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Introduction

Conversational agents (voicebots) are nowadays massively adopted by the general public and integrated in real-time applications used daily. The development of voicebots and vocal assistants requires automatic speech processing abilities, such as classification of users by language fluency. Yet, the automatic customer relations services do not take into account the user fluency level. Therefore, they cannot offer alternative dialogue pathways based on user language fluency level. Commonly, a single language level and/or a single interaction pattern are adopted for all customers. In order to deal with this issue, we propose a user-fluency classification method based on Deep Learning.

Our objective in this study is to estimate the user fluency level for its use within an adaptive conversational voice agent, able to adapt the linguistic complexity of its output. The target use-case is within a multi-linguistic society with a shared linguafranca (common language for inter-cultural communication), in which the population is fluent to various degrees. The socioeconomic origin of the speaker is, of course, a contributing factor in language practice. It can be tracked at various levels, in terms of vocabulary, syntax, prosody, style, rhythm and especially fluency differences.

In addition, in this paper we study the influence of data augmentation in the context of fluency classification. We propose several Deep-Learning models for fluency classification, which are based on deep convolutional neural networks, LSTMs and wav2vec2 [START_REF] Goncalves | Improving Speech Emotion Recognition Using Self-Supervised Learning with Domain-Specific Audiovisual Tasks[END_REF][START_REF] Wang | A fine-tuned wav2vec 2.0/hubert benchmark for speech emotion recognition, speaker verification and spoken language understanding[END_REF]. The performance of the augmentation method is evaluated on the Avalinguo audio set [START_REF] Grijalva | Avalinguo audio set[END_REF]. The proposed data augmentation strategy allows to partially overcome the data challenge posed by low-resource languages.

For the evaluation of the set up models, a standard crossvalidation method in 10-fold was applied. The results obtained with our models outperform the state of the art in fluency level classification [START_REF] Mora | Identification of pronunciation errors in l2 english speech by spanish speaking natives for s-impure sounds[END_REF].

The paper is structured as follows. Section 2 describes the related Work in fluency. Section 3 describes the data employed and the different data augmentation methods. The experimental models and parameters are presented in Section 3.3, followed by the results in Section 4. We conclude with a discussion on future work and perspectives.

To avoid confusion in terminology, we would like to stress the distinction between proficiency and fluency. Fluency refers to the smoothness, naturalness and flow of a speaker's speech, whereas linguistic proficiency refers to the knowledge and understanding of the grammar, syntax and vocabulary of a language. The former addresses communicability ease, the latter accuracy in using and understanding language.

Related Work

In recent years, there has been a growing interest in the automatic evaluation of speech fluency, particularly in the context of foreign language learning and speech therapy. In this section, we will discuss relevant studies and highlight similarities to our own use case -the analysis of speaker fluency for online voice-bot adaptation.

Regarding fluency evaluation in foreign languages, Detey et al. [START_REF] Detey | Computer-assisted assessment of phonetic fluency in a second language: a longitudinal study of japanese learners of french[END_REF] conducted a longitudinal study on oral reading performance in French for Japanese language learners using the CLIJAF corpus [START_REF] De Fino | Corpus de parole non-native et prédiction automatique du niveau de performance en expression orale : application à CLIJAF[END_REF]. The authors investigated pronunciation variations and their influence on speech fluency perception for native and non-native speakers. Their best model achieved a correlation coefficient of 0.92 between automatic and human scores.

Another recent work is that of Fu et al. (2022) [START_REF] Fu | Using Fluency Representation Learned from Sequential Raw Features for Improving Non-native Fluency Scoring[END_REF], who investigated the use of a sequence model to learn utterance-level fluency representation from phone-level raw sequential features, using BLSTM (Bidirectional Long Short-Term Memory) and average pooling for improving non-native fluency scoring.

Additionally, Phonetic Features were used for fluency evaluation [START_REF] Fontan | Predicting speech fluency in children using automatic acoustic features[END_REF][START_REF] De Fino | Prediction of L2 speech proficiency based on multi-level linguistic features[END_REF]. The authors used phonetic fluency features to evaluate speech quality in children by employing the Forward-Backward Divergence Segmentation (FBDS) algorithm, which enabled automatic segmentation of speech signals into speech and silence segments. In addition, they predicted second language (L2) proficiency based on multi-level linguistic features.

