approach attained performance
superior to the state-of-the-art methods since it learns the
implicit connections between joints using a single model.
This allows our model to capture the global structure of the
human body and the relationships between different body
parts, which is essential for understanding and analyzing
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complex movements. Furthermore, our study demonstrates
that integrating a classification stage before evaluating the
quality score prompts the model to generate quality scores
exclusively for valid sequences. This refinement improves
the robustness and accuracy of our model’s predictions.

As part of our future work, we will investigate the use
of different types of adjacency matrices to further improve
the performance and generalization capacity of our model.
For example, we could explore the use of weighted adja-
cency matrices during the same exercise. At each moment,
we could assign different weights to different connections
between joints based on their importance. We could also
explore the use of adjacency matrices that are specific to
different body parts, which would allow our model to better
capture the unique joint relationships in each body part.

Additionally, the findings of this study underscore the
critical need for comprehensive rehabilitation exercise datasets.
These datasets should feature balanced class distributions
across diverse health conditions and incorporate controlled
conditions during exercise execution. Such an approach
ensures that the dataset reflects the full spectrum of scenario
encountered in real-world rehabilitation settings, thereby
enabling more robust and generalizable model training.
Moreover, the dataset will include various exercises, allow-
ing us to further explore and demonstrate the versatility and
effectiveness of our learnable adjacency matrices across a
broader range of movements.
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