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Abstract

Most voicebots still ignore, nowadays, user fluency level, al-
though recognizing it would allow to give answers to adaptation
issues, according to the language level of the interlocutor. To-
wards to such an end, this paper proposes a fluency classification
model using a small audio dataset. We extract various features
such as Mel-frequency cepstral coefficients (MFCC) from the
audio. Using recent classification models, such as CNN-LSTM-
Attention and Wav2vec 2.0, we propose fluency classification
models through three usual categories (Low, Intermediate and
High). Furthermore, we demonstrate that simple data augmenta-
tion methods can improve classification accuracy. We employ
several simple data augmentation techniques, such as speed and
pitch scale variation. This augmentation multiplies by 6 the num-
ber of training samples when applied only to original samples,
and by 32 when also applied to augmented samples.

Index Terms: Language fluency level, CNN-LSTM, voice con-
versational agent, Data augmentation

1. Introduction

Conversational agents (voicebots) are nowadays massively
adopted by the general public and integrated in real-time ap-
plications used daily. The development of voicebots and vocal
assistants requires automatic speech processing abilities, such as
classification of users by language fluency. Yet, the automatic
customer relations services do not take into account the user
fluency level. Therefore, they cannot offer alternative dialogue
pathways based on user language fluency level. Commonly, a sin-
gle language level and/or a single interaction pattern are adopted
for all customers. In order to deal with this issue, we propose a
user-fluency classification method based on Deep Learning.

Our objective in this study is to estimate the user fluency
level for its use within an adaptive conversational voice agent,
able to adapt the linguistic complexity of its output. The target
use-case is within a multi-linguistic society with a shared lingua-
franca (common language for inter-cultural communication),
in which the population is fluent to various degrees. The socio-
economic origin of the speaker is, of course, a contributing factor
in language practice. It can be tracked at various levels, in terms
of vocabulary, syntax, prosody, style, rhythm and especially
fluency differences.

In addition, in this paper we study the influence of data
augmentation in the context of fluency classification. We propose
several Deep-Learning models for fluency classification, which
are based on deep convolutional neural networks, LSTMs and
wav2vec? [1, 2]. The performance of the augmentation method
is evaluated on the Avalinguo audio set [3]. The proposed data
augmentation strategy allows to partially overcome the data
challenge posed by low-resource languages.

For the evaluation of the set up models, a standard cross-
validation method in 10-fold was applied. The results obtained
with our models outperform the state of the art in fluency level
classification [4].

The paper is structured as follows. Section 2 describes the
related Work in fluency. Section 3 describes the data employed
and the different data augmentation methods. The experimental
models and parameters are presented in Section 3.3, followed by
the results in Section 4. We conclude with a discussion on future
work and perspectives.

To avoid confusion in terminology, we would like to stress
the distinction between proficiency and fluency. Fluency refers
to the smoothness, naturalness and flow of a speaker’s speech,
whereas linguistic proficiency refers to the knowledge and under-
standing of the grammar, syntax and vocabulary of a language.
The former addresses communicability ease, the latter accuracy
in using and understanding language.

2. Related Work

In recent years, there has been a growing interest in the automatic
evaluation of speech fluency, particularly in the context of foreign
language learning and speech therapy. In this section, we will
discuss relevant studies and highlight similarities to our own
use case — the analysis of speaker fluency for online voice-bot
adaptation.

Regarding fluency evaluation in foreign languages, Detey
et al. [5] conducted a longitudinal study on oral reading per-
formance in French for Japanese language learners using the
CLIJAF corpus [6]. The authors investigated pronunciation vari-
ations and their influence on speech fluency perception for native
and non-native speakers. Their best model achieved a correlation
coefficient of 0.92 between automatic and human scores.

Another recent work is that of Fu et al. (2022) [7], who
investigated the use of a sequence model to learn utterance-level
fluency representation from phone-level raw sequential features,
using BLSTM (Bidirectional Long Short-Term Memory) and
average pooling for improving non-native fluency scoring.

