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Abstract—Over the last few years, massive amounts of satellite
multispectral and hyperspectral images covering the Earth’s
surface have been made publicly available for scientific purpose,
for example through the European Copernicus project. Simul-
taneously, the development of self-supervised learning (SSL)
methods has sparked great interest in the remote sensing com-
munity, enabling to learn latent representations from unlabeled
data to help treating downstream tasks for which there is
few annotated examples, such as interpolation, forecasting or
unmixing. Following this line, we train a deep learning model
inspired from the Koopman operator theory to model long-term
reflectance dynamics in an unsupervised way. We show that this
trained model, being differentiable, can be used as a prior for
data assimilation in a straightforward way. Our datasets, which
are composed of Sentinel-2 multispectral image time series, are
publicly released with several levels of treatment.

Index Terms—Self-supervised learning, Sentinel-2, satellite im-
age time series, Koopman operator, Data assimilation

I. INTRODUCTION

Longstanding problems in satellite image time series pro-
cessing include change detection [1], content classification
[2], semantic segmentation [3] and spectral unmixing [4]. In
this paper, we approach these issues in a holistic way, in
a self-supervised learning (SSL) context. Indeed, we design
a machine learning model first trained on a pretext task
without using any annotations, and in fine use its learnt latent
representation to handle downstream tasks, possibly with some
labels. Our pretext task is to predict the long-term reflectance
of a pixel using a given initial condition. We aim at learning
discrete dynamical systems written in a generic way as

xt+1 = f(xt; θ) (1)

where x is an observed time series and θ represents underlying
parameters. While SSL has been extensively studied for remote
sensing [5], to our knowledge, our work is the first to use tem-
poral prediction as a pretext task. Our resulting model is well
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aware of the reflectance dynamics and can serve multiple time-
related purposes, like interpolation, denoising or forecasting.
Its differentiability and small number of parameters makes it
more versatile than many model-driven priors for downstream
tasks that can be formulated as optimization problems. In
spirit, our learning approach is related to recent advances in
natural language processing, e.g. [6], where a large language
model is simply trained to predict the data and can then be
asked to perform a variety of tasks.

Our contributions include: (1) we adapt a neural archi-
tecture that we previously introduced in [7], which learns
the behavior of dynamical systems from observation data,
to real-world satellite image time series and study tools to
leverage the spatial structure of these data, (2) we show
how to use such a trained model for data assimilation, in
settings with sparse and irregular available data, showing
promising potential to design efficient gap-filling algorithms
for such remote sensing datasets, (3) we collect, clean and
interpolate two long Sentinel-2 time series, which we publicly
share (https://github.com/anthony-frion/Sentinel2TS) to make
it easier for the interested community to work on similar tasks
and compare their results to ours.

II. OUR METHODS

Our approach to learning time series dynamics is based
on the Koopman operator theory [8]. In short, this theory
states that any given dynamical system can be described by a
linear operator which is applied to observation functions of the
system. However, this operator, which is called the Koopman
operator, is generally infinite dimensional. We refer the reader
to [9] for a recent review on this theory. Our method follows a
line opened by [10] which aims at finding a Koopman Invariant
Subspace, i.e. a set of observation functions on which the
restriction of the Koopman operator is finite-dimensional, and
which gives a good view of the general dynamical system.

We use the neural Koopman architecture from [7], which we
represent graphically in Figure 1. In short, this architecture has
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Fig. 1. Schematic view of our architecture. Though we precisely represent
the number and size of the linear layers from the network on which we
experiment, those characteristics could change as long as ϕ, K and ψ keep
their respective roles. The observation state is of dimension 20 since it contains
the reflectances of 10 spectral bands along with their respective derivatives.

2 components: a deep autoencoder (ϕ, ψ) and a Koopman ma-
trix K. The matrix K, whose entries are trainable parameters,
multiplies vectors from the latent space obtained by training
the encoder ϕ and the decoder ψ. It has the effect of advancing
time. In terms of equations, this could be written as

ψ(Kτϕ(x(t))) = x(t+ τ) (2)

for a given variable x of time evaluated at a specific time t
and advanced by a time τ . Note that a time of 1 classically
corresponds to a time step from the time series which is
considered (assuming it is regularly sampled).

In the case of satellite image time series, as a first approach,
we treat pixels independently from one another. Thus, given a
time series of T images each containing N = H ×W pixels
we denote our state variable as xi,t, where 1 ≤ i ≤ N is the
spatial index and 1 ≤ t ≤ T is the temporal index.

