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Abstract: In this study, a metamaterial-based LTCC compressed Luneburg lens was designed, man-
ufactured and measured. The lens was designed at 60 GHz to utilize the unlicensed mm-wave
spectrum available for short-range high-capacity wireless communication networks. The transforma-
tion optics method was applied to ensure the compression of the Luneburg lens antenna and thus
maintain a low-profile structure. The two different types of unit cells for low and high permittivity
regions were considered. The parametric study of the effect of compression on lens performance
was presented. The antenna is implemented with a standard high-permittivity LTCC process, and
details of the manufacturing process for the metamaterial lens are discussed. The low-profile lens
is thinner than 2 mm and measures 19 mm in diameter. A size reduction of 63.6% in comparison
with a spherical lens was achieved. The near-field to far-field mm-wave measurement technique
is presented, and the measurement results show a peak antenna gain of 16 dBi at 60 GHz and a
beam-scanning capacity with 1 dB scan loss within a 50◦ field of view.

Keywords: antenna; lens; metamaterial; mm-wave

1. Introduction

Nowadays, the demands on high-data-rate transmission are growing with the advance
of modern wireless communications systems to 5G and beyond [1]. The wider use of the
mm-wave spectrum has been proposed to increase the bandwidth as well as the spatial
diversity to employ available propagation channels more efficiently [2]. Of particular
interest is an unlicensed spectrum around 60 GHz that enables high-data-rate communi-
cations for multiple consumer applications [3]. This band is characterized by high path
loss and the blocking of transmission losses by ordinary objects. This, in turn, leads to the
requirements of high gain and beam steering capability of antenna systems to ensure the
efficient operation of wireless networks [4].

Considering various candidate technologies such as printed circuit antenna arrays [5]
and reflector antennas [6], some of the lens antennas stand out as solutions that offer natural
beamforming properties with large radiation aperture resulting in a high gain [7].

The existing types of lenses for microwave applications vary from homogeneous
dielectric lenses [7,8] to gradient-index lenses [9]. A widely known example of the latter
is a Luneburg lens antenna, which has drawn the attention of researchers for enabling
multibeam performance without scan loss within a wide field of view [10]. Such an antenna
can be realized in a fully spherical shape or in a compressed form [11].

The compressed Luneburg lens is designed using a transformation optics approach
and has been realized in X-band with a set of ceramic shapes [12] as well as by an assembly
of stacked multilayer printed circuit boards [13] or by using a 3D printing technique [14].
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In this paper, we address the challenge of building a solid metamaterial-based lens
at 60 GHz. The low-temperature co-fired ceramics (LTCC) process is employed to ensure
the appropriate tolerance and robustness of implementing a compressed Luneburg lens
antenna operating at 60 GHz. The LTCC process allows further integration of the lens in an
antenna-in-package solution and is of great interest for such lens antenna development.

The initial theoretical development of the structure was presented in [15]. The main
contributions of this paper are summarized as follows:

• The paper significantly expands the design study by including a parametrical analysis of
various aspects of the compressed lens and their effect on the LTCC lens performance.

• This paper presents details of the manufacturing of the LTCC lens and low-permittivity
metamaterials in particular.

• A novel method of the near-field measurements of the 60 GHz lens is presented in
the paper.

• Measurement results that verify the initial theoretical design proposed in [15] are also
presented in this paper.

The paper is organized as follows: Section 2 discusses details of the compressed
Luneburg lens antenna design in the LTCC process, Section 3 explores the compressed
Luneburg lens antenna characteristics through full-wave simulations; Section 4 covers the
fabrication aspects and Section 5 discusses the measurement techniques and results.

2. LTCC Compressed Luneburg Lens Design

The spherical Luneburg lens is a gradient index lens with relative permittivity varying
radially as described by [16]:

εr(r) = 2−
( r

R

)2
(1)

where R is the lens radius and r is the radial position inside the lens (see Figure 1a).
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a cylindrical hole, as shown in Figure 3a. The increase in the diameter of the hole leads to 
a reduction in the effective permittivity of the unit cell. 

Figure 1. Spherical Luneburg lens (a) and compressed Luneburg lens (b).