Additionally, Phonetic Features were used for fluency eval-
vation [8, 9]. The authors used phonetic fluency features to
evaluate speech quality in children by employing the Forward-
Backward Divergence Segmentation (FBDS) algorithm, which
enabled automatic segmentation of speech signals into speech
and silence segments. In addition, they predicted second lan-
guage (L2) proficiency based on multi-level linguistic features.

We extend existing speech fluency evaluation methodologies
(such as the Speech Rate Measurement and the Pausing Structure
Analysis) to better suit an interactive voicebot. This enhancement
involves classifying audio files into three fluency categories —
low, intermediate, and high — without necessitating specific



annotations such as the identification of unnatural speech pauses,
detection of word repetition, etc. The purpose of this adaptation
is to refine the user-voicebot interaction by adjusting to different
fluency levels.

3. Methods
3.1. Dataset

In this study we used the Avalinguo audio set [3]. The original
dataset consists of a total of 1424 audio samples, divided into
three fluency classes of non-native English speakers: Low (438
samples), Intermediate (527 samples) and High (459 samples).
The files were in MP3 format sampled at 22050 Hz to 48000 Hz,
which we converted to WAV format sampled at 16000 Hz with a
duration of 5s each without overlapped segments.

3.2. Data augmentation

We separated the dataset into train, test and validation sets (60 %
for train, 25% for test and 15% for the validation set). We
augment only the training set, keeping the test and validation sets
separate to avoid information leakage. Figures 2 and 3 illustrate
the use of augmentation techniques on the entire dataset.

3.2.1. Process 1: Perturbation methods

Process 1 enhances the dataset’s diversity through five indepen-
dent perturbation methods: adding 20% white noise, altering
random gain between 2 and 4, modifying pitch scale by a factor
of 2 [10], applying time stretching with a factor of 0.81 [11], and
randomly varying signal velocity between 0.9 and 1.1 [12]. The
Python library librosa [13] was used for time stretching and pitch
scaling. These perturbations were applied to the original dataset
samples, increasing the training set size 6-fold, from 1424 to
8544 examples. The augmentation parameters were tested on
sample audio files to ensure audio quality was maintained while
simulating real-life conditions.

3.2.2. Process 2: Incremental composition

For this process we managed to multiply the number of samples
in our dataset by a factor of 2° i.e. 32. We name it incremen-
tal composition. We proceed first by applying random gain to
modify volume or loudness of audio signal by multiplying it by
a randomly generated gain factor on the wav files. We double
the number of samples by applying random gain on the original
audio samples. By augmenting the data set by adding 20% of
white noise, time stretching, pitch scaling and random speed, we
obtain 32 times more samples than in the original dataset. This
gives us 45568 different audio samples divided into 3 classes:
14016 Low, 16864 Intermediate and 14688 High.

3.3. Models and experiences

When comparing our work to existing algorithmic methods for
data augmentation, it is important to consider the strengths and
limitations of both approaches for data augmentation: deep-
learning (DL) based models, and non-DL-based models. One
first limitation is the high computational cost of DL-based meth-
ods, which typically require costly GPU hardware and large quan-
tities of data. For instance, the authors of [10] use an NVIDIA
Quadro GPU to augment data using the WaveGAN approach
based on the spectrogram of each WAV file. In contrast, our
approach is simple and has the advantage of not needing a GPU
cluster for data augmentation.

We developed four artificial neural network (ANN) mod-
els for fluency classification using three different types of data:
the original data, data augmented with process 1, and data aug-
mented with process 2. These architectures are described in the
following subsections.

3.3.1. MLP

We define a MLP model using Optuna [14]. The first layer is a
dense layer with 512 hidden units, 12 regularization, ReLu acti-
vation, and 50% dropout. The second layer is a dense layer with
256 hidden units, 12 regularization, ReLu activation, and 30%
dropout. The third layer is a dense layer with 128 hidden units,
12 regularization, ReLu activation, and 20% dropout. The last
layer is a dense layer of 3 output units with a softmax activation
function. The model is trained using the Adam optimization
function [15] and an exponential learning rate decay [16] with a
factor of 0.6, learning rate of 0.01, and training batch size of 16
(empirically chosen).

