
HAL Id: hal-04017642
https://imt-atlantique.hal.science/hal-04017642v2

Submitted on 9 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A metaheuristic for inferring a ranking model based on
multiple reference profiles

Arwa Khannoussi, Alexandru-Liviu Olteanu, Patrick Meyer, Bastien
Pasdeloup

To cite this version:
Arwa Khannoussi, Alexandru-Liviu Olteanu, Patrick Meyer, Bastien Pasdeloup. A metaheuristic for
inferring a ranking model based on multiple reference profiles. Annals of Mathematics and Artificial
Intelligence, 2024, �10.1007/s10472-024-09926-w�. �hal-04017642v2�

https://imt-atlantique.hal.science/hal-04017642v2
https://hal.archives-ouvertes.fr

Springer Nature 2021 LATEX template

A metaheuristic for inferring a ranking model

based on multiple reference profiles

Arwa Khannoussi1, Alexandru-Liviu Olteanu3, Patrick
Meyer2* and Bastien Pasdeloup2

1IMT Atlantique, LS2N, UMR CNRS 6004, F-4430 Nantes,
France.

2IMT Atlantique, Lab-STICC, UMR CNRS 6285, F-29238 Brest,
France.

3Lab-STICC, UMR 6285, CNRS, Université Bretagne Sud,
Lorient, France.

*Corresponding author(s). E-mail(s):
patrick.meyer@imt-atlantique.fr;

Contributing authors: arwa.khannoussi@imt-atlantique.fr;
alexandru.olteanu@univ-ubs.fr;

bastien.pasdeloup@imt-atlantique.fr;

Abstract

In the context of Multiple Criteria Decision Aiding, decision makers
often face problems with multiple conflicting criteria that justify the use
of preference models to help advancing towards a decision. In order to
determine the parameters of these preference models, preference elici-
tation makes use of preference learning algorithms, usually taking as
input holistic judgments, i.e., overall preferences on some of the alter-
natives, expressed by the decision maker. Tools to achieve this goal
in the context of a ranking model based on multiple reference pro-
files are usually based on mixed-integer linear programming, Boolean
satisfiability formulation or metaheuristics. However, they are usually
unable to handle realistic problems involving many criteria and a large
amount of input information. We propose here an evolutionary meta-
heuristic in order to address this issue. Extensive experiments illustrate
its ability to handle problem instances that previous proposals cannot.

Keywords: multi-criteria decision aiding, preference elicitation and learning,
ranking problem, reference profiles, meta-heuristic

1

Springer Nature 2021 LATEX template

2 A metaheuristic for inferring an SRMP model

1 Introduction

Difficult decisions usually involve multiple, often conflicting, objectives or cri-
teria over a set of alternatives. In Multiple Criteria Decision Aiding (MCDA),
we distinguish three types of decision problems [20]: 1. Choice refers to select-
ing the best alternative or the best set of alternatives; 2. Ranking aims to order
all alternatives from the best one to the worst; 3. Sorting seeks to assign alter-
natives to one or several predefined preferentially ordered categories. In this
work, we focus on the ranking problem, and, more specifically, the Ranking
based on Multiple reference Profiles (RMP) [18, 6] preference model. In this
model, pairs of alternatives are not compared directly, but through a set of
underlying reference profiles. This process allows to construct a preference rela-
tion on the set of alternatives. The RMP model belongs to the class of MCDA
methods that are based on outranking relations [19]. In this work, we restrict
ourselves to a specific case of the RMP model, called Simple RMP (SRMP)
[18], in which the importance of criteria is represented by additive weights.

The use of reference profiles is widely spread among MCDA methods, and
is based on psychological evidence [21] which suggests that decision makers
(DMs) often base their decisions on so-called references which correspond to
their current expectations on the decision problem. For ranking problems we
can mention the TOPSIS [10] method, which evaluates alternatives using dis-
tances to the ideal and anti-ideal points, to be minimized and maximized
respectively. The MACBETH [2] method also uses two reference levels on
each criterion, corresponding to “good” and “neutral” evaluations, in order to
elicit a value based model. For sorting problems, we can mention the ELEC-
TRE TRI [19] method and its multiple variants [15, 1, 4, 5] which compare
alternatives to limiting or central category profiles.

