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Abstract

In this work, we investigate the challenging problem of channel estimation in high-mobility environments

for advanced mobile communication systems (5G and beyond). First, we propose an iterative algorithm for

channel estimation and symbol detection in the delay-Doppler domain for multiple-input multiple-output

orthogonal time frequency space (OTFS) system. The proposed algorithm is based on a superimposed pilot

pattern to improve the spectral efficiency of the system. It iterates between data-aided channel estimation

and message-passing-aided data detection. The channel estimation step is based on a threshold method.

This step considers interference-plus-noise caused by the data symbols and the additive noise to adapt the

threshold at each iteration. The data detection step is based on an adapted version of the message-passing

algorithm proposed in the literature for uncoded OTFS. Then, to improve the channel estimation efficiency,

we suggest an interference cancellation scheme executed at each iteration of the proposed algorithm. Finally,

we compare the computational complexity and the achieved performance in terms of normalized mean square

error of channel estimation, bit error rate, and spectral efficiency against five state-of the-art methods.

Keywords: MIMO, OTFS, channel estimation, iterative algorithm, superimposed pilot.

1. Introduction

The new generations of mobile communications are awaited to provide reliable high-speed communi-

cations even in high-mobility environments (high-speed trains, UAV communications, etc.) [1]. However,

the orthogonal frequency division multiplexing (OFDM), which is the most popular modulation waveform

deployed in fifth generation (5G) communication systems [2], see its performance degraded in high-mobility5

scenarios [3]. The orthogonal time-frequency space (OTFS) modulation, recently proposed in [4, 5], is one of

the promising techniques for 5G and beyond. OTFS remains robust in channels where the Doppler shift is

very high (high-mobility scenario). This new waveform incorporates the information symbols in the delay-

Doppler (DD) domain, unlike OFDM where the data symbols are incorporated in the time-frequency domain

[6, 7].10



Multiple-input multiple-output (MIMO) can also be used with OTFS and benefit from the spatial diver-

sity to further increase the transmission rate [8–12]. To ensure robust data transmission in a MIMO-OTFS

system, efficient channel estimation (CE) and data detection algorithms are required.

The proposal of a CE scheme requires to make a compromise between the spectral efficiency (SE) of

the system, the computational complexity, and the performance in terms of normalized mean square error15

(NMSE) of CE and bit error rate (BER).

Several CE schemes in the delay-Doppler domain have been proposed. These algorithms can be classified

into three categories depending on the used data-transmission architecture. The first category includes

conventional schemes using a super-frame architecture., i.e.: the first frame is used only for the transmission

of pilots and the other frames for the transmission of data symbols. The second category includes embedded20

schemes carrying pilots and data symbols on the same frame. Although these schemes use guard symbols

between the pilots and data symbols to avoid interference, they provide improved SE over conventional

schemes. The third category of algorithms consists of superimposing pilots and data symbols without using

guard intervals. These schemes further improve the SE but have the drawback of increasing the computational

complexity, due mainly to the use of iterative schemes to manage the interference between the pilots and25

data symbols.

In the present paper, we propose an iterative algorithm for CE and data detection for MIMO-OTFS

systems. To guarantee high SE, we opted for a superimposed pilot pattern. The proposed algorithm iterates

between data-aided CE and message-passing-aided data detection. The CE step is based on a threshold

method that accounts for interference-plus-noise caused by the data symbols and the additive noise to adapt30

the threshold at each iteration. The data detection step is based on an adapted version of the message-passing

(MP) algorithm [13]. The main original features of this manuscript are synthesized as follows:

(i) We proposed an iterative algorithm for CE and symbol detection and a superimposed pilot pattern for

MIMO-OTFS systems. The CE step is based on a simple threshold method and the symbol detection

step is based on a message-passing algorithm.35

(ii) We derive an optimal threshold expression for CE. Unlike classical methods [3] (where the threshold

assumes the existence of additive noise only), in our case, the determination of the threshold takes into

account the additive noise and the interference caused by data symbols.

(iii) In order to improve the CE efficiency, we propose an interference cancellation scheme executed at each

iteration of the designed algorithm.40

(iv) We compare the computational complexity and the performance of the proposed algorithm against five
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state-of-the-art methods, namely: conventional pilot aided (CPA) [14], embedded pilot (EP) [3], row-

group orthogonal matching pursuit (RG-OMP), row-group Bayesian learning (RG-BL) [15], and block

sparse Bayesian learning with block reorganization (BSBL-BR) [16], in terms of CE-NMSE, BER, and

SE.45

The remainder of this manuscript is structured as follows. Related works are given in Section 2. Section 3

is dedicated to the description of the MIMO-OTFS system model. The details of the proposed algorithm for

CE and data detection are given in Section 4. The complexity analysis and the performance of the proposed

scheme are given in Section 5.

2. Related works50

Several CE algorithms in the DD domain for OTFS modulation have been proposed in the literature.

They can be classified into three groups, based on their transmission scheme.

2.1. Conventional pilot aided (CPA) design

This group utilizes methods that allocate an entire frame for pilot transmission, which involves using the

initial OTFS frame to estimate the channel and the following frames for transmitting data [14, 17–21]. In55

[18], a method is proposed for compressed sensing in 2D Turbo that models the support matrix of the DD

channel using a Markov random field and the Bernoulli Gaussian distribution. Reference [19] presents an

uplink DD-CE algorithm for OTFS multiple access systems, formulating the CE problem as a sparse recovery

problem and solving it using OMP and modified subspace pursuit algorithms. Reference [17] proposes two

low-complexity algorithms for CE in OTFS with fractional delay and Doppler. The first (Modified Maximum60

