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Abstract—In this paper, we study blind equalization techniques to
mitigate inter-symbol interference (ISI), and mainly, we are focused
on generic blind equalizer (GBE). A GBE has no prior information
about the transmission channel or the used constellation. To solve
this challenge, a joint generic blind equalizer, based on a new
multi-criteria cost function and automatic modulation classification
(AMC) is proposed. The new multi-criteria cost function is based
on the probability density fitting (PDF) and the k-nearest neighbor
(KNN) algorithm is used for the AMC stage. Thus, using a
neural architecture, the new criterion is demonstrated in its linear
and nonlinear context. Simulation results support our claims with
Quadrature Amplitude Modulation (QAM) transmitted signals in
single input single output (SISO) communication system and they
show a better performance in terms of mean square error (MSE)
and symbol error rate (SER) compared to other GBE from the
literature.

Index Terms—Blind equalization, AMC, pdf, neural network.

I. Introduction
Blind equalization is a very interesting research topic aiming

to develop effective and low-complexity algorithms that reduce
inter-symbol interference (ISI) and avoid bandwidth waste result-
ing from training data. Generic blind equalization is needed when
constructing intelligent receivers that do not know the channel
and the transmitted modulation type. To estimate the transmitted
signal, the receiver has to blindly equalize the channel, then, it
has to reliably classify the transmitted modulation by considering
an adequate AMC technique.
Although massive access has a great interest in the Internet of
Things (IoT) communication system, the SISO model is well used
and we have shown our contribution with a SISO model first.
In the literature, among the works addressing joint blind equal-
ization and AMC, we can refer to [1]. In this paper, the authors
suggested using different equalization branches, each adapted to a
specific constellation. This yields a complex architecture system
where the filter providing the smallest cost function indicates
the right constellation. In [2], the constant modulus algorithm
(CMA) was used to produce a generic equalizer with a normal-
ized radius. They used the CMA cost function relative to the
quadrature phase-shift keying (QPSK) constellation to equalize
any transmitted constellation belonging to the phase-shift keying

modulation (PSK) or the QAM modulation. As a result, the equal-
izer output is symbols belonging to the transmitted constellation
but compressed in the unit radius. After the classification by the
amplitude of the equalized signal characteristic function (CF), the
equalized signal is multiplied by a scaling factor to restore the
emitted constellation amplitudes before deciding and exploiting
the transmitted data.
Moreover in [3], authors follow the same idea as [2] but instead
of using the CMA criterion, they suggested considering the PDF
with the multi-modulus stochastic quadratic distance (MSQD-
ℓp) criterion [4]. In this case, during the convergence phase, the
equalizer fits the PDF of the received symbols to match with the
QPSK constellation PDF regardless of the emitted modulation.
Concerning the AMC, three methods were proposed that detect
the modulation which has the PDF that best fits, in some sense,
that of the equalizer output.
In all these mentioned works, AMC is applied after equalization
of the received signal. However, this paper proposes a new
generic equalizer architecture that combines jointly blind equal-
ization and AMC.
In [3], generic equalizer MSQD-ℓ2𝑔𝑒𝑛 based on multi-modulus
stochastic quadratic distance criterion outperforms generic equal-
izer CMA𝑔𝑒𝑛 based on constant modulus algorithm criterion
in [2]. For this reason, we have considered MSQD-ℓ2𝑔𝑒𝑛 as a
benchmark in its linear and neural version. For the equalization
step, we propose a new multi-criteria generic cost function based
on the PDF with the MSQD-ℓp criterion since it outperforms
those based on high order statistical properties criterion [5]. In
addition, we implemented the proposed criterion in linear and
nonlinear case banks complex-valued neural networks (CVNN).
For the AMC step, in the literature, various techniques for modu-
lation classification are considered such us Maximum-likelihood
[6] [7] and order cyclic cumulants [8] [9]. In this work, we apply
the KNN algorithm with the fourth-order cumulants [10] [11].
The main contributions of this paper are :

• Proceeding blind equalization and AMC simultaneously.
• Derivation of a new multi-criteria cost function for a generic
equalization.



The rest of the paper is organized as follows. In Section II, we
introduce the system model. In Section III, we detail our multi-
criteria generic cost function based on the MSQD-ℓ𝑝 algorithm in
its linear and neural versions. Simulation results are expounded
in Section IV. Finally, Section V concludes our work.