In order to be used in practice, the parameters of the SRMP ranking
model need to be determined so that the model accurately reflects the per-
spective of the DM. The interaction between an analyst and a DM in order
to set the parameters of a preference model is called the preference elicita-
tion process. The direct elicitation approach [22] requires direct involvement
of the DM and should use well-designed questions formulated in terms of the
primitives of the underlying model. The direct rating approach requires the
DM to give numerical values for the model parameters. Finally the indirect
approach uses holistic information given by the DM, i.e. preferences on some
of the alternatives, in order to learn the model parameters [11] through a pref-
erence learning algorithm. The direct elicitation and direct rating approaches
are usually difficult to apply in practice, as the DM has to perfectly under-
stand how the preference model works [7] (model-driven approach), while the
indirect approach does not require this expertise and simply asks the DM to
express judgments on the desired output of the method for a few alternatives
only (data-driven approach). In the case of the SRMP model, this holistic
information corresponds to pairwise comparisons of alternatives.

Springer Nature 2021 LATEX template

A metaheuristic for inferring an SRMP model 3

Previous work on inferring the parameters of an SRMP model [17] involves
an exact resolution approach, more precisely a mixed integer linear optimiza-
tion problem (MILP), that requires significant computational resources and
time, even for a small number of input pairwise comparisons. Belahcène et
al. [3] propose to use a Boolean satisfiability approach (SAT) to learn the
more general RMP model. They reduce execution time compared to [17] and
allow for larger sets of input pairwise comparisons to be used. A matheuris-
tic algorithm, integrating linear programming and a heuristic in its design, is
proposed by Liu et al. [16] to infer the parameters of an SRMP model. This
approach is faster than the previous ones, allows to handle larger sets of pair-
wise comparisons of alternatives and more complex SRMP models (in terms
of number of criteria and profiles), but this leads to a loss in the accuracy on
the learning dataset. The topic of incrementally learning the parameters of
the SRMP model through repeated interactions with the DM has also been
recently addressed by Khannoussi et al [14, 12, 13].

We extend these works by proposing an evolutionary metaheuristic, more
specifically a genetic algorithm for learning the parameters of an SRMP model.
We show that this proposal allows to deal with large instances in seconds for
problems that were considered as difficult by the previous approaches. This
allows the use of this learning algorithm in real-life problems. Despite not
always reaching 100% accuracy on the input data, the inferred models have
a high generalization ability on unseen data, similar to those reported in the
previous articles, but in far less time.

The paper is structured in the following way: Section 2 introduces the
reader to the SRMP method. Section 3 presents the proposed preference learn-
ing algorithm, and Section 4 the tuning of its hyperparameters. Section 5
provides a numerical analysis of its performance on problem instances of differ-
ent sizes and input information of varying quality. Finally, Section 6 concludes
with several final remarks and perspectives for future work.

2 SRMP: a Ranking model based on Multiple
Profiles

We consider a finite set of A distinct alternatives, and a fixed set of C criteria.
We note A ∈ [0, 1]A×C the matrix of evaluations of all alternatives on all
criteria, i.e., for an alternative a and a criterion c, A[a, c] ∈ [0, 1]. We use
the “:” operator to span the entire dimension of an associated matrix. Hence
A[:, c] is the cth column of A, and A[a, :] its ath row.

Without loss of generality, we restrict all evaluations to the interval [0, 1],
and assume that higher evaluations of alternatives on criteria are preferred to
lower ones.