3.3.2. CNNID

We followed an empirical method to identify an appropriate
architecture, by varying its number of layers and of neurons in
each layer. Similarly, we varied hyper-parameters such as the
learning rate, dropout percentage and the optimization function.

Ultimately, we chose an architecture using Optuna [14],
which automatically adjusts the hyper-parameters. Optuna is
used to define a study and a trial functions for each model in
order to optimize the parameters and hyper-parameters for the
various models. Using Optuna for architecture selection allows
for a more robust and reliable model selection process, reducing
the risk of overfitting, and ensuring that the chosen architecture is
well-suited to the data task at hand. We customized our CNN-1D

[17] architecture as follows:

* Layer 1: convolution layer of 128 filters with input (131,1),
stride 1, kernel size 3, padding same, 12 regularization
(A = 0.001), batch norm, activation function ReLu and 30%
Dropout, MaxPooling1D [18].

¢ Layers 2 and 3: convolution layers of 64 and 128 filters with
the same parameters as layer 1.

 Three dense layers of 256 hidden units.

* The classification Layer: a dense layer of 3 output units with
a softmax activation function to compute class probability.
The other architectures we used, such as LSTM-Attention
and bi-LSTM-Attention, are all preceded by four layers of 1D
convolutions.

3.3.3. LSTM- and bi-LSTM-Attention

For the LSTM-Attention and bi-LSTM-Attention models, we
reused the CNN1D architecture [19] before adding these dense
layers:
* Layer 1: 128 units with a batch normalization;
* Layer 2: a sequence self-attention with an activation function
Tanh;

e Layer 3: 256 units with a batch normalization.
The self-attention layer takes as input a sequence of vectors and
computes a weighted sum of the input vectors for each element
in the sequence, for capturing global dependencies between input
and output [20].

Given a sequence x = (1, T2, ..., T1) as input, the LSTM
layer produces the hidden vector h = (h1, h2, ..., ht) and out-
puts y = (y1,y2, ..., y) for t € [1,T] of the same length, by



iterating the following equations:

it = o(Wa,xt + Whihi—1 + Weice—1 + bi) (D
fi=oWapme + Whphio1 + Weper1 +bp)  (2)
g¢ = tanh(Wo 2t + Whehi—1 + be) 3
ct = fici—1+ 1t O g 4
ot = 0(Waoxt + Whohi—1 + Weocr + bo) (5)
y: = 0¢ O tanh(ct) (6)

where c; is the state of the memory cell and i+, f, o+ are gate
outputs at time ¢ [21]. The network weights W and biases b are
tuned during learning to minimize the loss function. In case of a
multi-layer structure the input of the next layer is the output of
the previous one [21].
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Figure 1: Wav2vec 2.0 Architecture: learning context represen-
tations from raw waveforms [22]

3.4. Feature extraction
3.4.1. Spectrogram

Feature extraction is a fundamental and important step for any
machine learning algorithm. To perform classification on our
models, we need to extract useful characteristics from the audio
data. To do this, we use the librosa library [13], which provides
a variety of sound features that can be extracted, including:

(i) Mel-Frequency Cepstral coefficients (MFCC) [23]. The
MECC is broken down into the following phases (P):

» P1: Split the signal into several windows that overlap each
other (e.g. if we cut a signal in X windows of 256, with
an overlap of 100, then the first window will be 0-255,
the second 155-411, etc.). We apply the MFCC to each
window.

* P2: In order to reduce spectral distortion, we apply a Ham-
ming window to the signal [24]:
w(n) = 0.54 + 0.46cos(2=% ) where N is the length of
the window. Subsequently, we multiply this function by
the signal to be transformed, thus minimizing the spectral
distortion created by the overlap.

* P3: Next, we apply the FFT to the window to extract the
magnitude, thereby obtaining the spectrum.

