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Gait deviation change prediction for patients with gait disorders using
artificial intelligence

Nawel Ben Chaabane∗, Pierre-Henri Conze◦, Mathieu Lempereur◁, Gwenolé Quellec▷,
Olivier Rémy-Néris⋄, Sylvain Brochard⋄, Béatrice Cochener⋄, Mathieu Lamard∗

Abstract— This paper addresses gait deviation change predic-
tion for patients with gait disorders. Two cases are predicted
and referred to as two classes: the patient’s gait improves
(gait deviation from normative data is reduced) within the next
clinical gait analysis (CGA) session (class 1) or not (class 0). To
cope with available kinematic data obtained from CGA, a two-
dimensional fast Fourier transform (2D FFT) is used to build
2D frequency images. After that, fine-tuned VGG16, ResNet34
and EfficientNet_b0 are applied to these images separately.
These pre-trained models showed an over-fitting behaviour.
To overcome this issue, a 2D convolutional neural network
(2D CNN), trained from strach and with low computational
footprint, is proposed. Ourmodel attains an area under the
curve (AUC) above 0.69, which is promising for such a complex
task. The achieved results demonstrate the efficiency of deep
learning models and are the first of their kind regarding the
state-of-the-art.

I. INTRODUCTION

Gait disorders, also referred to as gait disturbances, deal
with abnormalities in the gait cycle that can cause varying
compensations at the trunk, hip, knee, or ankle joint. Many
types of gait disorders exist, including propulsive gait and
scissors gait [1]. These disorders may significantly impact the
quality of life [2] since the personal independence of patients
is usually restricted. Additionally, issues with balance and
gait can be precursors of falls, which are the most frequent
cause of severe injuries in the elderly [3]. However, most of
the time, gait disorders and falls are inefficiently evaluated,
which leads to misdiagnoses [1]. Due to increased age or
various diseases, gait disorders can be classified by etiology:

• neurological conditions (e.g., Parkinson’s disease pa-
tients have a propulsive gait [4])

• orthopedic problems (e.g., osteoarthritis, skeletal defor-
mities)

• medical conditions (e.g., heart failure, respiratory insuf-
ficiency, obesity)

Diagnosing gait disorders is a challenging task. This is
usually done by physical therapists using different qualitative
strategies, such as observing walking patterns. Qualitative
analysis is useful in clinical practice since it is fast and does
not require any or a minimum amount of equipment [5].

∗ Nawel Ben Chaabane and Mathieu Lamard are with LaTIM UMR
1101, Université de Bretagne Occidentale, Brest, France. ◦ Pierre-Henri
Conze is with IMT Atlantique and LaTIM UMR 1101, Brest, France. ▷

Gwenolé Quellec is with Inserm, LaTIM UMR 1101, Brest, France. ◁

Mathieu Lempereur is with LaTIM UMR 1101 and CHRU de Brest, Brest,
France. ⋄ Olivier Rémy-Néris, Sylvain Brochard and Béatrice Cochener are
with LaTIM UMR 1101, Université de Bretagne Occidentale and CHRU de
Brest, Brest, France. nawel.ben-chaabane@inserm.fr.

Its reliance on a strong clinical expertise, which makes it
prone to bias and limited precision, is one of its main short-
comings. To overcome this limitation, Clinical Gait Analysis
(CGA) is increasingly employed. It exploits instrumentation
to quantify the gait cycle by precisely and extensively
recording spatio-temporal, kinematic and kinetic data. Such
data enables statistical and three-dimensional analysis and
comparisons between various conditions (e.g. pre-surgery
versus post-surgery or treatment) and normative outcomes.
In [20], a correlation was found between CGA results and
accurate locomotor disorders diagnosis. Nevertheless, many
challenges are raised with CGA. Clinicians are confronted
with many intricate information that should be carefully
exploited to make relevant personalized recommendations
regarding the therapeutic strategies. This clinical information
is a mixture of illness trajectories, medical interventions, and
disease complications [8]. In this direction, our goal is to
use artificial intelligence to help clinicians analyze the large
amount of clinical information arising from CGA.