2.1 Parameters of the SRMP model

The SRMP preference model [18] is characterized by the following preference
parameters:

Springer Nature 2021 LATEX template

4 A metaheuristic for inferring an SRMP model

• P reference profiles, each evaluated on all criteria, denoted by a matrix
P ∈ [0, 1]P×C . Profiles satisfy the dominance rule defined by:

∀c ∈ {1, . . . , C},∀p ∈ {1, . . . , P − 1} : P[p, c] ≤ P[p+ 1, c] ; (1)

• A lexicographic order on the profiles, denoted by a vector of integers o
which represents the permutation of the indexes of the profiles. This order
represents the importance of the reference points and defines thus the
sequence in which each alternative is compared to the profiles.

• A vector of weights w ∈]0, 1[C associated with the criteria, satisfying the
following constraint: ∑

c

w[c] = 1 . (2)

An SRMP model M is therefore described by the tuple (P,o,w).
Figure 1 represents an example of an SRMP model, for C = 4 criteria and

P = 3 reference profiles. Each criterion is represented by a vertical axis, on
which the preferred performances are plotted towards the top (in the direction
of the arrows). The dotted lines are the profiles, whose lexicographic order (o)
is shown on the left. The weights (w) are shown below each axis.

w[1] w[2] w[3] w[4]

P[1, 1]

P[1, 2]
P[1, 3]

P[1, 4]

P[2, 1]
P[2, 2]

P[2, 3]
P[2, 4]

P[3, 1]
P[3, 2]

P[3, 3]
P[3, 4]

o
=

[3
,2
,1
]

Fig. 1: Representation of an SRMP model for C = 4 criteria and P = 3
reference profiles.

2.2 Comparing alternatives, given an SRMP model

An SRMP model can be used to provide a ranking on the set of alternatives
by comparing them sequentially, in pairwise manner, to the reference profiles
considered in the order given by o.

More precisely, two alternatives a1 and a2 are in a strict preference relation
w.r.t. profile p, denoted a1 ≻p a2, iff:∑

c
A[a1,c]≥P[p,c]

w[c] >
∑
c

A[a2,c]≥P[p,c]

w[c] . (3)

Springer Nature 2021 LATEX template

A metaheuristic for inferring an SRMP model 5

Alternatively, they are in an indifference relation w.r.t. profile p, denoted
a1 ∼p a2, iff: ∑

c
A[a1,c]≥P[p,c]

w[c] =
∑
c

A[a2,c]≥P[p,c]

w[c] . (4)

An overall relation between two alternatives a1 and a2 is constructed by
sequentially considering the profiles using the lexicographic order o.

A strict preference relation a1 ≻ a2 occurs when a1 ≻o[1] a2, or when
a1 ∼o[1] a2 and a1 ≻o[2] a2, or . . . or a1 ∼o[p] a2,∀p ∈ {1, . . . , P − 1} and
a1 ≻o[P] a2. An indifference relation a1 ∼ a2 occurs when a1 ∼p a2,∀p ∈
{1, . . . , P}.

It has been shown that ≻ and ∼ define a preorder on the set of
alternatives [18].

3 The preference inference algorithm

The goal of the preference inference algorithm that we propose is to determine
the parameters of the SRMP model, i.e., the reference profiles, the lexico-
graphic order and the weights, given the holistic preferences expressed by a
DM on pairs of alternatives.

The proposed algorithm uses the classical ingredients of a genetic algo-
rithm [9]. A genetic algorithm is a metaheuristic from the class of evolutionary
algorithms, which aims at generating good solutions to optimization problems.
It is inspired by Charles Darwin’s theory of natural evolution, and mimics the
natural selection process, where the “fittest” individuals (the solutions) of a
population are selected for reproduction in order to produce offsprings of the
next generation.

Algorithm 1 sums up the elements introduced more precisely in the follow-
ing sections. Implementation details and codes to reproduce our experiments
are publicly available at https://github.com/BastienPasdeloup/learn srmp.

3.1 Solution

In our context, a solution in the genetic algorithm consists of the parameters
of an SRMP model M , i.e., the reference profiles P, criteria weights w and
lexicographic order o, as described in Section 2.