¢ P4: We then convert to the Mel scale. Indeed, after studies
on human hearing, it has been shown that humans rely on
a specific frequency scale [24]. The transfer formula is
simple fmer = 2595 x logio (1 + =Ls) where f is the
actual frequency in H z [23].

We obtain a 128-dimensional MFCC feature vector with
n_mfcc=128 in our case.

(i) Root Mean Square Energy (RMSE) is the square root of the
mean squared amplitude over a time window [25]. It is defined

by: RMSE(x) = /5 32, |s(n)]?

(iii) Spectral flux: measures rate of change in spectral shape using

method in [26]. This returns 1 value.

(iv) Zero-crossing-rate (ZCR): indicates the number of times that

a signal crosses the horizontal axis, i.e. the number of times
that the amplitude reaches O [27]. This feature returns 1 value.
A reasonable generalization is that if the zero-crossing rate is
high, the speech signal is unvoiced, while if the zero-crossing
rate is low, the speech signal is voiced [28]. The zero crossing
rate can be defined as follows [27]:

Zn = Z |sng[x(m)] — sgn[z(m — 1)Hw(n —m)
with

ooy ) L) =20 )3 fornefo,N —1]
sngle(ml = {—l,x(n) <0 and w(n) = { OAotherwise

3.4.2. The pretrained wav2vec 2.0 model

To extract features from raw audio, we utilize the pre-trained
model wav2vec 2.0 [22] on audio files of uniform length. Since
the audio files have the same duration, zero padding was not
needed to ensure consistent input size for the wav2vec 2.0 model.

Processing each audio file with the pre-trained wav2vec 2.0
model enables the extraction of relevant acoustic features. The
model’s training on raw, labeled audio data equips it with the
ability to capture critical acoustic features suitable for diverse
speech processing applications. These acoustic features are
subsequently utilized in training a fluency classification model.

The model of wav2vec illustrated in Figure 1 [22] consists of
a multi-layer convolutional feature encoder (also called a feature
extractor) represented by the blue trapezoids. It takes as input
raw audio waves X and outputs latent speech representation Z.
It does this for T timesteps using a sliding window of 25 ms with
a stride of 20 ms. It is pre-trained in a self-supervised setting
similar to the masked language modelling used in BERT [29]
for NLP. The Transformer then builds contextualized representa-
tions C' over the whole input sequence X. The model is trained
such that it attempts to reproduce the quantized local encoder
representations in the output of the context-sensitive encoder.
This training involves a procedure of randomly masking consec-
utive time steps within the local encoder representations. This
masking process is key to challenging the model to learn to pre-
dict or “replicate” the masked portions based on the surrounding
context.

To evaluate the prediction quality of our model, we use
the objective function L,, defined bellow. This function L, is
used to predict audio features from context or to predict missing
features during the masked language modeling task.

exp(sim(ct, 1)/ k)
> seq, exp(sim(ct, §)/K)

Ly, = —log

where c; represents the context vector for a given audio segment,
g: represents the quantized target vector for the masked audio
feature, ¢ represents a quantized vector in the vocabulary Q+,
and K = 100 distractors, & is the temperature parameter which
is set to 0.1. The similarity function sim(-, -) is typically [30]

u'w

ulllfoll

the cosine similarity function sim(u,v) = 0



MLP CNNID LSTM-Attention biLSTM-Attention
Precision | Recall | Fl-score | Precision | Recall | Fl-score | Precision | Recall | Fl-score | Precision | Recall | Fl-score
Low 86.29 93.21 89.61 94.81 90.12 92.41 93.98 93.28 93.63 94.29 90.83 92.52
Intermediate 97.87 97.87 97.87 99.25 94.33 96.73 99.13 96.98 98.13 95.88 97.89 96.88
High 91.96 82.40 86.92 85.71 96.00 90.57 91.67 96.12 93.84 90.36 92.59 91.46

Table 1: Classification scores for each evaluated model (in percentages)