In order to reduce the volume of the lens and make it more compatible with various
types of feeding antennas and integrated electronics, the use of the transformation optics
method has been proposed, and the lens was either partially or fully transformed to a
cylindrical shape with a flat surface [10,12,17,18]. In this paper, we use the geometrical
transformation presented in [12,18] to implement a compressed Luneburg lens as shown
in Figure 1b. Note that full transformation leads to a 3 × 3 tensor as described in [18]
and that further simplifications can be applied at the implementation stage based on
the polarization:

y′ = y, z′ =
δ√

R2 − y2
z (2)

where δ is the half of the thickness of the compressed lens.
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Applying the equations of transformation optics, one can calculate the permittivity
and permeability distributions across the flat Luneburg lens [12,18]:

ε′ =

(
2−

(
R2−y′2

)
z′2+(δy′)2

(δR)2

)
·
∣∣∣∣√R2 − y′2

∣∣∣∣·(A B
B 1

δ

)
µ′ =

∣∣∣√R2 − y′2
∣∣∣·(A B

B 1
δ

) (3)

where coefficients A and B are defined as follows:

A =
δ
(

R2 − y′2
)
+ δz′2y′2(

R2 − y′2
)3 , B =

z′y′∣∣∣∣√R2 − y′2
∣∣∣∣(R2 − y′2

) (4)

Based on the observations in [12,13,18], it has been shown that we can consider only
the εyy or εxx element of the full tensor for TM- or TE-polarization, respectively.

In our case, for a flat Luneburg lens with radius R = 9.5 mm and compressed thickness
2δ = 1.92 mm, the permittivity distribution for εyy was calculated as shown in Figure 2. It
can be seen that permittivity varies from 2 to 20.
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The lens was designed to be implemented with the LTCC process with the host
material Ferro A6M-E of εr = 5.9, loss tangent of 0.002 and layer thickness of 0.096 mm. In
order to achieve the permittivity variation shown in Figure 2, two types of unit cells with
a period of 0.5 mm and thickness 0.192 mm were implemented (see Figure 3). To obtain
permittivity lower than 5.9, the unit cell was designed as a brick of the host material with a
cylindrical hole, as shown in Figure 3a. The increase in the diameter of the hole leads to a
reduction in the effective permittivity of the unit cell.

To realize high permittivity values, a unit cell with a rectangular metal patch was
utilized (Figure 3b). The effective permittivity for both unit cells obtained with CST
Microwave Studio is shown in Figure 4. Minimal hole and patch dimensions of 0.1mm
were kept to comply with the manufacturing process and to reduce the impact of the
tolerance of the process on the performance of the manufactured lens.
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Figure 3. Metamaterial unit cells: (a) low permittivity, (b) high permittivity.
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Figure 4. The permittivity of the metamaterial (a) vs. patch width; (b) vs. the hole diameter.

Finally, the model for the LTCC Luneburg lens was assembled in CST Microwave
Studio (see Figure 5). One can see that most of the structure is composed of patch unit
cells with the hole unit cells occupying a small area close to the outer surface of the lens.
The dimensions of each patch and hole were chosen using data in Figure 4 to realize the
permittivity distribution in (3).

Electronics 2023, 12, x FOR PEER REVIEW 4 of 15 
 

 

  
(a) (b) 

Figure 3. Metamaterial unit cells: (a) low permittivity, (b) high permittivity. 

To realize high permittivity values, a unit cell with a rectangular metal patch was 
utilized (Figure 3b). The effective permittivity for both unit cells obtained with CST Mi-
crowave Studio is shown in Figure 4. Minimal hole and patch dimensions of 0.1mm were 
kept to comply with the manufacturing process and to reduce the impact of the tolerance 
of the process on the performance of the manufactured lens. 

  
(a) (b) 

Figure 4. The permittivity of the metamaterial (a) vs. patch width; (b) vs. the hole diameter. 

Finally, the model for the LTCC Luneburg lens was assembled in CST Microwave 
Studio (see Figure 5). One can see that most of the structure is composed of patch unit 
cells with the hole unit cells occupying a small area close to the outer surface of the lens. 
The dimensions of each patch and hole were chosen using data in Figure 4 to realize the 
permittivity distribution in (3). 

 
Figure 5. LTCC metamaterial Luneburg Lens. 

  

0.1 0.2 0.3 0.4

Patch width (mm)

5

10

15

20

25

30

Ep
s e

ff

0.1 0.2 0.3 0.4

Hole diameter (mm)

2

3

4

5

6

Ep
s e

ff

Figure 5. LTCC metamaterial Luneburg Lens.