It is worth noting that an SRMP model requires the knowledge of the
value of P , that determines the number of reference profiles in a solution. This
value is unknown in practice and has thus to be given as an input argument
of Algorithm 1.

3.2 Fitness

Let Dtrain be a set of pairwise comparisons of alternatives provided by the
DM, i.e., each element of Dtrain is a tuple (a1, a2,⊙), where a1 and a2 are
two distinct alternatives, and ⊙ ∈ {≻,≺,∼} is the preference relation a1 ⊙ a2
provided by the DM.

https://github.com/BastienPasdeloup/learn_srmp

Springer Nature 2021 LATEX template

6 A metaheuristic for inferring an SRMP model

For a given solution M in the genetic algorithm, the number of pairs of
alternatives that M is able to compare similarly to the DM therefore gives a
quality measure of M . The higher this value, the more representative of the
DM is M . As a consequence, in our genetic algorithm, we use the following
fitness function to evaluate a solution:

fitness(M,Dtrain) =
1

|Dtrain|
∑

{(a1,a2,⊙)∈Dtrain}

{
1 if ⊙M = ⊙
0 otherwise

, (5)

where ⊙M ∈ {≻,≺,∼} gives the ordering a1 ⊙M a2 obtained thanks to M .

Algorithm 1 GA SRMP (T , S, B, R, P)

1: Input
2: ▷ T : Training set used to learn the SRMP model
3: crossover(·,·): Crossover operator (applied on two solutions), returns a

child solution
4: mutation(·): Mutation operator (applied on one solution), returns a

mutated solution
5: ▷ S: Population size of the genetic algorithm
6: ▷ B: Ratio of best solutions in the population kept for next iteration
7: ▷ R: Ratio of random solutions injected at next iteration
8: ▷ P : Number of reference profiles to create in solution
9: Output

10: ▷ M̂ : Best solution found

11: popit ← initialize pop(S, P) ▷ Initial population of random solutions
12: while not stopping condition(popit) do ▷ Check stopping condition
13: popit+1 ← prepare pop(T , popit, S, B, R) ▷ Initialize next pop
14: while size(popit+1) ̸= S do ▷ Fill with generated solutions
15: M1,M2 ← select2(popit) ▷ Select 2 parents using roulette wheel
16: M ← crossover(M1,M2) ▷ Apply crossover
17: M ← mutation(M) ▷ Apply mutation
18: if fitness(M , T) > min(fitness(M1, T), fitness(M2, T)) then
19: popit+1 ← popit+1 ∪ {M} ▷ Keep if better than 1 parent

20: popit ← popit+1 ▷ Go to next iteration

return solution with best fitness(popit) ▷ Return M̂

3.3 Initialization

The genetic algorithm initializes a population of solutions and then improves it
through repetitive applications of selection, mutation and crossover operators.
The initial population is filled by randomly generating valid solutions, i.e.,
that respect Equations 1 and 2, as well as definition domains introduced in
Section 2.

Springer Nature 2021 LATEX template

A metaheuristic for inferring an SRMP model 7

3.4 Main loop

The population at a given iteration is constructed with some of the best solu-
tions in the population at the end of the previous iteration, in addition to
some new random valid solutions in order to maintain diversity (prepare pop).
The rest of the population is obtained through a reproduction method, where
some parent solutions are selected to create child solutions. Individual solutions
are selected based on the value of their fitness using a roulette wheel proce-
dure, which tends to prefer “good” solutions in the selection process, while
allowing for “less good” solutions to be selected sometimes with a probability
proportional to their fitness.

To generate new solutions, crossover and mutation operators are used. A
crossover operator produces child solutions from the selected parent solutions,
by keeping some characteristics of the parents. The children are then trans-
formed through amutation operator to diversify the population, and are finally
inserted in the population if they improve the fitness of at least one of the
parents.