Table 2: Classifier test scores, per model

Metrics MLP CNNI1D LSTM- biLSTM-
Attention Attention
Accuracy 91.59 93.22 95.98 94.39
Precision 91.81 93.17 95.32 93.75
Recall 91.59 93.12 94.98 93.89
F1-Score 91.69 93.14 95.15 93.81
120
Confusion matrix LSTM-Attention
100
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Figure 2: Confusion matrix LSTM-Attention model

4. Results and Discussion

To evaluate our results across the different models (see Table 2),
we used the accuracy and Fl-score [31]. The accuracy metric
measures the ratio of correct predictions over the total number
of evaluated instances [32]. The F1-Score is defined from the
Precision and the Recall. Precision is defined as the ratio between
the number of true positives and the total number of positives
predicted by the model [32]. The Recall is defined as the fraction
of positive samples that are correctly classified [32]. The F1-
score is the harmonic mean of precision and recall, and is widely
used as a measure of classifier performance [33].

We evaluated the classification scores of each model (see
results in Table 1). To evaluate our models we performed a 10-
fold cross validation [34] with a shuffling of the data explained.

Table 3: Results obtained using 10-fold cross-validation

Metrics MLP CNNI1D LSTM- biLSTM-
(means) Attention Attention
Accuracy 93.62 94.82 95.97 93.07
Precision 94.83 9491 95.76 93.47
Recall 94.82 94.81 95.85 92.97
F1-Score 94.82 94.86 95.80 93.21

The results are presented in Table 3. We would like to remind
that the distribution of data by class is not exactly balanced:
30.76% Low, 37.01% Intermediate, 32.23% High.

Our experiment demonstrated that our proposed method is
efficient at accurately classifying audio samples into the correct
categories of speaker fluency level. We used a dataset composed
of 1424 samples for our experiment, of which 60% were used
for training, 15% for choosing the hyper-parameters, and 25%
for testing the performance of our model. Our model achieved
an overall accuracy on the test set of 95.44% on the original
dataset and 96.21% on the augmented dataset. Furthermore, we
performed a detailed analysis of the model’s performance, and
found that it achieved a high level of accuracy for all of the three
categories in Table 1. The LSTM-Attention model shows slightly
higher F1 score for each class. The Intermediate category had
the highest F1-score at 98%, while the Low and High categories
had the same F1-score of 93%.

There are a few potential reasons for the relatively lower
accuracy on the Low and High categories:

(i) the Low category is inherently more difficult to classify, as it
can include a poor representation in word content in the signal

(i1) unbalanced classes in the dataset, with more samples of Inter-
mediate category than others.

We also utilized the Wav2vec 2.0 [22] model with the
SpeechBrain toolkit [35] mentioned in the feature extraction
section for the classification by using the IEMOCAP recipe
[2] in our experiments. The Wav2vec 2.0 model designed to
learn high-level speech representations directly from raw audio
waveforms, without requiring any manual feature engineering.
Wav2vec 2.0 was able to capture important features of the audio
samples in our dataset with promising results (95.23% accuracy
on the test set).

5. Conclusion

We proposed an implemented data augmentation technique to
enhance the robustness and generalization ability of our models
for fluency classification. Specifically, we generated additional
training samples by applying transformations to the original sam-
ples, such as adding white noise, pitch scaling, time stretching,
random gain, and signal speeding. By doing so, we were able to
increase the number of training examples by a factor of 32.

We compared the performance of MLP, CNN1D, LSTM-
Attention and biLSTM-Attention for classifying users based
on the fluency of their speech. We determined that the best
performing model on the test set was a Long Short Term Memory
(LSTM) model with Attention. It was trained on the augmented
dataset using features such as MFCCs. The overall accuracy
was 95.4% on the original dataset and 96.2% on the augmented
dataset.

Future studies could explore other information channels
to obtain a more through evaluation of user’s fluency. It may
be useful to measure speech rate in words per minute, assess
vocabulary, monitor unnatural pauses or hesitations from the
transcription. We intend to expand our research on these ideas.
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