We extend existing speech fluency evaluation methodologies (such as the Speech Rate Measurement and the Pausing Structure Analysis) to better suit an interactive voicebot. This enhancement involves classifying audio files into three fluency categorieslow, intermediate, and high -without necessitating specific annotations such as the identification of unnatural speech pauses, detection of word repetition, etc. The purpose of this adaptation is to refine the user-voicebot interaction by adjusting to different fluency levels.

Methods

Dataset

In this study we used the Avalinguo audio set [START_REF] Grijalva | Avalinguo audio set[END_REF]. The original dataset consists of a total of 1424 audio samples, divided into three fluency classes of non-native English speakers: Low (438 samples), Intermediate (527 samples) and High (459 samples). The files were in MP3 format sampled at 22050 Hz to 48000 Hz, which we converted to WAV format sampled at 16000 Hz with a duration of 5s each without overlapped segments.

Data augmentation

We separated the dataset into train, test and validation sets (60% for train, 25% for test and 15% for the validation set). We augment only the training set, keeping the test and validation sets separate to avoid information leakage. Figures 2 and3 illustrate the use of augmentation techniques on the entire dataset.

Process 1: Perturbation methods

Process 1 enhances the dataset's diversity through five independent perturbation methods: adding 20% white noise, altering random gain between 2 and 4, modifying scale by a factor of 2 [START_REF] Madhu | Data augmentation using generative adversarial network for environmental sound classification[END_REF], applying time stretching with a factor of 0.81 [START_REF] Salamon | Deep convolutional neural networks and data augmentation for environmental sound classification[END_REF], and randomly varying signal velocity between 0.9 and 1.1 [START_REF] Ko | Audio augmentation for speech recognition[END_REF]. The Python library librosa [START_REF] Mcfee | librosa: Audio and music signal analysis in python[END_REF] was used for time stretching and pitch scaling. These perturbations were applied to the original dataset samples, increasing the training set size 6-fold, from 1424 to 8544 examples. The augmentation parameters were tested on sample audio files to ensure audio quality was maintained while simulating real-life conditions.

Process 2: Incremental composition

For this process we managed to multiply the number of samples in our dataset by a factor of 2 5 i.e. 32. We name it incremental composition. We proceed first by applying random gain to modify volume or loudness of audio signal by multiplying it by a randomly generated gain factor on the wav files. We double the number of samples by applying random gain on the original audio samples. By augmenting the data set by adding 20% of white noise, time stretching, pitch scaling and random speed, we obtain 32 times more samples than in the original dataset. This gives us 45568 different audio samples divided into 3 classes: 14016 Low, 16864 Intermediate and 14688 High.

Models and experiences

When comparing our work to existing algorithmic methods for data augmentation, it is important to consider the strengths and limitations of both approaches for data augmentation: deeplearning (DL) based models, and non-DL-based models. One first limitation is the high computational cost of DL-based methods, which typically require costly GPU hardware and large quantities of data. For instance, the authors of [START_REF] Madhu | Data augmentation using generative adversarial network for environmental sound classification[END_REF] use an NVIDIA Quadro GPU to augment data using the WaveGAN approach based on the spectrogram of each WAV file. In contrast, our approach is simple and has the advantage of not needing a GPU cluster for data augmentation.

We developed four artificial neural network (ANN) models for fluency classification using three different types of data: the original data, data augmented with process 1, and data augmented with process 2. These architectures are described in the following subsections.

MLP

We define a MLP model using Optuna [START_REF] Akiba | Optuna: A next-generation hyperparameter optimization framework[END_REF]. The first layer is a dense layer with 512 hidden units, l2 regularization, ReLu activation, and 50% dropout. The second layer is a dense layer with 256 hidden units, l2 regularization, ReLu activation, and 30% dropout. The third layer is a dense layer with 128 hidden units, l2 regularization, ReLu activation, and 20% dropout. The last layer is a dense layer of 3 output units with a softmax activation function. The model is trained using the Adam optimization function [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF] and an exponential learning rate decay [START_REF] You | How does learning rate decay help modern neural networks?[END_REF] with a factor of 0.6, learning rate of 0.01, and training batch size of 16 (empirically chosen).

CNN1D

We followed an empirical method to identify an appropriate architecture, by varying its number of layers and of neurons in each layer. Similarly, we varied hyper-parameters such as the learning rate, dropout percentage and the optimization function.