Likelihood CE) is based on joint 2D estimation of the DD shift of a path. The second (two-step method)

decouples the joint estimation into two separate 1D estimation steps. Reference [20] suggests the OMP

with Binary-division Refinement algorithm for CS-based OTFS-CE, which allows for continuous parameter

estimation in the DD domain. Finally, reference [21] develops a pseudo-random noise pilot-based CE scheme

in the DD domain, leveraging the sparse DD impulse response that reflects the physical geometry of the65

wireless channel. In [14], a CPA design for MIMO-OTFS CE in the DD domain has been proposed. A

super-frame architecture has been adopted., i.e.: the first frame is used for CE and the following frames are

used for symbols transmission. The CE scheme uses impulses at some fixed locations in the DD domain as

pilots for estimation. This algorithm achieves close to oracle performance with low complexity but suffers

from SE degradation due to the super-frame architecture.70
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2.2. Embedded pilot (EP) scheme

This second group includes the incorporation of both pilots and data symbols in a single OTFS frame

by incorporating guard intervals around the pilots to prevent data interference during the CE process [3,

15, 16, 22–30, 33]. Authors in [3] propose an embedded pilot-aided CE for OTFS in the DD channels. An

arrangement of pilot, data symbols, and guard intervals in the same frame followed by a CE algorithm has75

been adopted for single-input single-output OTFS (SISO-OTFS) systems. Then, an extension to MIMO-

OTFS systems has been also suggested in [3]. Thanks to the guard intervals, there is no interference on

received pilot contributions caused by data symbols. Therefore, a simple threshold technique is used for CE.

Compared to the CPA design, the performance and computational complexity achieved by this scheme are

almost the same and there is an improvement of the SE. However, due to the increase in pilot overhead, this80

improvement remains small especially in MIMO-OTFS and multi-user (MU) MIMO-OTFS (MU-MIMO-

OTFS) systems. In [15], a sparse-channel model has been proposed for reducing the pilot overhead of

MIMO-OTFS systems. To estimate the channel parameters in the DD domain, pilots are arranged in the

time-frequency domain. This reduces pilot overhead, pre-processing complexity and training period. The

resultant DD domain channel state information (CSI) becomes simultaneously row and group (RG)-sparse.85

With the benefit of this property, an OMP-based RG-OMP technique has been suggested, complemented

in a practical way by an improved RG-BL framework based on Bayesian learning (BL). Even if these two

proposed techniques are complex compared to the previous schemes, they reach good performance in terms

of CE NMSE and BER with a considerable improvement of the SE. In [16], an algorithm for MIMO-OTFS

CE has been proposed, where the CE problem is formulated as a block sparse signal recovery problem.90

It is solved by the suggested BSBL-BR method. Compared to RG-OMP and RG-BL, BSBL-BR is less

efficient but has low computational complexity and better SE. In [31], a new rearrangement of pilots has

been proposed for OTFS. Afterwards, an OTFS pilot sequence optimization is formulated and solved via a

particle swarm optimization algorithm. The CE problem is formulated as a sparse signal recovery problem

and solved using the classical OMP algorithm. Thanks to the optimized pilot sequence, the accuracy of CE is95

improved. The SE is also improved compared to the previous schemes due to the reduced proportion of guard

symbols. In [32], the CE problem for OTFS is formulated as a sparse signal recovery problem based on a

reduced guard symbols pilot pattern. Several algorithms are designed to solve this problem, namely: Iterative

two-stage, Reweighted iterative two-stage, Monte Carlo Markov chain, and soft Bayesian pursuit (SoBaP).

These algorithms offer a good compromise between performance and complexity and remain applicable in100

high-mobility scenarios and low-latency applications. The suggested scheme offers a SE close to that of

[31]. In [33], a joint CE and data detection (JCEDD) algorithm for hybrid reconfigurable intelligent surface

aided millimeter wave OTFS systems has been proposed. In this method, the channel gain and the data
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symbols are simultaneously obtained using the MP algorithm. The channel parameters (the Doppler shift,

the channel sparsity, and the channel variance) are updated through expectation-maximization algorithm.105

This method achieves a trade-off between the estimation and detection performance, the power gap, and the

pilot overhead.

2.3. Superimposed pilots design

This group includes a superimposed pilot scheme, where pilots and data symbols are spread across the

DD domain [34–36]. In [34], a data-aided CE algorithm is proposed for a superimposed pilot and data110

transmission scheme to enhance the SE. Initially, the channel is coarsely estimated based on pilot symbols.

Then, an iterative process is used for soft detection of data symbols and channel estimate to improve CE

and data detection. In [35], pilots and data symbols are overlaid in the DD grid, spreading the pilot energy

across the entire domain, resulting in a higher SE than previous systems that used guard intervals. In [36], an

iterative algorithm for CE and data detection has been suggested. This sparse CE problem is reformulated as115

a specific marginalization of maximum a posteriori (MAP) problem and is resolved using a Bayesian approach

based on the variational mean-field approximation via the variational Bayesian expectation maximization

(VB-EM) algorithm.

3. System model

In this section, we discuss the basic concepts of a MIMO-OTFS transceiver following the description120

introduced in [14]. The parameters of the MIMO-OTFS system considered in this work, along with, their

physical significations are shown in Table 1. The block diagram of the system is given in Fig 1.

Table 1: MIMO-OTFS system parameters.

Parameters Physical meaning

N , M Doppler bins, delay bins
Nt, Nr Number of Tx antennas, number of Rx antennas
Gt, Gr Transmit pulse matrix, Receive pulse matrix
∆t, ∆f Time slot duration, subcarrier spacing

T = N∆t, M∆f Frame duration, frame bandwidth
kν , lτ Maximum Doppler tap, maximum delay tap
fc, tc Carrier frequency, coherence time

At the transmitter side, for the pth antenna (p = 1 : Nt), the 2D grid of symbols in the DD domain

X
(p)
DD ∈ CM×N is formed by mapping a sequence of information bits into MN symbols (QAM, PSK, etc.).

Then, X
(p)
DD is transformed into a 2D time-frequency grid X

(p)
TF ∈ CM×N via an inverse symplectic finite125

Fourier transform (ISFFT) as follows:
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Figure 1: MIMO-OTFS block diagram.