Note that, in our case, xi,t is not a scalar value but a
multispectral pixel, i.e. a L-dimensional vector, where each
of the L = 10 dimensions corresponds to the reflectance mea-
sured for one of the Sentinel-2 spectral bands. We augment the
observation space with the local discrete temporal derivatives
of x, which means that we work on data y defined by

yi,t =
(
xi,t+1 xi,t+1 − xi,t

)T
. (3)

This is equivalent to the knowledge of the last 2 states of x,
and it can therefore be motivated by Takens’ embedding the-
orem [11], which roughly states that the state space gets more
predictable when augmented with lagged states. Intuitively, it
seems much easier to estimate the next step of x when one
knows both the current state and its derivative. y is now of
dimension 2L = 20: 10 dimensions for the covered spectral
bands and 10 for their derivatives, as shown on Figure 1.

As in [7], we train a prediction model in two stages: first
we train it to short-term prediction of the dynamics, i.e. up to
5 time steps ahead, and then to long-term prediction, i.e. up
to 100 steps ahead. It is crucial to obtain a model that is able
to make good predictions over several years, yet the long-term
optimisation problem is highly nonconvex, usually leading
to a poor local minimum. Therefore, the easier short-term

prediction task provides a warm-start initialization, avoiding
bad local minima. Such a procedure is related to curriculum
learning [12], which we believe to be crucial when learning
difficult physics-related tasks (see [13] for a recent survey).

We use 3 different types of loss terms during our training.
The main one is the prediction loss Lpred, which directly
represents the L2 distance between the model predictions and
the groundtruth. The linearity loss Llin is the L2 distance
between the predicted latent vector and the encoding of the
actual future state: it ensures that the dynamics is linear in the
latent space. The orthogonality loss Lorth is a regularization
term which encourages K to be close to an orthogonal matrix,
which favors long-term stability as explained in [7]. Denoting
Θ the set of parameters of our model, i.e. the concatenation
of 1) the coefficients of K, 2) the parameters of ϕ and 3) the
parameters of ψ, these loss terms can be written as:

Lpred,τ (Θ) =
∑

1≤i≤N
1≤t≤T−τ−1

||yi,t+τ − ψ(Kτϕ(yi,t))||2 (4)

Llin,τ (Θ) =
∑

1≤i≤N
1≤t≤T−τ−1

||ϕ(yi,t+τ )−Kτϕ(yi,t)||2 (5)

Lorth(K) = ||KKT − I||2F (6)

where ||.||F is the Frobenius norm. Note that Lpred,0 is
a classical auto-encoding or reconstruction loss. Using these
basic bricks and setting τ1 = 5, τ2 = 100, we build our short-
term and long-term loss functions as:

Lshort(Θ) = β1Lorth(K) + Lpred,0(Θ)

+ Lpred,1(Θ) + Lpred,τ1(Θ) + Llin,1(Θ) + Llin,τ1(Θ) (7)

Llong(Θ) = β2Lorth(K)+

τ2∑
τ=0

(Lpred,τ (Θ)+Llin,τ (Θ)) (8)

One could want to just learn to predict from time 0, which is
what is done by the L2 loss in [7]. This approach results in a
non-robust model which makes good predictions from time 0
but struggles to make predictions from a different initial time.

So far, we only treated the pixels independently from each
other. We now present a simple method that enables to exploit
the spatial information of the data. We use a trained model with
frozen parameters to make long-term predictions from y.,1

using (2), and assemble the pixel predictions into image pre-
dictions X̂t ∈ RH×W×L for time t. Using the groundtruth im-
ages Xt, one can train a convolutional neural network (CNN)
to learn the residual function r : RH×W×L → RH×W×L

such that r(X̂t) = Xt − X̂t. Then, one can add the output
of this CNN to a test predicted image to get it closer to the
groundtruth. The convolutional layers are expected to partially
correct the spatial imperfections made by the pixelwise model.

III. PRESENTATION OF THE DATASETS

We selected two areas of interest in France: the forest
of Fontainebleau and the forest of Orléans, which are large
forestial areas in a region which is moderately cloudy. The
forest of Fontainebleau in particular has already been studied



Fig. 2. Left: a temporally interpolated Fontainebleau image. Right: a non-
interpolated Orléans image. The date for both images is 20/06/2018. Those
are RGB compositions with saturated colors. The red squares indicate the
150 × 150 pixel subcrops on which we experiment in Section IV, and the
red dots mark the pixels involved in figures 3 and 5.

in remote sensing [14] [15]. Also, since the two sites are
separated by about 60 kilometers, one can test a model’s
transferability by predicting the dynamics of one area after
having been trained only on the other one.

The pre-processing steps are largely inspired from the
previous work of [16], although we gathered much more data,
both in the spatial and temporal dimensions. We retrieve the
10m and 20m resolution bands from the Sentinel-2 images
with L2A (Bottom Of Atmosphere) correction and perform an
imagewise bicubic interpolation on each of the 20m resolution
bands to bring all the data to a 10m resolution.