II. System model
In this section, we introduce the baseband model of a transmis-

sion system with a generic equalizer in its linear and nonlinear
forms and AMC as it is Fig.1, where 𝑠(𝑛)𝑛∈𝑍 is an M-QAM
transmitted symbol, at time 𝑛, through a multi-path channel
with a finite impulse response (FIR) with length 𝐿ℎ, denoted
h = [ℎ0, ℎ1, ..., ℎ𝐿ℎ−1

].

Fig. 1: Transmission system baseband model with a generic
equalizer and AMC.

𝑏(𝑛) is an independent and identically distributed (i.i.d)
additive white Gaussian noise, 𝑥(𝑛) is the input of the equalizer,
𝐺 is the equalizer function such as :

• Linear context : 𝐺 = [𝑤0, 𝑤1, ..., 𝑤𝐿𝑤−1
]𝑇 is the equalizer

impulse response, with length 𝐿𝑤 and 𝑦(𝑛) is the equalized
signal at time 𝑛, 𝑦(𝑛) = ∑𝐿𝑤−1

𝑖=0 𝑤𝑖𝑥(𝑛 − 𝑖) = 𝑤𝑇 𝑥(𝑛) and
x(n) = [𝑥(𝑛), 𝑥(𝑛 − 1), ..., 𝑥(𝑛 − 𝐿𝑤+1)]𝑇 where 𝑥(𝑛) =
∑𝐿ℎ−1

𝑖=0 ℎ𝑖𝑠(𝑛 − 𝑖) + 𝑏(𝑛).
• Nonlinear context: 𝐺 is a neural network that will be detailed
in section III.B.

III. Equalizer model
In this section, two contributions are proposed. The first one

is a generic linear multi-criteria equalizer, based on a simulta-
neous mixture of the AMC and blind equalization. The second
contribution is a generic nonlinear multi-criteria equalizer based
also on a simultaneous mixture of blind equalization and AMC
and using a neural network. The new multi-criteria cost function
for the equalization part and the algorithm used for the AMC for
each contribution will be detailed.

A. Multi-criteria MSQD-ℓ𝑝𝑔𝑒𝑛
(MC-MSQD-ℓ𝑝𝑔𝑒𝑛

) in linear case
The equalizers whose criterion exploits the PDF outperform

the equalizers whose criterion exploits the high-order statistical
properties [12]. Moreover, decomposing the equalization criterion
into an in-phase component and a quadrature component is more
efficient than processing two components together, with respect

to a phase shift introduced by the transmission channel [4].
These two reasons lead us to propose a new multi-criteria generic
equalization based on the MSQD-ℓ𝑝 algorithm [4]. Specially for
𝑝 = 2 the MSQD-ℓ2 has the following cost function :

𝐽𝑀𝑆𝑄𝐷−ℓ2
(𝑤) = − 1

𝑁𝑠

𝑁𝑠

∑
𝑘=1

𝐾𝜎(|𝑦𝑟|2 − |𝑠𝑟(𝑘)|2)

− 1
𝑁𝑠

𝑁𝑠

∑
𝑘=1

𝐾𝜎(|𝑦𝑖|2 − |𝑠𝑖(𝑘)|2),
(1)

where 𝑁𝑠 is the number of complex symbols in the considered
constellation and 𝐾𝜎0

is a Gaussian Kernel with zero mean and
variance 𝜎0 which is referred to Kernel width. 𝑦𝑟 and 𝑦𝑖 and 𝑠𝑟
and 𝑠𝑖 are the real and imaginary parts of the equalized output
and the transmitted constellation, respectively.
The equalizers based on PDF fitting aim to minimize a specific
distance between the data distribution at the output of the equal-
izer and a target distribution that corresponds to the transmitted
constellation one. Since, in our case, we assume that we do
not know the transmitted constellation, we defined a new multi-
criteria generic cost function as a sum of several variations of
equation (1), one for each constellation order multiplied by an
updated penalty factor. So, the criterion that we propose is :

𝐽𝑀𝐶−𝑀𝑆𝑄𝐷−ℓ2𝑔𝑒𝑛
(𝑤) =

𝐶
∑
𝑚=1

𝛼𝑚𝐽𝑀𝑆𝑄𝐷−ℓ2𝑚
(𝑤), (2)

where C is the number of the considered constellations orders.
The penalty factor 𝛼𝑚 in (2) is updated in each iteration ac-
cording to the following expression such that we reach, over the
iterations, the transmitted constellation cost function :

𝛼𝑚 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑐𝑙𝑎𝑠𝑠𝑚) (3)

where 𝑐𝑙𝑎𝑠𝑠𝑚 is the number of times where the 𝑚𝑡ℎ constellation
is successful in the classification result after the classification
step.