Ultimately, we chose an architecture using Optuna [START_REF] Akiba | Optuna: A next-generation hyperparameter optimization framework[END_REF], which automatically adjusts the hyper-parameters. Optuna is used to define a study and a trial functions for each model in order to optimize the parameters and hyper-parameters for the various models. Using Optuna for architecture selection allows for a more robust and reliable model selection process, reducing the risk of overfitting, and ensuring that the chosen architecture is well-suited to the data task at hand. We customized our CNN-1D [START_REF] Kiranyaz | 1d convolutional neural networks and applications: A survey[END_REF] architecture as follows:

• Layer 1: convolution layer of 128 filters with input (131,1), stride 1, kernel size 3, padding same, l2 regularization (λ = 0.001), batch norm, activation function ReLu and 30% Dropout, MaxPooling1D [START_REF] Zhao | Speech emotion recognition using deep 1d & 2d cnn lstm networks[END_REF]. • Layers 2 and 3: convolution layers of 64 and 128 filters with the same parameters as layer 1. • Three dense layers of 256 hidden units.

• The classification Layer: a dense layer of 3 output units with a softmax activation function to compute class probability.

The other architectures we used, such as LSTM-Attention and bi-LSTM-Attention, are all preceded by four layers of 1D convolutions.

LSTM-and bi-LSTM-Attention

For the LSTM-Attention and bi-LSTM-Attention models, we reused the CNN1D architecture [START_REF] Shi | Convolutional lstm network: A machine learning approach for precipitation nowcasting[END_REF] before adding these dense layers:

• Layer 1: 128 units with a batch normalization; • Layer 2: a sequence self-attention with an activation function Tanh; • Layer 3: 256 units with a batch normalization. The self-attention layer takes as input a sequence of vectors and computes a weighted sum of the input vectors for each element in the sequence, for capturing global dependencies between input and output [START_REF] Vaswani | Attention is all you need[END_REF].

Given a sequence x = (x1, x2, ..., xt) as input, the LSTM layer produces the hidden vector h = (h1, h2, ..., ht) and outputs y = (y1, y2, ..., yt) for t ∈ [1, T ] of the same length, by iterating the following equations:

it = σ(Wx i xt + W hi ht-1 + Wcict-1 + bi) (1) ft = σ(W xf xt + W hf ht-1 + W cf ct-1 + b f ) (2) gt = tanh(Wx c xt + W hc ht-1 + bc) (3) ct = ftct-1 + it ⊙ gt (4) ot = σ(Wxoxt + W ho ht-1 + Wcoct + bo) (5) yt = ot ⊙ tanh(ct) ( 6 
)
where ct is the state of the memory cell and it, ft, ot are gate outputs at time t [START_REF] Lezhenin | Urban sound classification using long short-term memory neural network[END_REF]. The network weights W and biases b are tuned during learning to minimize the loss function. In case of a multi-layer structure the input of the next layer is the output of the previous one [START_REF] Lezhenin | Urban sound classification using long short-term memory neural network[END_REF]. Feature extraction is a fundamental and important step for any machine learning algorithm. To perform classification on our models, we need to extract useful characteristics from the audio data. To do this, we use the librosa library [START_REF] Mcfee | librosa: Audio and music signal analysis in python[END_REF], which provides a variety of sound features that can be extracted, including: (i) Mel-Frequency Cepstral coefficients (MFCC) [START_REF] Davis | Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences[END_REF]. The MFCC is broken down into the following phases (P):

• P1: Split the signal into several windows that overlap each other (e.g. if we cut a signal in X windows of 256, with an overlap of 100, then the first window will be 0-255, the second 155-411, etc.). We apply the MFCC to each window. • P2: In order to reduce spectral distortion, we apply a Hamming window to the signal [START_REF] Sahidullah | On the use of distributed dct in speaker identification[END_REF]:

w(n) = 0.54 + 0.46cos( 2πn N -1 )
where N is the length of the window. Subsequently, we multiply this function by the signal to be transformed, thus minimizing the spectral distortion created by the overlap. • P3: Next, we apply the FFT to the window to extract the magnitude, thereby obtaining the spectrum. • P4: We then convert to the Mel scale. Indeed, after studies on human hearing, it has been shown that humans rely on a specific frequency scale [START_REF] Sahidullah | On the use of distributed dct in speaker identification[END_REF]. The transfer formula is simple f mel = 2595 × log10 1 + f 700 where f is the actual frequency in Hz [START_REF] Davis | Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences[END_REF].

We obtain a 128-dimensional MFCC feature vector with n mfcc=128 in our case.