X
(p)
TF [n,m] =

1√
MN

N−1∑
k=0

M−1∑
l=0

X
(p)
DD[k, l] exp

(
j

2π

NM
(nkM −mlN)

)
, (1)

where n = 0 : N − 1 and m = 0 : M − 1. Next, the time-frequency domain signal is converted to a time

domain continuous signal s(t) using the Heisenberg transform (HT) as follows:

s(p)(t) =

M−1∑
m=0

N−1∑
n=0

X
(p)
TF [n,m] exp (j2πm∆f(t− nT )) gt(t− nT ), (2)

where gt is the pulse shaping filter. s(p)(t) can be written in a vector form as follows:

s(p) =
(
FH
N ⊗Gt

)
x
(p)
DD, (3)

where s(p) = vec(S(p)) with S(p) = GtF
H
M (FMX

(p)
DDFH

N ) = GtX
(p)
DDFH

N , x
(p)
DD = vec(X

(p)
DD) and ⊗ is the130

Kronecker product. FK and FH
K denote, the K-point direct and inverse discrete Fourier transform matrices.

Gt = diag[gt(0), gt(T/M), ..., gt((M − 1)T/M)]. One CP is added to s(p)(t) before its transmission.

The MIMO multi-paths time-varying wireless channel is sparse in the DD domain involving only a few

parameters. The channel between the pth transmitting antenna and the qth receiving antenna has P taps.

Thus, the baseband channel impulse response can be expressed as135

hqp(τ, ν) =

P∑
i=1

h
(qp)
i δ(τ − τ

(qp)
i )δ(ν − ν

(qp)
i ), (4)

where h
(qp)
i , τ

(qp)
i , and ν

(qp)
i denote the complex gain, delay shift, and Doppler shift of the ith path, respec-

tively. The ith delay and Doppler taps
(
l
(qp)
i , k

(qp)
i

)
can be written as l

(qp)
i = τ

(qp)
i M∆f and k

(qp)
i = ν

(qp)
i NT .

After transmitting through a multi-path time-varying channel hqp(τ, ν), the received signal r(q) is defined

by the following linear system for q = 1 : Nr:
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r(q) =

Nt∑
i=1

Hqps
(p) + n(q), (5)

where n(q) ∼ CN (0, σ2
nIMN ) is an additive complex Gaussian noise variable, Hqp =

∑P
i=1 h

(qp)
i Πl

(qp)
i ∆k

(qp)
i ∈140

CMN×MN denotes the channel matrix between the pth Tx antenna and the qth Rx antenna. Π denotes the

permutation matrix and∆ = diag[exp(j2π(0)/MN), exp(j2π(1)/MN), ..., exp(j2π(MN−1)/MN)]. Letting

r = [(r(1))T , (r(2))T , ..., (r(Nr))T ]T ∈ CMNNr and s = [(s(1))T , (s(2))T , ..., (s(Nt))T ]T ∈ CMNNt , we get

r = Hs+ n, (6)

where n = [(n(1))T , (n(2))T , ..., (n(Nr))T ]T ∈ CMNNr and

H =


H11 · · · H1Nt

...
. . .

...

HNr1 · · · HNrNt

 ∈ CMN×MN . (7)

At the receiver end, the signal r(q) first undergoes an adapted filter bank, which provides the cross-145

ambiguity function between gr(t) and r
(q)(t). Then, the output Y

(q)
TF (t, f) is sampled leading to Y

(q)
TF [n,m] =

Y
(q)
TF (t, f)|(t=nT,f=m∆f). This procedure is called the Wigner transform (WT). After that, the DD domain

signal Y
(q)
DD is obtained by applying the symplectic finite Fourier transform (SFFT) to Y

(q)
TF as follows:

Y
(q)
DD[k, l] =

1√
MN

N−1∑
n=0

M−1∑
m=0

Y
(q)
TF [n,m] exp

(
−j 2π

NM
(nkM −mlN)

)
. (8)

The DD input/output relationship between Y
(q)
DD and X

(p)
DD can be expressed as follows:

Y
(q)
DD[k, l] =

Nt∑
p=1

N−1∑
k′=0

M−1∑
l′=0

X
(p)
DD[k′, l′]hw[[k − k′]N , [l − l′]M ] + ñ(q)[k, l], (9)

where hw[k, l] is the DD effective channel and ñ(q)[k, l] is the DD noise sample. [.]K stands for mod-150

ulo K operator. Finally, based on (3), (5) and the fact that y
(q)
DD = (FM ⊗ Gr)r

(q), where y
(q)
DD =

vec(Y
(q)
DD), letting y = [(y

(1)
DD)T , (y

(2)
DD)T , ..., (y

(Nr)
DD )T ]T , x = [(x

(1)
DD)T , (x

(2)
DD)T , ..., (x

(Nt)
DD )T ]T , and ñ =

[(FN ⊗Gr)n
(1))T , (FN ⊗Gr)n

(2))T , ..., (FN ⊗Gr)n
(Nr))T ]T , the received signal in the DD domain can be

expressed in a vector form as follows:

y = Hx+ ñ, (10)
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where Hqp = (FN ⊗Gr)Hqp(F
H
N ⊗Gt) and155

H =


H11 · · · H1Nt

...
. . .

...

HNr1 · · · HNrNt

 ∈ CMN×MN . (11)

4. Proposed scheme

In this section, we describe the proposed algorithm for CE, starting with the suggested pilot pattern.

Then, we provide details of the proposed scheme.