It has been noted elsewhere [18] that for the compressed lens, the optimal focus is not at
the surface of the lens but must be found empirically. In [19], simulated results of directivity
for different positions of the feeding patch antenna on an optical axis were presented.
Recently, [20] proposed a corrected approximation of the transformation optics for the
metamaterial Luneburg lens that allows the placing of the focus of the compressed lens on
the surface. The unit cell proposed in [20] is rather complex due to the necessity to correctly
approximate the full permittivity tensor. In our work, we used a simplified formulation
from [18] that allows the utilization of simpler unit cells, which is a more reliable and
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repeatable approach for manufacturing mm-wave metamaterials. This approach resulted
in the focus outside of the lens, which was thoroughly investigated. Analysis of this topic
as well as lens simulation results are presented in the next section.

3. EM Simulations

In this section, we perform a parametric study of the focal distance as well as the effect
of the compression on the lens performance. The first step was to feed the lens with a
plane wave to find the focal point. The simulations were carried out at 60 GHz with CST
Microwave Studio.

The focal distance was defined as the distance between the center of the lens and the
point with the maximum magnitude of the electric field along the optical axis of the lens.
The compression factor was changed by varying the number of the unit cells Nz along the
principal axis of the lens, by taking into account that

Nz =
2δ

h
(5)

where h is the thickness of a unit cell and δ is half of the lens thickness. In the simulations,
h equals to 0.192 mm, which corresponds to two LTCC layers with a thickness of 0.096 mm.

Figure 6 shows the results of the plane wave simulations. It is demonstrated that the
focal distance decreases with the number of layers. The nonlinear dependence manifests
a larger deviation of the focal point from the lens surface for a higher compression of the
lens. Further increasing the number of layers has been found to be infeasible as this would
exceed the limitations set by the available in-house manufacturing process (for our facilities,
maximum Nz = 10).
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Another set of simulations was carried out by feeding the lens with an open-ended
waveguide (OEWG) with a cross-section of 1.55 × 3.1mm. The distance to the feed and its
lateral displacement are shown in Figure 7. The lens on its own is broadband. Reflection
coefficient bandwidth is defined only by the type of the feed. In our case, it corresponds to
the OEWG.
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The dependence of the gain on the number of unit cells and the distance to the feed
are shown in Figure 8. In our simulations, we used the realized gain as the metric that
incorporates the effect of impedance matching as well. It can be seen that for the different
numbers of unit cells in the lens structure, the optimal position of the feed changes. An
increasing number of unit cell lenses leads to the position of the feed being closer to its
surface. For instance, with an 8-layer lens, the distance to the feed is 9 mm; the same gain
can be obtained with a 22-layer lens and a 5 mm distance to the feed. The simulations
support our previous finding that the focal point moves away from the lens surface for
lenses with higher compression.
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The beam steering capability in such lens antenna systems is obtained by shifting the
OEWG. This displacement leads to additional gain reduction due to inefficient illumination
of the lens surface. To estimate the gain, simulations for the lens with the number of unit
cell layers Nz = 10 with different displacements of the OEWG were carried out. Figure 9
shows gain as a function of the OEWG shift along the optical axis of the lens (distance to
the feed) and laterally (displacement of the feed). One can see that in order to effectively
illuminate the surface of the compressed lens, it is necessary to increase the distance to the
feed when the feed is laterally displaced.

In our case, a focus of 5.96 mm (where 0.96 mm is half the lens thickness and 5 mm is
the distance between the lens surface and the OEWG) was chosen. Taking into account that
in the case of a spherical lens, the focus is equal to its radius, an approximately 63.6% size
reduction was achieved in our lens antenna system. Radiation pattern results for this focal
distance and different OEWG displacements are presented in Figure 10. In comparison
with the OEWG without the lens, the antenna gain was enhanced by 11 dB to 16.8 dBi.
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In this particular case, the sidelobe level was 15 dB for a 0 mm OEWG displacement and
around 10 dB for an OEWG laterally shifted by 5 mm. In addition, shifting the waveguide
with a 2.5 mm step allowed overlapping radiation patterns at −2 dB level. Beamwidth
and gain as a function of frequency are shown in Figure 11. Since a lens is a wideband
device, its gain increases with frequency, and a compressed lens exhibits the same tendency.
The impedance matching mostly corresponded to one of the exciting waveguides and the
return loss wasa better than 10 dB across the simulated frequency band (56–64 GHz).
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4. Lens Fabrication