In this study, we go beyond objectively quantifying the
gait’s quality by rather predicting the future gait evolution.
The underlying aim is to enable clinicians selecting the best
treatment plan with the aid of these predictions. Although the
analysis of gait signals has already benefited from learning-
based approaches (e.g., gait event detection [6]), our study
is, to the best of our knowledge, the first to use deep
learning to forecast how gait quality will evolve in the future.
Pre-trained deep learning models, especially Convolutional
Neural Network (CNN), have achieved outstanding results
in computer vision and medical image analysis tasks. This
motivated us to map the time representation of 1D gait
signals to a 2D frequency representation. We thus propose
to represent time series of kinematic data as images using
two-dimensional Fast Fourier Transforms (2D FFT) [7].
In the same spirit as in [9] where a 2D CNN extracts
features of FFT images computed from electrocardiogram
signals towards arrhythmia classification, our approach trains
a deep classification network on the resulting FFT images to
automatically predict the upcoming gait deviation change.
The effectiveness of the proposed approach is evaluated on
a gait dataset collected from more than 700 patients.

II. MATERIALS AND METHODS

A. Data acquisition and mathematical formalism

CGA involves sophisticated instrumentation to capture
full-body motion. After initial calibration in the standing
position, the patient was asked to walk naturally throughout



Fig. 1. Proposed gait deviation change prediction pipeline for patients with gait disorders.

the motion laboratory. The system involved in our study
consisted of 16 reflective surface markers attached to the skin
at the joints and several infrared cameras. These cameras es-
timated the 3D positions of surface markers to calculate joint
angles over time [15]. Nine different joint angles (i.e., kine-
matic variables) were calculated with great precision. This
includes pelvic anteversion/retroversion, tilt and rotation, hip
flexion/extension, abduction/adduction and internal/external
rotation, knee flexion/extension, ankle plantar/dorsiflexion
and the foot’s angle of progression [10]. For each gait cycle,
101 temporal steps per joint angle were collected. Hence, a
gait cycle provided 101×9 values. A gait session is defined
as a set of gait cycles. Let Ep,d denote the gait session of
patient p on date time d:

Ep,d =
{

CEp,d
1,CEp,d

2, . . . ,CEp,d
K
}

(1)

where CEp,d
k is the k-th gait cycle from session Ep,d and K is

its total number of gait cycles. Let c
Ek

p,d
t,n denote the gait cycle

CEp,d
k value at time t and joint angle n, respectively. To keep

notations simple, c
Ek

p,d
t,n is referred to as ct,n in what follows.

A Gait Profile Score (GPS) was assigned to each gait cycle.
The GPS was developed by Baker et al. [10] in 2009 as a
walking behavior score [11]. It is a global raw score [10] of
the distance between the subject and the average of healthy
subjects [12] over all gait cycles [12]. Mathematically, it is
a summary measure that represents the root mean square
difference between the pathological kinematic data and the
physiological normative data [11]. The GPS is divided into
9 Gait Variable Score (GVS) sub-scores, one per joint angle.
Eq.2 gives GV Sn, the GVS of the kinematic variable n [10],
[12].

GV Sn =

√
1
T

T

∑
t=1

(ct,n − c−re f
t,n )2 (2)

where T is the total number of points of the gait cycle (101
in our database) and c−re f

t,n the mean of the kinematic variable
n in the reference population at point t of the gait cycle. The
GPS is obtained from the GVS scores [10]:

GPS =

√
1
N

N

∑
i=1

GV S2
n (3)

where N is the total number of kinematic variables and is
equal to 9. Let (Ep,d ,Ep,d+∆d) be a couple of gait sessions
separated by ∆d. We assign a GPS variation ∆GPS to each
gait cycle CE p,d

k of the current examination Ep,d as follows:

∆GPS(CEp,d
k) = GPSaverage(Ep,d+∆d)−GPS(CEp,d

k) (4)

where GPSaverage(Ep,d+∆d) is the average GPS per cycle
of Ep,d+∆d and GPS(CEp,d

k), the GPS of the current gait
cycle CEp,d

k. An examination’s average GPS per cycle
GPSaverage(Ep,d) is simply equal to:

GPSaverage(Ep,d) =
∑

K
k=1 GPS(CEp,d

k)

K
(5)

B. Gait database

734 patients (115 adults) were involved in our study. The
average patient age within the first gait session is equal to
14 years, with a standard deviation of 16 years. Neurological
conditions, notably cerebral palsy, are the most frequent
etiologies. 53693 gait cycles were collected in total. Their
average number per gait session is equal to 18 with a
standard deviation of 6. The average number of sessions per
patient was 1.988 (with a standard deviation of 1.515). The
average time delay between two consecutive sessions was
approximately equal to 740 days, with a standard deviation
of 577 days. The shortest (resp. longest) ∆d was equal to
4 (resp. 4438) days. In our dataset, we had 1384 pairs
of consecutive examinations belonging to 319 patients (the
remaining patients had only one session and were therefore
excluded). To make the ∆GPS prediction possible, it was
necessary to consider the same gait conditions (e.g., without
any equipment, with a cane, with a rollator, with an orthesis,
with prosthesis) for both CGA. Thus, we selected pairs of
examinations acquired without any equipment (79% of all
available pairs, i.e. 1152). For our prediction task, we ex-
ploited 21167 gait cycles from the first sessions of available
pairs. ∆GPS was ranked in a binary fashion. Either it is
negative, in which case the patient’s gait improves (class 1),
or positive when the patient’s gait worsens (class 0).

C. Proposed method

The full proposed pipeline is shown in Fig.1. By con-
verting temporal kinematic data into 2D images, CNN mod-
els are allowed to extract distinctive features that are not
achievable when exploiting 1D temporal data [16]. On the
other hand, pre-trained networks have recently generated
interest for use in a variety of applications outside their initial
domain [17]. These highly accurate networks are applicable
to time series with a little variation. To achieve this goal,
it is necessary to produce informative images from signals
[17]. Besides, encoding time series as images enables the use
of efficient data augmentation techniques [13]. In our study,



TABLE I
PATIENT DISTRIBUTION AMONG THE GAIT DATABASE.

Train Validation Test
224 patients 48 patients 47 patients
15509 cycles 2678 cycles 2980 cycles

844 pairs 142 pairs 166 pairs
54.39 % of class 1 54.11 % of class 1 55.60 % of class 1

2D FFT images were used in order to extract new patterns
from the frequency representation of the kinematic data. The
distribution of patients between training, validation, and test
subsets is provided in Tab.I.

1) Two-dimensional Fast Fourier Transform (2D FFT):
2D FFT is a common approach for mapping signals into the
frequency representation. Due to its time shift invariance,
2D FFT is regarded as the best transformation between
the time and frequency domains among spectrum analysis
approaches [13]. It simply involves several one-dimensional
Fourier transforms. Each value in the signal is assigned to a
single pixel [14]. The 2D FFT is performed following:

F(u,v) =
1

T.N

T

∑
t=0

N

∑
n=0

ct,n exp(− j2π(
ut
T

+
vn
N
)) (6)

where F(u,v) is the direct Fourier transform of the
image. It is a complex function that shows the phase and
magnitude of the signal in the frequency domain. u,v are
the frequency space coordinates. ct,n is the initial pixel
value of the image in the spatial domain. The spectrum, or
magnitude, of the 2D FFT |F(u,v)| is a two-dimensional
signal that carries frequency information. It can be seen
as an image. Centralized spectra are obtained by shifting
the zero-frequency component to the center. This can be
done without any information loss since the 2D FFT has
translation and rotation attributes. A centralized spectrum
image is more visible than a standard FFT spectrum since
white region displays high energy in the low frequency
range. For our prediction task, centralized FFT spectra were
employed. First, we considered our gait cycles, with their
101×9 representation in the time domain. Then, a 2D FFT
was performed on them, as well as the magnitude of the 2D
FFT, yielding a 101×9 frequency domain representation.
This representation can be considered as a 2D image that
we shifted to the center in order to have the centralized FFT
spectra. A centralized FFT spectrum for a given gait cycle
is represented in Fig.2.