4.1. Proposed pilot pattern

Channel estimation in this context requires the use of pilots. Two approaches are commonly used. The160

first one, called CPA, consists in separating transmission of the pilots from that of the information symbols.,

i.e.: two frames will be sent. The first only contains pilots; whereas, the second carries information symbols

[14]. The second approach, which is the most used, consists in putting pilots and data symbols in the same

frame while separating them by guard intervals to avoid data/pilot interferences [3]. The pilot placement in

the DD domain for the latter approach is expressed as follows:165

X
(p)
DD[k, l] =


xp, k = kp, l = lp + (p− 1)(lτ + 1),

0, kp − 2kν ≤ k ≤ kp + 2kν and lp − lτ ≤ l ≤ lp +Nt(lτ + 1)− 1,

X
(p)
d [k, l] otherwise,

(12)

where X
(p)
d [k, l] denotes the information symbols at location [k, l] of the pth Tx antenna and lτ , kν denote the

maximum delay tap and the maximum Doppler tap. We can notice that NG = (4kν +1)(Ntlτ +Nt + lτ )− 1

guard symbols are used in each frame in this scheme. The SE can be defined as [34]:

SE = (1− η) log |A|, (13)

where A denotes the constellation set to which the data symbols belong and η is the pilot overhead. Hence,

the pilot overhead relative to the scheme (12) is given by η = (NG + 1)/NM .170

Clearly, NG and η increase with Nt and the SE decreases as Nt increase. Furthermore, the expression of

NG depends also on kν , i.e., in high mobility environments (high Doppler shifts) NG should be large to avoid

data/pilot interference and this also causes a degradation of the SE. Therefore, in a massive MIMO system
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(a) Antenna 1 (b) Antenna 2 (c) Antenna 3

Figure 2: Tx pilot and data symbols for MIMO-OTFS system (■: data, ◦: pilot, the red square area represents the space
allocated for guard intervals in classical approaches).

or in a high mobility environment the DD frame size should be very large, increasing thus the computational

complexity. In addition, in the new wireless communication systems the frame duration is limited. In such175

cases, the SE is severely affected. Therefore, in this paper, we propose a CE algorithm for MIMO-OTFS

systems, which uses the entire OTFS frame for data symbol transmission. The proposed pilot pattern in

the DD domain is illustrated in Fig 2 (example of 3× 3 MIMO-OTFS), where the area bounded by the red

square denotes the guard space adopted in the classic OTFS CE scheme. As shown in Fig 2, we suggest the

following superimposed arrangement:180

X
(p)
DD[k, l] =

 xp +X
(p)
d [k, l], k = kp, l = lp + (p− 1)(lτ + 1),

X
(p)
d [k, l] otherwise,

(14)

We can observe that this proposed pilot pattern does not use guard intervals. This will increase the SE

of the system but will introduce interference between the pilot and the data symbols. Hence, we need an

interference cancellation scheme and an efficient CE algorithm.

The Rx symbol pattern at each antenna is illustrated in Fig 3a. At the qth Rx antenna, the received

symbols Y
(q)
DD[k, l] for k ∈ [kp − kν , kp + kν ], l ∈ [lp + (p − 1)(lτ + 1), lp + Nt(lτ + 1) − 1] are used for CE185

to the pth Tx antenna. These symbols are affected by the data symbols, pilot signal of the pth Tx antenna,

and the channel between the pth Tx and qth Rx antennas, as shown in Fig 3a. The received symbols related

to the pilot can be rewritten as follows:

Y
(q)
DD[k, l] = xph

(qp)[[k − kp]N , [l − lp]M ] +

Nt∑
p=1

I
(qp)
k,l + ñ(q)[k, l], (15)

where I
(qp)
k,l denotes the interference introduced by the data symbols, given by
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I
(qp)
k,l =

k+kν∑
k′=k−kν

l+lτ∑
l′=l−lτ

X
(p)
DD[k, l]h(qp)[[k − kp]N , [l − lp]M ] =

∑
i∈Sk,l

h
(qp)
i X

(p)
DD[[k − ki]N , [l − li]M ]αk,l, (16)

where Sk,l is the set containing indices of all data symbols contributing to Y
(q)
DD[k, l] (the pilot is interfered190

by P data symbols, therefore |Sk,l| = P ), and

αk,l =

 exp
(
j2π ki[l−li]M

MN

)
, li ≤ l ≤M,

exp
(
−j2π li

N

)
exp

(
j2π ki[l−li]M

MN

)
0 ≤ l ≤ li.

(17)

Because of the interference between the pilot and data symbols, the CE cannot be done simply from (15)

using the threshold ρ = 3σ as suggested in [3]. Therefore, we need to define a new decision threshold and

an algorithm to manage these interferences. This is the objective of the next section.

4.2. Proposed ICEDD algorithm195

The proposed iterative channel estimation and data detection (ICEDD) scheme is shown in Fig 3b in

the form of a block diagram. The first step of this algorithm is to find an initial estimate of the channel

{(h(qp))(0)} for p = 1 : Nt and for q = 1 : Nr from (15), followed by data symbol detection using the

estimated channel coefficients and applying the MP algorithm. Then, an interference cancellation scheme is

applied to remove the interference from the received signal Y
(q)
DD[k, l], leading to the signal Ỹ

(q)
DD[k, l] (this200

scheme is fed by the received signal Y
(q)
DD[k, l] and decided symbols). Afterwards, a refined channel estimate

is obtained using the signal Ỹ
(q)
DD[k, l]. This new estimated channel will then be used for the detection of the

data symbols. The process containing interference cancellation, refined CE, and data detection is done in

an iterative way, as shown in Fig 3b.

The initial channel estimate is obtained by comparing the received signal Y
(q)
DD[k, l] given by equation205

(15) to a predetermined threshold. This threshold, unlike the one used in the classical method, takes into

account the interference
∑Nt

p=1 I
(qp)
k,l and the noise effect. Threshold determination requires knowledge of

the noise-plus-interference energy. From (16), provided data symbols are independent from the channel

coefficients, we can compute the interference energy as follows:

10



(a) Rx symbol pattern at one antenna of
MIMO-OTFS system (■: data detection,
symbols in the yellow, green, and blue boxes:
CE for Tx antenna 1, 2, and 3, respectively).

(b) Block diagram for the proposed CE and data de-
tection scheme for MIMO-OTFS systems.