The Luneburg lens is fabricated in-house. All twenty layers were laser-cut to create
the alignment holes and the metamaterial holes along the periphery of the lens radius.
The metamaterial holes differ a little in diameter and position for every layer even though
perfect symmetry is kept in the z-direction. The layer count starting at the bottom layer is
1A, 1B, 2A, 2B, to 10B, which is the top layer. The metamaterial pattern is radially symmetric,
and a z-direction symmetry is obtained with its center at the intersection between layers 5B
and 6A. The hole pattern of layers 1A and 1B is precisely the same as for layers 10A and
10B, respectively; likewise for layers 2A and 2B and layers 9A and 9B, etc. The same goes
for the screen-printed metamaterial patches, where the same pattern is used on layers 1A
and 10A, 2A and 9A and so forth. Ferro gold paste CN30-080M is used. No screen printing
is performed on the B layers. All layers are presented in Figure 12. Details of a layer pair
are given in Figure 13. As can be seen, the laser-cut holes of these two layers are the same.
When stacked, the patches are located in the center of every layer pair.
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Figure 13. Details of a layer pair, in this example, for 1A (left) and 1B (right). The cut holes for
each layer pair are the same. After stacking, the screen-printed patches are found between the two
dielectric layers.

After preparing the layers, stacking was made with the help of an alignment fixture,
(see Figure 14). For each stacked layer, HEC 2wt% (Hydroxyethyl-cellulose) was filled
in the holes manually by using a spatula. This HEC material serves to protect the holes
from collapsing during lamination. The method has been published in [21]. After stacking,
uniaxial lamination was performed at 70 ◦C with an applied pressure of 17 MPa for 5 min.
Then, the lens was separated from the rest of the LTCC by laser. The last fabrication step
was the firing at 850 ◦C peak temperature for 30 min. The finalized antenna is presented
in Figure 15. Some damage can be seen at the outer periphery of the lens. This may have
some impact on the measured results.



Electronics 2023, 12, 2354 9 of 14

Electronics 2023, 12, x FOR PEER REVIEW 9 of 15 
 

 

 
 

Figure 13. Details of a layer pair, in this example, for 1A (left) and 1B (right). The cut holes for each 
layer pair are the same. After stacking, the screen-printed patches are found between the two die-
lectric layers. 

After preparing the layers, stacking was made with the help of an alignment fixture, 
(see Figure 14). For each stacked layer, HEC 2wt% (Hydroxyethyl-cellulose) was filled in 
the holes manually by using a spatula. This HEC material serves to protect the holes from 
collapsing during lamination. The method has been published in [21]. After stacking, uni-
axial lamination was performed at 70 °C with an applied pressure of 17 MPa for 5 min. 
Then, the lens was separated from the rest of the LTCC by laser. The last fabrication step 
was the firing at 850 °C peak temperature for 30 min. The finalized antenna is presented 
in Figure 15. Some damage can be seen at the outer periphery of the lens. This may have 
some impact on the measured results. 

  

  
(a) (b) 

Figure 14. Stacking procedure. (a) Alignment of layers is done with the help of a fixture. (b) Filling 
of metamaterial holes by HEC 2wt% on each layer. 
Figure 14. Stacking procedure. (a) Alignment of layers is done with the help of a fixture. (b) Filling
of metamaterial holes by HEC 2wt% on each layer.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 15 
 

 

 

 

(a) (b) 

 

(c) 

Figure 15. Finalized lens antenna (a) before firing, and (b) after firing. (c) The lens sample in com-
parison with a 50-euro-cent coin. 

5. Measurements 
The measurement setup was based on a spatial scan with a 6-axis robot. The OEWG 

is connected to an RF generator, SMA100B, with an external multiplier to generate the 60 
GHz. The RX probe, fixed to the arm of the robot, consists of a horn antenna with a har-
monic mixer connected to an R&S FSV3000 spectrum analyzer. The measured 3D radia-
tion pattern is calculated from planar scans in the near-field region. Only the magnitude 
measurement is performed. The phase distribution is then computed by applying an iter-
ative Fourier Technic (IFT) from the measurement on two layers [22]. The principle of 
phase extraction is shown in Figure 16. 

Measurements were carried out by feeding the lens with the OEWG through a piece 
of foam with 5 mm thickness, as shown in Figure 17a. Two 100 × 100 mm planes are 
scanned above the lens at different heights. Figure 17b shows the magnitude distribution 
of the electric field on the two layers at 1 mm and 15 mm above the lens, and the phase 
distribution is then computed from the IFT. 

 
Figure 16. Principle of extraction of the phase distribution. 

Figure 15. Finalized lens antenna (a) before firing, and (b) after firing. (c) The lens sample in
comparison with a 50-euro-cent coin.