2) Proposed deep learning models:
a) Timm pre-trained models: The Timm library’s [18]

pre-trained VGG16, ResNet34, and EfficientNet_b0 were
considered. They support any number of input channels,
so we did not need to reshape our 2D grayscale image
into an RGB image. For VGG16, the required minimum
input size of the model is 32×32. The width dimension of
the image (N) is equal to 9, which is less than 32. Image
were therefore repeated 4 times in this width dimension to

TABLE II
QUANTITATIVE RESULTS. BEST RESULTS IN BOLD.

Architecture Number of parameters val AUC test AUC
VGG16 134,263,489 0.650 0.642
ResNet34 21,278,913 0.653 0.679
EfficientNet_b0 4,008,253 0.637 0.628
CNN 35,505 0.726 0.693

match the minimum required size. Transfer learning with
fine-tuning techniques was used for our prediction task. The
last fully connected layer of one neuron was utilized as the
output layer for the prediction task. All convolutional blocks
were trainable, as it is the case with top layers.

b) Two-dimensional 2D CNN: The pre-trained Timm
models showed an overfitting behaviour with fast conver-
gence, as we can see in Fig.3 for EfficientNet_b0. Therefore
we decided to test a CNN model that we have developed from
scratch. A certain number of two-dimensional convolutional
layers was used. This was a hyper-parameter to optimize in a
set of finite values {1,2,3,4,5}. The convolutional layers were
followed by a dropout function. After that, two-dimensional
max-pooling (MaxPooling2D) and batch normalization were
applied. Then, the output of the batch normalization was
flattened and sent to a dense layer of a certain number of
neurons to tune. The output layer of our model is a dense one
with a single neuron in order to predict the ∆GPS. In total,
the architecture hyper-parameters to tune are as follows: the
number of convolutional layers (refereed to as num_layers),
the number of filters of each convolution layer (num_filters),
the kernel size of each convolution layer (kernel_size), the
dropout rate (dropout), the pooling size of the 2D max
pooling operations (pool_size), the number of neurons in the
dense layer (units) and the learning rate (lr). We tested five
models with a varying number of convolutional layers (from
1 to 5). For each of these five architectures, we tuned the rest
of the hyper-parameters using KerasTuner [19] to maximize
the validation AUC.

III. RESULTS AND DISCUSSIONS

In this section, we present the results for our prediction
task. Area Under the curve (AUC) scores obtained on the
validation set and on the test set are referred to as val
AUC and test AUC, respectively. Tab.II presents the results
obtained with the proposed architectures.

Not surprisingly, results on the test set are almost the
same as those obtained on the validation set. The tested
Timm models give similar results, all of them achieved a
val AUC above 0.63. The CNN trained from scratch is the
most efficient model, with a val AUC equal to 0.726. It has
two convolutional layers and the following values of hyper-
parameters: num_filters = 4, kernel_size = 32, dropout =
0, pool_size = 8, units = 300 and lr = 4,127× 10−4. The
overfitting issue persists, AUC on train set is significantly
higher than val AUC. This is due to the lack of kinematic
data, although we have drastically reduced the number of
parameters. We strongly believe that the CNN outperforms
the pre-trained Timm models for two reasons. First, our



Fig. 2. 2D FFT for a given gait cycle. (a) The gait cycle; (b) FFT spectrum
of the gait cycle; (c) Centralized FFT spectrum of the gait cycle.

dataset is relatively small. Second, Timm models were pre-
trained on a classification task involving a set of images
totally different from our synthetic 2D FFT images.

IV. CONCLUSION

Obtained results are interesting for a prediction task on
data with numerous sources of disparity and randomness.
The forecasting of future medical outcomes may be con-
siderably harder than the traditional classification of items
into categories, given its inherent uncertainty in unseen
interleaved events [8]. To the best of our knowledge, our
study is the first to use artificial intelligence algorithms in
order to predict gait deviation evolution. Other time series
imaging techniques, with less information loss, could be
considered as well. In addition, it is crucial to note the impact
of age on the prediction task. This constitutes a potential
limitation of our study. In future work, we will intend to
model all the historical sessions in order to provide more
precise predictions.
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