After each operation – crossover or mutation –, solutions are repaired to
ensure their validity. In more detail, the following corrections are applied:
1. For each criterion c, entries of P[:, c] are sorted. Entries of P are then

clipped to belong to [0, 1], i.e., values outside the interval are updated to
the closest interval edge;

2. Entries of w are first clipped to belong to]0, 1[. Then, for each criterion

c, w[c]← w[c]
∥w∥1

, where ∥ · ∥1 denotes the ℓ1 norm.

3.5 Proposed crossover operators

Some key elements of a genetic algorithm are the operators it uses. This section
describes the crossover operators introduced in this work. These operators can
all be used in Algorithm 1 as crossover(·,·). They are illustrated in Figure 2.

Let M1 = (P1,o1,w1) and M2 = (P2,o2,w2) be two selected parent
solutions with P reference profiles, and let M be a child solution as generated
by the presented crossover operators. In practice, the implementation also
generates a second child complementary to M . We do not detail more for
simplicity of exposition, and refer the interested reader to the provided Github
repository:

• swap profiles: Exchanges profiles between two solutions:

M ← (P2,o1,w1) ;

• swap orders: Exchanges the lexicographic orders between two solutions:

M ← (P1,o2,w1) ;

• swap weights: Exchanges weights between two solutions:

M ← (P1,o1,w2) ;

Springer Nature 2021 LATEX template

8 A metaheuristic for inferring an SRMP model

w1[1] w1[2] w1[3] w1[4]

P1[1, 1]

P1[1, 2]
P1[1, 3]

P1[1, 4]

P1[2, 1]
P1[2, 2]

P1[2, 3]
P1[2, 4]

P1[3, 1]
P1[3, 2]

P1[3, 3]
P1[3, 4]

o
1
=

[3
,2
,1
]

w2[1] w2[2] w2[3] w2[4]

P2[1, 1]

P2[1, 2]

P2[1, 3]
P2[1, 4]

P2[2, 1]

P2[2, 2]

P2[2, 3]
P2[2, 4]

P2[3, 1]

P2[3, 2]
P2[3, 3] P2[3, 4]

o
2
=

[1
,2
,3
]

(a) swap profiles

w1[1] w1[2] w1[3] w1[4]

P1[1, 1]

P1[1, 2]
P1[1, 3]

P1[1, 4]

P1[2, 1]
P1[2, 2]

P1[2, 3]
P1[2, 4]

P1[3, 1]
P1[3, 2]

P1[3, 3]
P1[3, 4]

o
1
=

[3
,2
,1
]

w2[1] w2[2] w2[3] w2[4]

P2[1, 1]

P2[1, 2]

P2[1, 3]
P2[1, 4]

P2[2, 1]

P2[2, 2]

P2[2, 3]
P2[2, 4]

P2[3, 1]

P2[3, 2]
P2[3, 3] P2[3, 4]

o
2
=

[1
,2
,3
]

(b) swap orders

w1[1] w1[2] w1[3] w1[4]

P1[1, 1]

P1[1, 2]
P1[1, 3]

P1[1, 4]

P1[2, 1]
P1[2, 2]

P1[2, 3]
P1[2, 4]

P1[3, 1]
P1[3, 2]

P1[3, 3]
P1[3, 4]

o
1
=

[3
,2
,1
]

w2[1] w2[2] w2[3] w2[4]

P2[1, 1]

P2[1, 2]

P2[1, 3]
P2[1, 4]

P2[2, 1]

P2[2, 2]

P2[2, 3]
P2[2, 4]

P2[3, 1]

P2[3, 2]
P2[3, 3] P2[3, 4]

o
2
=

[1
,2
,3
]

(c) swap weights

w1[1] w1[2] w1[3] w1[4]

P1[1, 1]

P1[1, 2]
P1[1, 3]

P1[1, 4]

P1[2, 1]
P1[2, 2]

P1[2, 3]
P1[2, 4]

P1[3, 1]
P1[3, 2]