Figure 3: (a): Rx symbol pattern at one antenna of MIMO-OTFS system. (b): Block diagram for the proposed CE and data
detection scheme for MIMO-OTFS systems.

E

{
|
Nt∑
p=1

I
(qp)
k,l |2

}
=

Nt∑
p=1

∑
i∈Sk,l

E{|h(qp)i |2}E{|X(p)
DD[[k − ki]N , [l − li]M ]|2}+

Nt∑
p=1

∑
i′∈Sk,l

i̸=i′

E{h(qp)i (h
(qp)
i )⋆}

×E{X(p)
DD[[k − ki]N , [l − li]M ](X

(p)
DD)⋆[[k − ki′ ]N , [l − li′ ]M ]} exp

(
−j2πkili − ki′ li′

MN

)
.

(18)

If we assume that the channel coefficients are independent for the different paths, we get E{h(qp)i (h
(qp)
i′ )⋆} =210

0 for i ̸= i′. Then, (18) can be simplified as E
{
|
∑Nt

p=1 I
(qp)
k,l |2

}
= σ2

d

∑Nt

p=1

∑
i∈Sk,l

E{|h(qp)i |2}, where

σ2
d = E{|X(p)

DD[k, l]|2}. If we further assume that the channel coefficients follow an exponential power delay

profile (PDP) (the Extended Vehicular A model [37] of the 3GPP, the standardization body for 5G cellular

communications is adopted) and their powers are normalized [38–40], yielding
∑

i∈Sk,l
E{|h(qp)i |2} = 1, we

get E{|
∑Nt

p=1 I
(qp)
k,l |2} = Ntσ

2
d. As a result, the threshold expression will be given as follows:215

ρ = 3
√
Ntσ2

d + σ2. (19)

It is shown in [3] that the BER performance improves as the threshold increases, because at small

threshold values, the path false alarm probability becomes higher (detection of non-existent paths becomes

favourable) and the BER performance degrades. However, increasing the threshold above a certain value

may cause the non-detection of some low power paths. Hence, there is an optimal threshold to balance the

false alarm and miss detection probabilities. That’s why the choice of 3 standard deviations for the threshold220

is optimal. Subsequently, the estimation of channel coefficients is performed as follows:
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ĥ(qp)[[k − kp]N , [l − lp − (p− 1)(lτ + 1)]M ] =
Y

(q)
DD[k, l]

xp
1|Y (q)

DD[k,l]|≥ρ

kp − kν ≤ k ≤ kp + kν , lp + (p− 1)(lτ + 1) ≤ l ≤ lp + plτ + p− 1,

(20)

Equations (20) allow to estimate the effective channel ĥ(qp) and its corresponding delay and Doppler taps

{l̂i, k̂i}. By exploiting the 2D convolution property of the OTFS system, and the fact that li = τiM∆f , and

ki = νiNT , we can easily deduce the channel parameters {ĥi, τ̂i, ν̂i}. Then an initial estimate of the channel

matrix H is obtained, namely Ĥ
(0)

. Once the channel is estimated, an initial detection of data symbols is225

obtained using an adapted version of the MP algorithm proposed in [13, 14]. The aim here is to estimate

the vector of data symbols xd from the following model using Ĥ
(0)

instead of H:

yd = y − Ĥ
(0)

xp = Hxd + w̃, (21)

where xp is an MNNt × 1 vector containing Nt non-zero elements corresponding to the pilot, xd is a data

symbols vector, and w̃ = ñ + (H − Ĥ
(0)

)xp is a vector formed by the additive noise and the CE error

H− Ĥ
(0)

.230

Let us note that H is sparse: each row and each column of H contains only PNt and PNr non-zero

elements, respectively. Therefore, the system is modelled as a sparsely connected factor graph with MNNt

variable nodes and MNNr observation nodes corresponding to xd and yd, respectively. The factor graph

of the MP algorithm, which consists of observation nodes and variable nodes, is shown in Fig 4. Thanks to

the channel sparsity in the DD domain, each variable node xd(c) is relied to only PNr observation nodes235

{yd(ki), ki ∈ Ic}, and each observation node yd(r) is relied to only PNt variable nodes {xd(ki), ki ∈ Ir},

where Ic and Ir denote the sets of non-zero indices in the cth column and the rth row of H. The application

of the maximum a posteriori (MAP) criterion on (21) yields:

x̂d = argmax
xd∈ANMNr

p(xd|yd, Ĥ
(0)

). (22)

Problem (22) is a demanding combinatorial problem. Thus, the following symbol by symbol MAP

criterion is used:240

x̂d(r) = argmax
aj∈A

p(xd(r) = aj |yd, Ĥ
(0)

),

= argmax
aj∈A

1

|A|
p(yd|xd(r) = aj , Ĥ

(0)
),

≈ argmax
aj∈A

∏
k∈Ir

p(yd(k)|xd(r) = aj , Ĥ
(0)

),

(23)
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(a) Observation node messages (b) Variable node messages

Figure 4: Messages in factor graph.

for r = 0 : NMNt − 1 and k = 0 : NMNr − 1. It is important to keep in mind that the entries of the vector

yd are independent for a given xd(k) due to the sparsity of the matrix H. It is assumed that all entries in

the vector xd are equally likely. The MP algorithm, which is described below, can be used to solve problem

(23). The message that passes to yd(c), for c ∈ Ir, from xd(r), for r = 0 : NMNt−1 is the probability mass

function (pmf) given as:245

prc = {prc(ai)|ai ∈ A}. (24)

The rth observation node yd(r) is related to the cth variable node yd(c) by the following formula:

yd(r) = xd(c)Ĥ
(0)

(r, c) + ψrc, (25)

where Ĥ
(0)

(r, c) is the (r, c)th element of Ĥ
(0)

and ψrc denotes the interference-plus-noise term whose

expression is given as follows:

ψrc =
∑

k∈Ir,k ̸=c

xd(k)Ĥ
(0)

(r, k) + w̃(r). (26)

The term ψrc is approximated by a Gaussian random variable because w̃(r) follows a Gaussian distribu-

tion and, by using the central-limit theorem,
∑

k∈Ir,k ̸=c xd(k)Ĥ
(0)

(r, k) is also approximated by a Gaussian250

distribution. In the mth iteration of MP, messages that goes from the observation node yd(r) to the variable

node xd(c) contain the mean µ
(m)
rc and the variance (σ

(m)
r,c )2 of the interference term (26), where c ∈ Ir.