The equalizer coefficients are updated using the stochastic
gradient descendent (SGD) algorithm as:

𝑤(𝑛 + 1) = 𝑤(𝑛) − 𝜇▽𝑤𝐽𝑀𝑆𝑄𝐷−ℓ2𝑔𝑒𝑛
(𝑤)

= 𝑤(𝑛) − 𝜇
𝐶

∑
𝑚=1

𝛼𝑚▽𝑤𝐽𝑀𝑆𝑄𝐷−ℓ2𝑚
(𝑤),

(4)

where 𝜇 is the step size.
In the sequel, we will focus on the explicit expression of (2).
For this purpose, we begin by calculating the gradient of (1)
which leads to that of (2).
On the other hand, 𝑦(𝑛) = 𝑤(𝑛)𝑇 𝑥(𝑛) can be expressed as
𝑦(𝑛) = [𝑤𝑇

𝑟 𝑥𝑟(𝑛) − 𝑤𝑇
𝑖 𝑥𝑖(𝑛)] + 𝑗[𝑤𝑇

𝑟 𝑥𝑖(𝑛) + 𝑤𝑇
𝑖 𝑥𝑟(𝑛)].

It results that : 𝜕𝑦(𝑛)/𝜕𝑤𝑟 = 𝑥(𝑛) and 𝜕𝑦(𝑛)/𝜕𝑤𝑖 = 𝑗𝑥(𝑛).
Consequently, the derivative of 𝐽𝑀𝑆𝑄𝐷−ℓ2(𝑤) with respect to



the equalizer weights is :

▽𝑤𝐽𝑀𝑆𝑄𝐷−ℓ2(𝑤) = 𝜕𝐽𝑀𝑆𝑄𝐷−ℓ2(𝑤)
𝜕𝑤𝑟

+ 𝑗𝜕𝐽𝑀𝑆𝑄𝐷−ℓ2(𝑤)
𝜕𝑤𝑖

= 1√
2𝜋𝑁𝑠𝜎3

𝑁𝑠

∑
𝑘=1

(𝑠𝑖𝑔𝑛(𝑦𝑟(𝑛))|𝑦𝑟(𝑛)|

(|𝑦𝑟(𝑛)|2 − |𝑠𝑟(𝑘)|2)
𝑒−(|𝑦𝑟(𝑛)|2 − |𝑠𝑟(𝑘)|2)2/2𝜎2

+ 𝑗𝑠𝑖𝑔𝑛(𝑦𝑖(𝑛))|𝑦𝑖(𝑛)|(|𝑦𝑖(𝑛)|2 − |𝑠𝑖(𝑘)|2)
𝑒−(|𝑦𝑖(𝑛)|2 − |𝑠𝑖(𝑘)|2)2/2𝜎2)𝑥∗(𝑛).

(5)
In order to update the cost function, each equalized symbol is
classified using the KNN algorithm with fourth-order cumulant
[8] [9] as features. So that we do jointly the equalization and the
AMC. The expressions of the 𝑝𝑡ℎ order cumulant and moment
are respectively as follows :

𝐶𝑝𝑞 = 𝑐𝑢𝑚(𝑥𝑝−𝑞(𝑥∗)𝑞)
𝑎𝑛𝑑
𝑀𝑝𝑞 = 𝐸[𝑥𝑝−𝑞(𝑥∗)𝑞],

where 𝐸[.] is the expectation operator.
In particular, consider :

𝐶40 = 𝑀40 − 3𝑀2
20

𝐶42 = 𝑀42 − |𝑀20|2 − 2𝑀2
21

as they are more suitable for M-QAM modulations [9]. A base-
line containing 𝐶40 and 𝐶42 values for noisy symbols according
to various values of signal-to-noise ratio (SNR) and belonging to
{16, 32, 64, 128, 256}-QAM modulations is prepared.
the classifier follows the following steps :

• Calculate 𝑆1 = 𝐶40+𝐶42 the sum of the last 1000 equalized
symbols.