5. Measurements

The measurement setup was based on a spatial scan with a 6-axis robot. The OEWG is
connected to an RF generator, SMA100B, with an external multiplier to generate the 60 GHz.
The RX probe, fixed to the arm of the robot, consists of a horn antenna with a harmonic
mixer connected to an R&S FSV3000 spectrum analyzer. The measured 3D radiation pattern
is calculated from planar scans in the near-field region. Only the magnitude measurement
is performed. The phase distribution is then computed by applying an iterative Fourier
Technic (IFT) from the measurement on two layers [22]. The principle of phase extraction is
shown in Figure 16.
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Measurements were carried out by feeding the lens with the OEWG through a piece
of foam with 5 mm thickness, as shown in Figure 17a. Two 100 × 100 mm planes are
scanned above the lens at different heights. Figure 17b shows the magnitude distribution
of the electric field on the two layers at 1 mm and 15 mm above the lens, and the phase
distribution is then computed from the IFT.
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Figure 17. (a) Measurement setup. (b) Electric field measurement on the layers L1 (10 mm) and L2
(15 mm) above the lens.

The measured 3D radiation pattern is computed from a classic near-field to far-field
transformation available in Altaïr FEKO Software and is shown in Figure 18. To analyze
the scanning performance, the probe is moved along the 200 mm circle with a center at the
top of the lens opposite the OEWG center. The radiation pattern was measured in the range
between −45◦ and 45◦ for the Luneburg lens as well as the OEWG at 60 GHz, as shown in
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Figure 19. It can be seen that the lens provides a 10 dB gain enhancement in comparison to
the OEWG. The side lobe level for this sample is defined as 10 dB. By moving the OEWG
along the lens, beam-steering capability is achieved. We can see from the measurements
that a 5 mm shift of the feed leads to beam steering at 25 degrees with 1 dB scan loss. The
total gain was measured and compared to the simulation in Figure 19c. The broadside gain
of the manufactured lens antenna was equal to 16 dBi at 60 GHz. Radiation efficiency of
89% and aperture efficiency of 28% were calculated at 60 GHz. The latter figure is explained
by the non-optimal illumination of the lens area, which is reasonable as the source is moved
across the surface of the lens to achieve beam steering.
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Table 1 summarizes the key features of the LTCC-compressed lens and several com-
parable V-band lens antennas that aim for high-gain performance with the potential for
multibeam or beam-steering operation. A 3D-printed 60 GHz Luneburg lens based on the
infill density of the plastic is demonstrated in [23]. A solid hemispherical plastic lens printed
for integration with a transceiver was developed in [24]. A molded plastic elliptical lens
with circular waveguide feed and mechanical beam steering capacity was demonstrated
in [25]. A 3D-printed dielectric Fresnel-Zone Plate Lens (FZPL) antenna for use within the
V-band spectrum is presented in [26]. As per the table, the proposed lens operates on the
same frequency range and exhibits comparable performance to other lenses. However, its
reported size is considerably smaller, resulting in a notable impact on the overall antenna
system size. This reduction in size could potentially lead to a more compact and efficient
antenna design, making it a promising option for various applications.

Table 1. Different V-band lens solutions.

Ref. Lens Type Gain (dBi) Size in λ at f 0 f 0 (GHz)

[23] 3D printed 15.3 6 × 6 × 6 60
[24] 3D printed 14 3 × 3 × 2.9 60
[25] Molded plastic 14 4 × 4 × 4.36 62.5
[26] 3D printed 25 30 × 30 × 1 60

This work LTCC metamaterial 15 3.8 × 3.8 × 0.384 60
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6. Conclusions

A 60 GHz metamaterial compressed Luneburg lens designed compatible with the
LTCC process has been proposed in this paper. The effect of the compression on the focal
point as well as the performance of the lens fed by a laterally displaced OEWG was studied.
It was shown that the focal point is placed outside the lens and depends on the number
of LTCC layers. The gain of the lens is shown to be a function of the thickness of the
compressed lens. It was also shown that the scan loss of 1 dB can be achieved within a 50◦

field of view with a maximum gain of 16.8 dBi.
The lens was manufactured using an in-house LTCC process and measured at 60 GHz

using two-plane near-field scanning and a subsequent iterative IFT method. The measured
results are in good agreement with the simulation, with a 16 dBi maximum gain at 60 GHz
and 1dB scan loss achieved.

The LTCC process allows further integration of control elements and active circuitry to
make use of the lens in a multi-beam standalone transceiver for mm-wave communications
that will be explored in future work.
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