The major difference between the versions of the MP algorithm suggested in [13, 14] and the version

proposed here lies in the calculation of µ
(m)
rc and (σ

(m)
r,c )2. Unlike the versions in [13, 14] where the interference

13



term contains only additive noise, in our case, this term is a function of additive noise and the mixture255

containing the symbols of pilots and the error of CE. This mixture is not present in earlier versions of the

MP algorithm due to the use of guard intervals between pilot and data symbols. The second difference is

that these earlier versions of the MP algorithm assume perfect knowledge of CSI, i.e., the MIMO matrix H

is perfectly known. However, in our case, we do not know H but only an estimate Ĥ.

The expressions for the mean µ
(m)
rc and variance (σ

(m)
r,c )2 of the interference term are given as follows:260

µ(t)
r,c =

∑
k∈Ir,k ̸=c

|A|∑
i=1

aip
(m−1)
r,k (ai)Ĥ(r, k) +mw̃(k), (27)

(σ(t)
r,c)

2 =
∑

k∈Ir,k ̸=c

|A|∑
i=1

|ai|2p(m−1)
r,k (ai)|Ĥ(r, k)|2 − |µ(m)

r,c |2 + var{w̃(k)}, (28)

where mw̃(k) and var{w̃(k)} are the mean and the variance of w̃(k) whose expressions are derived below.

We have w̃ = ñ+ (H− Ĥ)xp and we know that xp is a vector containing only Nt non-zero elements whose

value of each of these elements is equal to xp. Therefore, the k
th element of w̃ can take the following form:

w̃(k) = ñ(k) +
∑
i∈Il

(H(k, i)− Ĥ(k, i)), (29)

where Il is the set in the DD domain the pilots contribute to. Since the elements of ñ are centred and

have a variance σ2 and since xp have zero mean and variance σ2
p, we can establish the values of mw̃(k) and265

var{w̃(k)} as follows:

mw̃(k) = 0,

var{w̃(k)} = σ2 + σ2
p

∑
i∈Il

|H(k, i)− Ĥ(k, i)|2.
(30)

After that, the entries of the pmf vector P
(m)
r,c are passed from the variable node xd(c) to the observation

node yd(r). The elements of this pmf vector are calculated using a damping method proposed in [35]:

p(m)
c,r (ai) = ∆p(m−1)

c,r (ai) + (1−∆)p(m−2)
c,r (ai), (31)

where ∆ ∈ (0, 1] is the damping factor allowing the improvement of the convergence of MP algorithm, and

p(m)
c,r ∝

∏
k∈Ic,k ̸=c

exp

(
−
|yd(k) + µ

(m)
k,c + Ĥ(k, c)ai|

(σ
(m)
r,c )2

)
. (32)

The MP algorithm stops if the maximum number of iterations miter is reached or if |p(m)
c,r − p

(m−1)
c,r | < ϵ270
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(for all (r, c) pairs), where ϵ is a small value. Finally, the decision on the detected data symbols is given by

x̂d(c) = argmax
ai∈A

p(m)
r,c (ai), c = 0 : NMNt − 1. (33)

The detected data symbols X̂
(0)
DD[k, l] and the initial channel estimate {(ĥ(qp))}(0) for p = 1 : Nt and

for q = 1 : Nr will then be used to cancel the received signal interference caused by the data symbols. The

residual term after interference cancellation takes the following form:

Ỹ
(q)
DD[k, l] = Ŷ

(q)
DD[k, l]−

Nt∑
p=1

∑
k′

∑
l′

X̂
(p)
d [k′, l′]ĥ(qp)[[k − k′]N , [l − l′]M ]. (34)

In the case where the interferences are perfectly eliminated, we can easily get a good estimate of the275

DD channel by the threshold method using the classical threshold ρ = 3σ, because the residual term in this

case contains only the pilot and the additive noise. In our case, due to the noise influence, the interference

cancellation is imperfect. In this case, the iterative scheme of Fig 3b is proposed to perform CE and data

detection in an iterative way. With this scheme, a good CE allows for a good detection of data symbols and

an efficient interference cancellation for performing the threshold-based CE.280

In this algorithm, the data symbols at the mth iteration X̂
(m)
d [k, l] are detected using the MP algorithm

by feeding it with the DD channel estimated at iteration m − 1, i.e., (ĥ(ji))(m)[k, l]. Then, X̂
(m)
d [k, l] and

(ĥ(ji))(m)[k, l] will be used for interference cancellation (34). Finally, a threshold-based refined CE technique

will be applied. Specifically, after the application of the interference cancellation scheme, the threshold ρ

used in the CE process need to be updated. The number of channel paths is unknown at the receiver. As a285

compromise, we consider a relatively large number P ′ in order to avoid channel paths miss detection with

small gains. Assuming that we can estimate Q paths instead of P ′ paths at the (m− 1)th iteration. In this

case, after the application of interference cancellation scheme, there are still other interferences related to

the error P ′ − Q about the number of estimated paths. The energy of these residual interferences can be

approximated by ((P ′ − Q)/P ′)Ntσ
2
d. Therefore, the new threshold for the threshold-based refined CE at290

the mth iteration is given as follows:

ρ(m) = 3

√(
P ′ −Q

P ′

)
Ntσ2

d + σ2. (35)

The iterative algorithm ends if the number of iterations reaches the maximum number Mmax or if the

performance gain of CE by running more iterations is marginal. The proposed algorithm is summarized in

Algorithm 1.
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Algorithm 1 PROPOSED ALGORITHM FOR CHANNEL ESTIMATION AND DATA DETECTION.