• Calculate the Euclidean distances between 𝑆1 and each sum
in the reference base.

• A set of the 𝑘 nearest neighbors from the baseline is created.
• Since each neighbor matches a specific constellation order,
then we select the order is the most repeated order in the
previous set.

Finally, according to the AMC, we update the penalty factors
following (3). Then (2) will be updated.

B. Multi-criteria neural network NNMSQD-ℓ𝑝𝑔𝑒𝑛
(MC-

NNMSQD-ℓ𝑝𝑔𝑒𝑛
)

The neural network used for our equalizer is the complex-
valued feed-forward which is trained using the complex back-
propagation (CBP) algorithm [13] [14] [15]. This neural network
is combined with a KNN classifier as it is illustrated in Fig.2

Fig. 2: A complex-valued feed-forward multi-criteria neural net-
work equalizer combined with a KNN classifier.

We assume 𝑁𝑘 neurons in the 𝑘𝑡ℎ layer and we denote by 𝜙𝑘
𝑗

and 𝑥𝑘+1
𝑗 the input and the output of the 𝑘𝑡ℎ neuron, such that :

𝜙𝑘
𝑗 =

𝑁𝑘−1

∑
𝑖=1

𝑤𝑘
𝑖𝑗𝑥𝑘

𝑖 + 𝜃𝑘
𝑗 and (6)

𝑥𝑘+1
𝑗 = 𝑓𝑘(Re(𝜙𝑘

𝑗 )) + 𝑗𝑓𝑘(Im(𝜙𝑘
𝑗 )), (7)

where 𝑥𝑘
𝑖 is the 𝑘𝑡ℎ layer output, 𝑤𝑘

𝑖𝑗 is the weight between the
𝑖𝑡ℎ neuron in the 𝑘𝑡ℎ layer and the 𝑗𝑡ℎ neuron in the (𝑘 + 1)𝑡ℎ

layer, 𝜃𝑘
𝑗 and 𝑓𝑘(⋅) are the 𝑘𝑡ℎ layer bias and activation function.

In this paper, we consider a complex-valued feed-forward equal-
izer including two main steps for each iteration. The first step is
the forward pass from the input layer to the output layer. This
processing consists in computing the network output by applying
an activation function on the weighted sum in each layer. The
second step is the CBP to update the synaptic weights according
to our equalizer criterion. The network includes three layers:
input, hidden, and output layers. We assume in this paper that
the activation function is as in [16] :

𝑓(𝑥) = 𝑥 + 𝛼 ∗ sin(𝜋 ∗ 𝑥),
where 𝜋 is a mathematical constant approximately equal to
3.14159, 𝛼 a positive number between 0 and 1 and sin is the
trigonometric function. The cost function for the generic multi-
criteria neural network equalizer is the same as that of (2) :

𝐽𝑀𝐶−𝑁𝑁𝑀𝑆𝑄𝐷−ℓ2𝑔𝑒𝑛
(𝑤) =

𝐶
∑
𝑚=1

𝛼𝑚𝐽𝑀𝑆𝑄𝐷−ℓ2𝑚
. (8)

The penalty factor 𝛼𝑚 is calculated and updated as in the MC-
MSQD-ℓ2𝑔𝑒𝑛

algorithm and for each iteration, we follow the same
steps. First, we equalize the received symbol, then we classify it,
afterward, we update the neural network weights and finally, we
update the penalty factors respectively.
The weights of the neural network are updated as:

𝑤𝑘
𝑖𝑗(𝑛 + 1) = 𝑤𝑘

𝑖𝑗(𝑛) − 𝜇
𝐶

∑
𝑚=1

𝛼𝑚𝜕𝐽𝑀𝑆𝑄𝐷−ℓ2𝑚

𝜕𝑤𝑘
𝑖𝑗(𝑛) . (9)



In the sequel, we focus on the derivation of (8). We begin by
calculating the gradient of (1) which leads to that of (8). To
update the output layer weights, we use the same procedure as
in [16] for simplification purposes, we introduce 𝑄𝑟, 𝑄𝑖 and 𝛿𝑜

𝑝
which are expressed as the following :