(ii) Root Mean Square Energy (RMSE) is the square root of the mean squared amplitude over a time window [START_REF] Er | A novel approach for classification of speech emotions based on deep and acoustic features[END_REF]. It is defined by: RM SE(x) =

1 N n |s(n)| 2 (iii) Spectral flux: measures rate of change in spectral shape using method in [START_REF] Tzanetakis | Musical genre classification of audio signals[END_REF]. This returns 1 value. (iv) Zero-crossing-rate (ZCR): indicates the number of times that a signal crosses the horizontal axis, i.e. the number of times that the amplitude reaches 0 [START_REF] Bachu | Voiced/unvoiced decision for speech signals based on zerocrossing rate and energy[END_REF]. This feature returns 1 value. A reasonable generalization is that if the zero-crossing rate is high, the speech signal is unvoiced, while if the zero-crossing rate is low, the speech signal is voiced [START_REF] Rabiner | Digital processing of speech signals[END_REF]. The zero crossing rate can be defined as follows [START_REF] Bachu | Voiced/unvoiced decision for speech signals based on zerocrossing rate and energy[END_REF]:

Zn = ∞ m=-∞ sng[x(m)] -sgn[x(m -1)] w(n -m) with sng[x(n)] = 1, x(n) ≥ 0 -1, x(n) < 0 and w(n) = 1 2N for n ∈ [0, N -1] 0 otherwise 3.4.2

. The pretrained wav2vec 2.0 model

To extract features from raw audio, we utilize the pre-trained model wav2vec 2.0 [START_REF] Baevski | wav2vec 2.0: A framework for self-supervised learning of speech representations[END_REF] on audio files of uniform length. Since the audio files have the same duration, zero padding was not needed to ensure consistent input size for the wav2vec 2.0 model. Processing each audio file with the pre-trained wav2vec 2.0 model enables the extraction of relevant acoustic features. The model's training on raw, labeled audio data equips it with the ability to capture critical acoustic features suitable for diverse speech processing applications. These acoustic features are subsequently utilized in training a fluency classification model.

The model of wav2vec illustrated in Figure 1 [22] consists of a multi-layer convolutional feature encoder (also called a feature extractor) represented by the blue trapezoids. It takes as input raw audio waves X and outputs latent speech representation Z. It does this for T timesteps using a sliding window of 25 ms with a stride of 20 ms. It is pre-trained in a self-supervised setting similar to the masked language modelling used in BERT [START_REF] Devlin | Bert: Pretraining of deep bidirectional transformers for language understanding[END_REF] for NLP. The Transformer then builds contextualized representations C over the whole input sequence X. The model is trained such that it attempts to reproduce the quantized local encoder representations in the output of the context-sensitive encoder. This training involves a procedure of randomly masking consecutive time steps within the local encoder representations. This masking process is key to challenging the model to learn to predict or "replicate" the masked portions based on the surrounding context.

To evaluate the prediction quality of our model, we use the objective function Lm defined bellow. This function Lm is used to predict audio features from context or to predict missing features during the masked language modeling task.

Lm = -log exp(sim(ct, qt)/κ) q∈Q t exp(sim(ct, q)/κ)
where ct represents the context vector for a given audio segment, qt represents the quantized target vector for the masked audio feature, q represents a quantized vector in the vocabulary Qt, and K = 100 distractors, κ is the temperature parameter which is set to 0.1. The similarity function sim(•, •) is typically [START_REF] Chen | A simple framework for contrastive learning of visual representations[END_REF] the cosine similarity function sim(u, v) = u ⊤ v ∥u∥∥v∥ . 

Results and Discussion

To evaluate our results across the different models (see Table 2), we used the accuracy and F1-score [START_REF] Grandini | Metrics for multi-class classification: an overview[END_REF]. The accuracy metric measures the ratio of correct predictions over the total number of evaluated instances [START_REF] Hossin | A review on evaluation metrics for data classification evaluations[END_REF]. The F1-Score is defined from the Precision and the Recall. Precision is defined as the ratio between the number of true positives and the total number of positives predicted by the model [START_REF] Hossin | A review on evaluation metrics for data classification evaluations[END_REF]. The Recall is defined as the fraction of positive samples that are correctly classified [START_REF] Hossin | A review on evaluation metrics for data classification evaluations[END_REF]. The F1score is the harmonic mean of precision and recall, and is widely used as a measure of classifier performance [START_REF] Forman | An extensive empirical study of feature selection metrics for text classification[END_REF].

We evaluated the classification scores of each model (see results in Table 1). To evaluate our models we performed a 10fold cross validation [START_REF] Valero | Gammatone cepstral coefficients: Biologically inspired features for non-speech audio classification[END_REF] with a shuffling of the data explained. The results are presented in Table 3. We would like to remind that the distribution of data by class is not exactly balanced: 30.76% Low, 37.01% Intermediate, 32.23% High.