Although the revisit time is only 5 days, we identify the
images that feature too many clouds and remove elements
from the time series accordingly. This results in an incomplete
time series, where about three quarters of the images have
been rejected. To obtain complete time series, we performed
temporal Cressman interpolation [17] with Gaussian weights
of radius (i.e. standard deviation) R = 15 days.

In the end, we find ourselves with 2 image time series,
each of length T = 343 and image size 500× 500. Given the
temporal and spatial resolution of the Sentinel-2 satellites, this
corresponds to a a time span of nearly 5 years and to an area
of 25 km² each. We also extracted irregular versions of these
datasets where no temporal Cressman interpolation has been
performed. We show sample images in Figure 2.

IV. EXPERIMENTS

We use a subcrop of 150×150 pixels from the Fontainebleau
image time series. The first Ttrain = 242 images are used for
training and the last Tval = 100 ones are kept for validation.
We extract another 150× 150 subcrop from the Orléans time
series and use it as a test set. We train a Koopman autoencoder
using successively (7) and (8). As shown on figure 1, the latent
dimension of our network is k = 32.

A. Temporal extrapolation on the training area

We first check the ability of our model to extrapolate in
time on the Fontainebleau area. We use the first element of the
augmented time series y from (3) to make a (Ttrain + Tval)-
time steps prediction, from which the first Ttrain elements

Fig. 3. Long-term prediction of reflectances from time 0 for a single pixel
from the forest of Fontainebleau, along with the groundtruth. Blue, orange
and green respectively denote the B6, B7 and B8A bands. The vertical line
marks the separation between the training and validation data.

correspond to training data while the last Tval ones correspond
to frames unseen during training. We measure the mean
squared error (MSE) between the last Tval predicted states and
the actual validation data, averaged over all frames, pixels and
spectral bands. We show an example of such prediction for a
random pixel in figure 3.

We now train a CNN on top of our Koopman model as
described in Section II. We use predictions up to time span
Ttrain to train the CNN and then test it on the last Tval
time steps. The CNN architecture is very basic, with just 5
convolutional layers and no pooling. The filter sizes are all
3 × 3 and the numbers of filters of the successive layers are
64, 64, 32, 32 and 10, totaling 79114 parameters. As reported
in table I, the CNN correction results in a significant improve-
ment. This can be best visualised when plotting images of the
entire predictions, as in Fig. 4. One can see that the pixelwise
predictions have spatial artifacts in the form of a weaker spatial
structure, which is not the case after the CNN correction.
Notably, the small area which always appears green in the
top row of Figure 4, corresponding to a clearing in the forest,
is not well reconstructed by the pixelwise prediction, but this
problem is partially addressed by the CNN.

B. Data assimilation on training data

The experiment presented in the last subsection shows that
our model is indeed able to reconstitute an entire pixel’s dy-
namics from only an initial condition. However, this intuitively
seems like a difficult task, while using multiple data points to
understand a pixel’s dynamics seems easier.

We confirm this intuition by a new experiment: using a
learned model, we look for the latent initial condition z∗1 from
which the propagation by the model best corresponds to the
training data. Formally, for a given spatial index i, we seek

z∗1 = arg min
z1∈Rk

Ttrain∑
t=1

||yi,t − ψ(Kt−1z1)||2. (9)

We emphasize that, here, only the latent initial condition
varies while the model parameters remain fixed. This is a



Fig. 4. Top: groundtruth images of Fontainebleau, corresponding to test times.
Middle: predictions made by our model from state at day 5. Bottom: correction
of the middle images by a CNN trained on the pixelwise predictions up to day
1200. The colors result from a 3-dimensional principal component analysis
(PCA) of the 10 spectral bands performed globally on all the Fontainebleau
data. This is much more informative than an RGB composition.

kind of variational data assimilation [18] where everything
is based on the data, since the model itself has been trained
fully from the data. Finding the best initial condition is done
by a gradient descent which backpropagates into the whole
pretrained model. This optimisation problem is not convex,
yet starting from a null initial latent state gives satisfactory
results, and starting from the encoding of the actual initial
state gives even better ones.

When making predictions using the result of the gradient
descent as the initial latent state, not only do we fit the
assimilated data very well, but we also obtain excellent ex-
trapolations. As can be seen in Table I, the MSE is far lower
than when predicting from only one data point.

C. Data assimilation on test data

We now move on to the Orléans site, from which no data
has been seen during training, and we aim at transfering the
knowledge of the Fontainebleau area without training a new
model. The change of area results in a data shift, to which
the task of prediction from a single reflectance vector (like in
subsection IV-A) is very sensitive, leading to relatively poor
results with our model trained on Fontainebleau. However,
when performing variational data assimilation as in section
IV-B, one can perform a good prediction without even needing
a complete time series to do so. Indeed, our model can easily
handle irregular data, and in our tests it has even been more
effective to do so than to assimilate on an interpolated time
series. The only difference is that one should only compute
the prediction error on the time indexes from the set S ⊂
{1, 2, ..., 342} of available data, i.e. rewrite (9) as

z∗1 = arg min
z1∈Rk

∑
t∈S

||yi,t − ψ(Kt−1z1)||2. (10)

We consider a set of 94 irregularly sampled images from
the forest of Orléans, each with its associated timestamp, over
the same time interval as the training and validation data. We
intentionally kept some partially cloudy data in this set.