𝑄𝑟 = 1
𝑁𝑠

√
2Π𝜎

𝑁𝑠

∑
𝑘=1

𝑒−
(|𝑦𝑟(𝑛)|2 − |𝑠𝑟(𝑘)|2)2

2𝜎2

(|𝑦𝑟(𝑛)|2 − |𝑠𝑟(𝑘)|2)
𝜎2 ,

𝑄𝑖 = 1
𝑁𝑠

√
2Π𝜎

𝑁𝑠

∑
𝑘=1

𝑒−
(|𝑦𝑖(𝑛)|2 − |𝑠𝑖(𝑘)|2)2

2𝜎2

(|𝑦𝑖(𝑛)|2 − |𝑠𝑖(𝑘)|2)
𝜎2 ,

𝛿𝑜
𝑝 = 𝑄𝑟𝑦𝑟(𝑛)𝑓𝑜′ (𝜑𝑜

𝑟) + 𝑗𝑄𝑖𝑦𝑖(𝑛)𝑓𝑜′ (𝜑𝑜
𝑖 ). (10)

The weights of the output layer are updated as :

𝑤𝑜
𝑗(𝑛 + 1) = 𝑤𝑜

𝑗(𝑛) − 𝜇
𝐶

∑
𝑚=1

𝛼𝑚𝛿𝑜
𝑝𝑚

𝐼∗
𝑝𝑗, (11)

where 𝜑𝑜
𝑟, 𝜑𝑜

𝑖 , are the real and imaginary inputs of the output
layer, and 𝐼𝑝𝑗 is the output of the hidden layer. 𝑓𝑜′ (𝜑𝑜

𝑟) and
𝑓𝑜′ (𝜑𝑜

𝑖 ) are the derivatives of the activation function in the
output layer applied in the real and imaginary parts of the output
layer input.

To update the hidden layer weights, we consider the same
reasoning as in [16]. We simplify the final expression by
introducing 𝛿ℎ

𝑝𝑗,

𝛿ℎ
𝑝𝑗 = 𝑓ℎ′

𝑗 (𝜑ℎ
𝑟 )ℜ(𝛿𝑜

𝑝𝑤𝑜∗
𝑗 ) + 𝑗𝑓ℎ′

𝑗 (𝜑ℎ
𝑖 )ℑ(𝛿𝑜

𝑝𝑤𝑜∗
𝑗 ). (12)

Similarly, the weights of the hidden layer are updated as :

𝑤ℎ
𝑖𝑗(𝑛 + 1) = 𝑤ℎ

𝑖𝑗(𝑛) − 𝜇
𝐶

∑
𝑚=1

𝛼𝑚𝛿ℎ
𝑝𝑗𝑚

𝑥∗
𝑝𝑖, (13)

where 𝜑ℎ
𝑟 , 𝜑ℎ

𝑖 , are the real and imaginary inputs of the hidden
layer, and 𝑥𝑝𝑖 is the input vector of the equalizer. 𝑓ℎ′

𝑗 (𝜑ℎ
𝑟 ) and

𝑓ℎ′

𝑗 (𝜑ℎ
𝑖 ) are the derivatives of the activation function of the

hidden layer applied in the real and imaginary parts of the hidden
layer input at the 𝑗𝑡ℎ neuron. AMC process is applied using the
same principle as for MC-MSQD-ℓ2𝑔𝑒𝑛

.