Our experiment demonstrated that our proposed method is efficient at accurately classifying audio samples into the correct categories of speaker fluency level. We used a dataset composed of 1424 samples for our experiment, of which 60% were used for training, 15% for choosing the hyper-parameters, and 25% for testing the performance of our model. Our model achieved an overall accuracy on the test set of 95.44% on the original dataset and 96.21% on the augmented dataset. Furthermore, we performed a detailed analysis of the model's performance, and found that it achieved a high level of accuracy for all of the three categories in Table 1. The LSTM-Attention model shows slightly higher F1 score for each class. The Intermediate category had the highest F1-score at 98%, while the Low and High categories had the same F1-score of 93%.

There are a few potential reasons for the relatively lower accuracy on the Low and High categories: (i) the Low category is inherently more difficult to classify, as it can include a poor representation in word content in the signal (ii) unbalanced classes in the dataset, with more samples of Intermediate category than others. We also utilized the Wav2vec 2.0 [START_REF] Baevski | wav2vec 2.0: A framework for self-supervised learning of speech representations[END_REF] model with the SpeechBrain toolkit [START_REF] Parcollet | SpeechBrain: A General-Purpose Speech Toolkit[END_REF] mentioned in the feature extraction section for the classification by using the IEMOCAP recipe [START_REF] Wang | A fine-tuned wav2vec 2.0/hubert benchmark for speech emotion recognition, speaker verification and spoken language understanding[END_REF] in our experiments. The Wav2vec 2.0 model designed to learn high-level speech representations directly from raw audio waveforms, without requiring any manual feature engineering. Wav2vec 2.0 was able to capture important features of the audio samples in our dataset with promising results (95.23% accuracy on the test set).

Conclusion

We proposed an implemented data augmentation technique to enhance the robustness and generalization ability of our models for fluency classification. Specifically, we generated additional training samples by applying transformations to the original samples, such as adding white noise, pitch scaling, time stretching, random gain, and signal speeding. By doing so, we were able to increase the number of training examples by a factor of 32.

We compared the performance of MLP, CNN1D, LSTM-Attention and biLSTM-Attention for classifying users based on the fluency of their speech. We determined that the best performing model on the test set was a Long Short Term Memory (LSTM) model with Attention. It was trained on the augmented dataset using features such as MFCCs. The overall accuracy was 95.4% on the original dataset and 96.2% on the augmented dataset.

Future studies could explore other information channels to obtain a more through evaluation of user's fluency. It may be useful to measure speech rate in words per minute, assess vocabulary, monitor unnatural pauses or hesitations from the transcription. We intend to expand our research on these ideas.
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 1 Figure 1: Wav2vec 2.0 Architecture: learning context representations from raw waveforms[START_REF] Baevski | wav2vec 2.0: A framework for self-supervised learning of speech representations[END_REF] 

Figure 2 :

 2 Figure 2: Confusion matrix LSTM-Attention model

Table 1 :

 1 Classification scores for each evaluated model (in percentages)

			MLP			CNN1D			LSTM-Attention		biLSTM-Attention
		Precision Recall F1-score	Precision Recall F1-score	Precision Recall F1-score	Precision Recall F1-score
	Low	86.29	93.21	89.61	94.81	90.12	92.41	93.98	93.28	93.63	94.29	90.83	92.52
	Intermediate	97.87	97.87	97.87	99.25	94.33	96.73	99.13	96.98	98.13	95.88	97.89	96.88
	High	91.96	82.40	86.92	85.71	96.00	90.57	91.67	96.12	93.84	90.36	92.59	91.46

Table 2 :

 2 Classifier test scores, per model

	Metrics	MLP	CNN1D	LSTM-	biLSTM-
					Attention	Attention
	Accuracy	91.59	93.22	95.98	94.39
	Precision	91.81	93.17	95.32	93.75
	Recall	91.59	93.12	94.98	93.89
	F1-Score	91.69	93.14	95.15	93.81
	Low				
	Intermediate True label fluency				
	High				
		Low	Intermediate Predicted label fluency	High

Table 3 :

 3 Results obtained using 10-fold cross-validation

	Metrics	MLP	CNN1D	LSTM-	biLSTM-
	(means)			Attention	Attention
	Accuracy	93.62	94.82	95.97	93.07
	Precision	94.83	94.91	95.76	93.47
	Recall	94.82	94.81	95.85	92.97
	F1-Score	94.82	94.86	95.80	93.21