P1[3, 3]
P1[3, 4]

o
1
=

[3
,2
,1
]

w2[1] w2[2] w2[3] w2[4]

P2[1, 1]

P2[1, 2]

P2[1, 3]
P2[1, 4]

P2[2, 1]

P2[2, 2]

P2[2, 3]
P2[2, 4]

P2[3, 1]

P2[3, 2]
P2[3, 3] P2[3, 4]

o
2
=

[1
,2
,3
]

(d) mix criteria and weights

Fig. 2: Proposed crossover operators. Elements in red are assembled to build
a child. Note that elements in black can also be assembled to produce a second
child, as mentioned in Section 3 and done in our implementation.

• mix criteria and weights: Exchanges the profile values and associated
weights on a random subset of criteria between two solutions. Let S ⊂
{1, . . . , C}. Let P ∈ RP×C such that ∀p, ∀c : P[p, c] = P1[p, c] if c ∈
S, and P[p, c] = P2[p, c] otherwise. Additionally, let w ∈ RC such that

Springer Nature 2021 LATEX template

A metaheuristic for inferring an SRMP model 9

∀p,∀c : w[c] = w1[c] if c ∈ S, and w[c] = w2[c] otherwise:

M ← (P,o1,w) .

All of these operators copy entire parts (profiles, order, weights) of both
parent solutions into the child solutions, with the aim, therefore, of potentially
transmitting good characteristics into future generations.

3.6 Proposed mutation operators

Once created using a crossover operator, child solutions can be altered using
a mutation. This section describes the mutation operators introduced in this
work. These operators are provided to Algorithm 1 as mutation(·). They are
illustrated in Figure 3.

Let M = (P,o,w) be the solution to be mutated:
• random profile perturbation: Applies an independent and identically
distributed (i.i.d.) random perturbation of amplitude λrpp ∈]0, 1[to all
the profile values. Let X ∈ RP×C such that ∀p,∀c : X[p, c] ∼ U(−1, 1):

∀p, ∀c : P[p, c]← P[p, c] + λrppX[p, c] ;

• random weights perturbation: Applies a (i.i.d.) random perturbation
of amplitude λrwp ∈]0, 1[to the weights of the criteria. Let x ∈ RC such
that ∀c : x[c] ∼ U(−1, 1):

∀c : w[c]← w[c] + λrwpx[c] ;

• shrink profiles: Shrinks the space between profiles by a factor λsp ∈
]0, 1[to bring them closer to one another, while preserving the original
mean of all profiles per criterion. Let m1 ∈ RC such that ∀c : m1[c] =
1
P ∥P[:, c]∥1. We proceed in two steps:

∀p,∀c : P[p, c]← 1

1 + λsp
P[p, c] .

Then, let m2 ∈ RC such that ∀c : m2[c] =
1
P ∥P[:, c]∥1 computed after

this operation. We then update profile values as follows:

∀p,∀c : P[p, c]← P[p, c]−m2[c] +m1[c] ;

• expand profiles: Conversely, expands the space between profiles by a
factor λep ∈]0, 1[to push them apart, while preserving the original mean of
all profiles per criterion. Let m1 ∈ RC such that ∀c : m1[c] =

1
P ∥P[:, c]∥1.

We proceed in two steps:

∀p,∀c : P[p, c]← (1 + λep)P[p, c] .

Springer Nature 2021 LATEX template

10 A metaheuristic for inferring an SRMP model

Then, let m2 ∈ RC such that ∀c : m2[c] =
1
P ∥P[:, c]∥1 computed after

this operation. We then update profile values as follows:

∀p,∀c : P[p, c]← P[p, c]−m2[c] +m1[c] ;

• partially reverse order: Reverses a random part of the lexicographic
order. Let i and j be random integers in {1, . . . , P} with i < j :

∀k ∈ [i, j] : o[k]← o[j − k + i] .

w[1] w[2] w[3] w[4]

P[1, 1]±?