Fig. 5. Comparison of interpolations for an Orléans pixel on the B7 band,
using a Cressman method and using data assimilation with our model trained
on Fontainebleau data.

First, we test our model in a classical data assimilation
setting, where we check that it is able to interpolate from
some of the data to recover the part of the data that was
kept aside. We check that our method does better than a
well-parameterized Cressman interpolation. The setup is the
following: for each image, we keep it with a probability 0.5.
We then interpolate on the retained images and use the MSE on
the removed images as the performance measure. We perform
a Gaussian Cressman interpolation with radius 0.5, 1, ..., 6.5, 7
time steps (i.e. 2.5 to 35 days) and compare the best result to
the data assimilation method with our model. We repeat this
experiment with 6 different sets of retained images, looking
for the best performing Cressman parameter at each iteration,
and average the results. Our method always outperformed the
best Cressman interpolation by a margin of at least 25%.
The average MSE obtained by the Cressman interpolation was
5.72×10−3, and the one from our model was 3.36×10−3. One
can visually assess the quality of our interpolation on figure 5,
and see that the model was able to combine the information
from different years to recover the correct periodic pattern,
ignoring the noisiest data points.

We now perform forecasting using the same method as in
Section IV-B. We keep the last 31 images to test the prediction
performance, and perform data assimilation on the remaining
images. Some results can be observed on Figure 6.

D. Discussion of the results

Our prediction performances are synthesized in Table I.
Note that the Fontainebleau data is an interpolated regular time
series while the Orléans data corresponds to irregularly-spaced
data points with no temporal interpolation.

One can observe that performing data assimilation with sev-
eral data points is generally far more effective than performing
a prediction from a single data point at time 0. Although all of
our methods perform far worse on the data from the forest of
Orléans than on the training area in the forest of Fontainebleau,
the usage of data assimilation partially mitigates the shift in
the data. One can conjecture that, although the pseudo-periodic
pattern of the reflectance dynamics does not depend on the



Fig. 6. Top: groundtruth images of Orléans, corresponding to test times.
Middle: predictions made by our model, assimilated on irregularly-sampled
earlier images. Bottom: correction of the middle images by a CNN trained
on the assimilated data. Like in Figure 4, the colors are obtained from a 3-
dimensional PCA of the Orléans data.

initial condition in the same way in the Orléans data than in
the Fontainebleau data, the model can still identify a known
pattern when fed with more data from an Orléans time series.

Overall, backpropagating through a long time series predic-
tion is easy because of the simplicity of our model: predicting
one step ahead only costs one matrix-vector multiplication,
and the most computationally intensive part of the prediction
is actually the encoding and decoding of data.

TABLE I
FORECASTING PERFORMANCE OF OUR PREDICTION MODELS

Method Fontainebleau Orléans prediction MSE
prediction MSE

Prediction from time 0 1.87× 10−3 7.13× 10−3

Prediction from time 0 1.37× 10−3 4.23× 10−3

with CNN correction
Prediction with 2.89× 10−4 1.15× 10−3

data assimilation
Prediction with 2.79× 10−4 1.07× 10−3

data assimilation
and CNN correction

V. CONCLUSION

We showed an adaptation of the previously introduced
method from [7] to real satellite image time series, in order to
learn an unsupervised model which is able to perform several
downstream tasks even using irregular data. Note that our as-
similation experiment was a very simple proof of concept since
only the initial latent state was optimized using a frozen model,
yet one could also imagine a variational data assimilation
procedure in which the model parameters are allowed to vary.
More generally, there are many downstream tasks in which
our model might be of use, e.g. classification tasks in few-shot
settings. A natural extension to this work would be to show the
model ability to learn from more difficult data, for example
with a higher diversity of images, e.g. different crop types
and urban environments, with diverse underlying dynamic
patterns. One could also test the ability of our model to handle

complex spatio-temporal missing data patterns. In particular,
although we demonstrated the ability of our trained model to
handle irregular test data, the training was still performed on
regular data. A weakness of our method is that most of the
computation is done pixelwise, and the spatial structure of the
data is only used a posteriori through a CNN model. It might
be of interest to encode some spatial information directly in the
Koopman autoencoder. Other possible extensions include the
ability to exploit a control variable or to provide uncertainties
along with the predictions.
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