IV. Simulation results

We have simulated our approach using Matlab 2018. We have
considered M=16, 32, 64, 128, and 256 M-QAM constellations.
So, the penalty factors are equally initialized to 0.2. An important
factor for the convergence of the equalizers is the learning rate
𝜇. It is fixed to 10−3/𝑃𝑥, where 𝑃𝑥 is the received signal power.
The total number of symbols used during the training step is
70000 and the equalizers were trained for epoch numbers equal
to 1. We evaluate the performance of the proposed equalizers
in terms of mean square error (MSE), symbol error rate (SER),
and accuracy rate when using a one typical digital radio channel
ℎ𝑐𝑜𝑚𝑝 that was used in [4].
ℎ𝑐𝑜𝑚𝑝(𝑧) = (0.0410 + 𝑗0.0109) + (0.0495 + 𝑗0.0123)𝑧−1 +
(0.0672 + 𝑗0.0170)𝑧−2 + (0.0919 + 𝑗0.0235)𝑧−3 + (0.7920 +
𝑗0.1281)𝑧−4 +(0.3960+𝑗0.0871)𝑧−5 +(0.2715+𝑗0.0498)𝑧−6 +
(0.2291 + 𝑗0.0414)𝑧−7 + (0.1287 + 𝑗0.0154)𝑧−8 + (0.1032 +
𝑗0.0119)𝑧−9.
MC-MSQD-ℓ2𝑔𝑒𝑛 and MSQD-ℓ2𝑔𝑒𝑛 equalizers size is 𝐿𝑤 = 31
and their weights are initialized with null values, except the
middle element which is set to 1.
Then, we have simulated MC-NNMSQD-ℓ2𝑔𝑒𝑛 and NNMSQD-
ℓ2𝑔𝑒𝑛 equalizers with a complex-valued feed-forward neural
network using three layers. The number of neurons in the
input, the hidden, and the output layers are [𝐿𝑖 = 15 (input),
𝐿ℎ = 9 (hidden), 𝐿𝑜 = 1 (output)]. The activation function
is 𝑓(𝑥) = 𝑥 + 𝛼𝑠𝑖𝑛(Π𝑥) where 𝛼 is fixed to 0.1 and is
independent of the modulation size, signal-to-noise ratio and
layers order. We have initialized the two matrices of synaptic
weights 𝑤𝑜[𝐿𝑜, 𝐿[ℎ] and 𝑤ℎ[𝐿ℎ, 𝐿𝑖] with small values. Except
for 𝑤𝑜[(𝐿𝑜 + 1)/2, (𝐿ℎ + 1)/2] and 𝑤ℎ[(𝐿ℎ + 1)/2, (𝐿𝑖 + 1)/2]
that were set to 1.5.
Equalizers have the same convergence speed and we compared
performances in terms of MSE, SER, and accuracy rate.
Computation burdens for MC-MSQD-ℓ2𝑔𝑒𝑛 and MC-NNMSQD-
ℓ2𝑔𝑒𝑛 are defined in Tab I.

Equalizer X Exponents
MC-MSQD-ℓ2𝑔𝑒𝑛 𝐿𝑤 2𝑁𝑠

MC-NNMSQD-ℓ2𝑔𝑒𝑛1 3𝐿ℎ(𝐿𝑖 + 𝐿𝑜) + 2𝐿ℎ 2𝑁𝑠

TABLE I: Computational complexity
Figures (3.a) and (3.b) show the performance of the different
equalizers in terms of MSE according to the SNR, when we
consider the value of MSE after the convergence of the algorithm.
It can be seen that for the considered transmitted constellation,
our linear approach is more performant than the linear approach
in [4] and its developed neural version. Also, the proposed neu-
ral approach MC-NNMSQD-ℓ2𝑔𝑒𝑛 outperforms the MC-MSQD-
ℓ2𝑔𝑒𝑛. Figures (4.a) and (4.b) prove that our generic equalizers
guarantee interesting performance in terms of SER and it has the
best performance for the different constellations.
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Fig. 3: MSE versus SNR:(a) 16-QAM, (b) 64-QAM.
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Fig. 4: SER versus SNR:(a)16-QAM, (b)64-QAM.

Figure 5 shows that the classification rate reaches an acceptable
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Fig. 5: Accuracy rate for 64-QAM and ℎ𝑐𝑜𝑚𝑝.

value when the SNR exceeds 15dB. The classification rate is
better with our new multi-criteria in its neural and linear versions.

V. Conclusion

In this paper, we have proposed a new blind generic equalization
approach. This technique is based on simultaneous joint blind
equalization and AMC. For the equalization stage, a new generic
multi-criteria cost function is derived. Differently from the work
in the literature, where the equalization criterion is static, this
new criterion is dynamic and updated during the process. For the
AMC stage, the KNN algorithm is used with the fourth-order

cumulant as a feature. The obtained simulation results prove that
our proposed techniques lead to outperforming the MSQD-ℓ2𝑔𝑒𝑛
in terms of MSE, SER, and accuracy rate in linear and nonlinear
form. As a perspective, we aim at generalizing our approach
to other constellations and extending this approach for multiple
inputs multiple outputs (MIMO) architecture.
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