Input: xp, {Y (j)
DD}j=1:Nr , Mmax, Nt, Nr, M , N , miter, e

Calculate the decision threshold: ρ(0) = 3
√
Ntσ2

d + σ2

Calculate an initial channel estimate: (ĥ(ji))(0):

if |Y (j)
DD[k, l]| > ρ(0) then

(ĥ(ji))(0)[[k − kp]N , [l − lp − (i− 1)(lτ + 1)]M ] = Y
(j)
DD[k, l]/xp

end if
while m < Mmax & ∥ĥ(m) − ĥ(m−1)∥ < e do

Use the MP algorithm (22)-(33) for symbol detection:(
{x̂(i)

d }i=1:Nt

)(m)

=MP
(
(ĥ(ji))(m−1), {Y (j)

DD}j=1:Nr
,mw̃(k), varw̃(k),miter

)
Apply the interference cancellation scheme:

Ỹ
(j)
DD[k, l] = Ŷ

(j)
DD[k, l]−

∑Nt

i=1

∑
k′
∑

l′

(
X̂

(i)
d

)(m)

[k′, l′](ĥ(ji))(m−1)[[k − k′]N , [l − l′]M ]

Update the threshold: ρ(m) = 3
√
((P ′ −Q)/P ′)Ntσ2

d + σ2

Calculate the refined channel estimate:
if |Ỹ (j)

DD[k, l]| > ρ(m) then

(ĥ(ji))(m)[[k − kp]N , [l − lp − (i− 1)(lτ + 1)]M ] = Ỹ
(j)
DD[k, l]/xp

end if
end while

Output: {ĥ(ji)}i=1:Nt,j=1:Nr , {x̂
(i)
d }i=1:Nt .

5. Computational complexity and numerical results295

In this section, we evaluate the computational complexity and the performance of ICEDD in terms of

CE-NMSE, BER, and SE. Then, we compare obtained results against five state-of-the-art methods.

The parameters of the simulations are given in Table 2. The DD channel is modelled as follows: the delay

is a 5-tap model whose parameters are given in [35]. Each delay tap corresponds to a single Doppler shift

in the form νi = νmaxcos(θi), where θi ∈ [0, π] and νmax is the maximum Doppler shift of the channel. The300

maximum delay tap lτ = 4 and the maximum Doppler tap kν = 2 correspond to a high mobility scenario

with a maximum relative speed vmax = 500 km/h.

Table 2: Simulation parameters.

Parameter Value Parameter Value

(N , M) (16, 16) (tc(µs), T (ms)) (541, 1)
(Nt, Nr) (2, 2) vmax(km/h) 500
(Np, Mp) (4, 5) P 5

(fc(GHz), ∆f(kHz)) (4, 15) Modulation BPSK
(kν , lτ ) (2, 4) Pulse shaping Rectangular

5.1. Computational complexity

ICEDD iterates between two steps: a CE step and a data detection step. Thus, the complexity of the

proposed algorithm is written as follows: C = niter(CCE + CDD), where CCE and CDD denote the overall305
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computational complexity of the CE step and the data detection step, respectively. For the sake of simplicity,

we assume that Nt = Nr = Na.

The complexity of one iteration of the detection algorithm requires the computation of (27), (28), (31),

and (33). Each of (27), (28), and (31) has a complexity of O(MNNaP |A|). In addition, the complexity of

(33) is O(MNNa|A|). Therefore, the overall complexity of the data detection algorithm is dominated by310

CDD = O(miterMNNaP |A|), wheremiter is the number of iterations required to the convergence of the data

detection algorithm. For the CE step, the computational complexity is dominated by CCE = O(lτNaN).

The overall computational complexity of the proposed algorithm for CE and data detection is given by

C = niter(O(lτNaN) +O(miterMNNaP |A|)).

The computational complexity of each of the state-of-the-art methods is presented in the Table 3. Letting315

K = (2kν+2Q+1)(lτ+1), G = (Mτ+1)(Gν+1) and noting that Cm represents the computational complexity

of the method m.

Table 3: Computational complexities of the proposed and state-of-the-art CE schemes.

Method Computational complexity

EP [3] O(lτNaN)
BSBL-BR [16] O(NiterN

3
aLK

2)
RG-OMP [15] O(M3N3

p )

RG-BL [15] O(G3N3
a )

ICEDD (CE) O(niterlτNaN)

It can be seen that the proposed algorithm and the EP method are the least complex because their

complexities vary linearly with N . The EP scheme is the least complex because it is executed once while

ICEDD requires niter iterations to converge. It can be also seen that RG-OMP is the most complex because320

its complexity is proportional to M3.

In practice, lτ < Mτ < M , kν < Nν < N , Nν << Gν , and Niter = 10. Therefore, NiterLK
2 < G3,

leading to CBSBL−BR < CRG−BL. Since niter ≈ 4, we can easily check niterlτN < NiterLK
2N2

a , thus,

CICEDD < CBSBL−BR. Finally, we can classify the complexities of the five methods as follows: CEP ≈

CICEDD < CBSBL−BR < CRG−BL < CRG−OMP .325

5.2. Numerical results

Table 4 shows the expressions and values of the proposed scheme pilot overhead as well as those of the

state-of-the-art methods CPA [14], EP [3], RG-BL and RG-OMP [15], BSBL-BR [16], OMP [31], and SoBaP

[32]. SE refers to the rate of information that can be transmitted over a given bandwidth in a specific

communication system. By definition, its expression can be given as follows:330
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SE =
D

B
(bits/s/Hz), (36)

whereD and B denote the bit rate and bandwidth, respectively. For an OTFS system, D and B are expressed

as follows:

D =
Nb

T
and B =M∆f, (37)

where Nb is the number of information bits sent on an OTFS frame. For M-ary modulation (QAM or

MPSK), Nb = Ns log |A|, where Ns is the number of information symbols sent on an OTFS frame.

When Np symbols are reserved for pilots and Ng symbols for guard intervals, Ns = MN − Np − Ng.335

Thus, the SE expression can be given as follows:

SE =
(MN −Np −Ng) log |A|

M∆fNT
. (38)

Since T∆f = 1, the SE of a scheme s is finally expressed as follows:

SE = (1− ηs) log |A|, (39)

where ηs = (Np + Ng)/NM is the pilot overhead of scheme s. Therefore, for a given constellation (BPSK

is used in our case), the scheme with a small pilot overhead is the scheme with the best SE. Consequently,

from Table 4, we can see that the designed scheme is the best compared to the state-of-the-art methods in340

terms of SE.

Table 4: Pilot overhead of the proposed and state-of-the-art schemes.

Scheme (s) Pilot overhead (ηs) Numerical value

CPA [14] MN/2MN 50 %
EP [3] (NG + 1)/MN 48 %

RG-OMP + RG-BL [15] Np/(Np +N) 20 %
BSBL-BR [16] L/MN 9 %

OMP [31] + SobaP [32] Nt(lτ +Mp)/MN 7 %
ICEDD (CE) 0/MN 0 %

The signal-to-noise ratio and the pilot signal-to-noise ratio are defined as follows:

SNR =
σ2
d

σ2
and SNRp =

σ2
p

σ2
. (40)

Fig 5 shows the BER performance of the proposed ICEDD algorithm versus the number of iterations

with SNR = 5, 10 dB, σ2
p/σ

2
d = 20 dB, and BPSK modulation. From Fig 5, it can be seen that, for both
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Figure 5: BER performance of the ICEDD algorithm versus the number of iterations.

SNR values, the BER decreases with increasing number of iterations, and it saturates after about 4 or 5345

iterations. The convergence and the effectiveness of the proposed ICEDD algorithm are confirmed by the

steady states reached by the two curves of the BER after a few iterations. It can be also observed that, as

expected, the scenario with higher SNR exhibits superior convergence and detection accuracy.

We now investigate the variation of NMSE as a function of SNR: NMSE = 1 − (|hH ĥ|/∥h∥2∥ĥ∥2)2.

We assume that SNRp = 40 dB. Fig 6a shows a comparison between ICEDD and EP [3], BSBSL-BR [16],350

RG-OMP and RG-BL [15] methods in terms of NMSE. We observe that ICEDD has the lowest NMSE value

compared to BSBSL-BR [16], RG-OMP, and RG-BL [15] methods. We also observe that the ICEDD and

the EP method has a similar NMSE performance. However, the EP method uses guard intervals and the

proposed scheme improves the SE (see Table 4). This improvement becomes more important in a massive

MIMO-OTFS and in MU-MIMO-OTFS systems, where more guard symbols are required for avoiding inter-355

user interference. To highlight the influence of neglecting the interferences on the performance in terms of

NMSE of the EP scheme, we consider the EP scheme but without the use of guard intervals (EP-WOGI)

and threshold ρ = 3σ. We see that the NMSE performance of the EP-WOGI scheme is weaker than that

of ICEDD and other state-of-the-art methods. Its performance degrades with the increase of SNR because

the interference suffered by the pilot symbol becomes more severe. Therefore, even though EP-WOGI has360

the same SE as the proposed scheme, its NMSE performance is degraded. Consequently, neglecting the

interference severely degrades the CE performance.
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Figure 6: NMSE and BER performances of the proposed and state-of-the-art methods.

We now investigate the variation of BER as a function of SNR. We consider two distinct values for SNRp,

30 and 40 dB. Fig 6b shows a comparison between ICEDD, BSBSL-BR [16], RG-OMP, and RG-BL [15].

When SNRp = 40 dB, the performance of ICEDD is close to that of the oracle (perfectly known CSI). When365

SNRp = 30 dB, the performance of the proposed algorithm degrades at high SNRs. This degradation is due

to the CE error caused by a high interference energy to the fixed pilot symbol energy. To avoid this problem,

we opt for an adaptive pilot symbol energy. We plot the BER performance of the proposed algorithm by

using σ2
p/σ

2
d = 20 dB. In this scenario, SNRp also rises with the increase in SNR, improving the BER

performance as well as the accuracy of CE.370

In Fig 7, we investigate the BER performance of the ICEDD algorithm for different user speeds with

σ2
p/σ

2
d = 20 dB, lτ = 4, and BPSK modulation. Consider user speeds of 250, 500, and 1000 km/h corre-

sponding to maximum Doppler tap kν = 1, 2, and 4, respectively. From Fig 7, it is easy to observe that the

proposed ICEDD algorithm exhibits highly similar performance under different mobilities. This is due to the

fact that OTFS is insensitive to Doppler frequency shifts. This property allows OTFS to distinguish similar375

scattering paths with different velocities. Therefore, a similar BER performance of the ICEDD algorithm is

observed for different user speeds.

6. Conclusion

We have proposed an algorithm for MIMO-OTFS channel estimation and data detection for a system with

superimposed pilot symbols. The proposed algorithm iterates between data-aided channel estimation and380

message-passing-aided data detection. The channel estimation step is based on a simple threshold method

and the data detection step is based on a message-passing algorithm. We have derived an optimal threshold
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Figure 7: BER performance of the ICEDD algorithm with different mobilities.

expression for the channel estimation method proposed in this work. Unlike classical methods [3], that

involve guard interval and fixed threshold for the detection of channel paths, for the determination of the

threshold we take into account the additive noise and the interference caused by data symbols. To improve385

the channel estimation efficiency, we have proposed an interference cancellation scheme which is executed at

each iteration of the algorithm. The comparison conducted in high-mobility environment against state-of-

the-art methods has shown that the proposed scheme achieves a good compromise between computational

complexity and performance in terms of channel estimation NMSE, BER and spectral efficiency.
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