P[1, 2]±?
P[1, 3]±?

P[1, 4]±?

P[2, 1]±?
P[2, 2]±?

P[2, 3]±?
P[2, 4]±?

P[3, 1]±?
P[3, 2]±?

P[3, 3]±?
P[3, 4]±?

o
=

[3
,2
,1
]

(a) random profile perturbation

w[1]±? w[2]±? w[3]±? w[4]±?

P[1, 1]

P[1, 2]
P[1, 3]

P[1, 4]

P[2, 1]
P[2, 2]

P[2, 3]
P[2, 4]

P[3, 1]
P[3, 2]

P[3, 3]
P[3, 4]

o
=

[3
,2
,1
]

(b) random weights perturbation

w[1] w[2] w[3] w[4]

P[1, 1]+?

P[1, 2]+?
P[1, 3]+?

P[1, 4]+?

P[2, 1]±?
P[2, 2]±?

P[2, 3]±?
P[2, 4]±?

P[3, 1]−?
P[3, 2]−?

P[3, 3]−?
P[3, 4]−?

o
=

[3
,2
,1
]

(c) shrink profiles

w[1] w[2] w[3] w[4]

P[1, 1]−?

P[1, 2]−?
P[1, 3]−?

P[1, 4]−?

P[2, 1]±?
P[2, 2]±?

P[2, 3]±?
P[2, 4]±?

P[3, 1]+?
P[3, 2]+?

P[3, 3]+?
P[3, 4]+?

o
=

[3
,2
,1
]

(d) expand profiles

w[1] w[2] w[3] w[4]

P[1, 1]

P[1, 2]
P[1, 3]

P[1, 4]

P[2, 1]
P[2, 2]

P[2, 3]
P[2, 4]

P[3, 1]
P[3, 2]

P[3, 3]
P[3, 4]

o
=

[3
,
2
,1

1
,2
]

(e) partially reverse order

Fig. 3: Proposed mutation operators. Elements in red highlight the alterations
operated on the child. Symbols ? indicate a random evolution of the parame-
ter, with magnitude controlled by the corresponding perturbation parameter
(which we write λ· in the sequel).

3.7 Stopping criterion

Multiple stopping criteria can be considered depending on the target applica-
tion. For example, the algorithm could be stopped after a certain number of
iterations, a maximum execution time, when the value of the fitness function

Springer Nature 2021 LATEX template

A metaheuristic for inferring an SRMP model 11

for the best solution in the current population reaches a given value, or when
the fitness function of the best solution does not change for a certain number
of iterations or a given interval of time.

In order to favor solutions that maximize accuracy, we choose in this work
to use a stopping criterion which checks that no evolution of the K best (i.e.,
with highest fitness) solutions for a given number of consecutive iterations
occurs, independently of execution time.

In all of our experiments below the value of K is chosen as K = 0.1BS,
corresponding to no changes among the top 10% within the BS best solutions
in the population, for 50 consecutive iterations. These values were established
empirically by trial and error on a large number of data sets.

4 Preliminary experiments

4.1 Considered settings

A first step before performing experiments to evaluate the performance of the
proposed genetic algorithm consists in determining the values of its numerous
hyperparameters. Additionally, we are interested in evaluating which of the
crossover and mutation operators introduced in Section 3 are indeed useful, in
the sense that using them helps reaching models with high accuracy.

In the experiments described in this section, we have chosen to focus on
problems with the following characteristics:

• Number of reference profiles (ground truth value of P): 3;
• Number of criteria (C): 11;
• Number of alternatives (A): 50;
• Size of the training set (|Dtrain|): 100.

Decision problems encountered in practice often have this type of character-
istics, which leads us to carry out the study of the hyperparameters on these
data sizes.

The evaluations of the A alternatives on the C criteria are randomly
drawn from a uniform distribution between 0 and 1, and stored in matrix
A ∈ [0, 1]A×C .

We consider in this section 10 distinct random ground truth DMs, that
we name {M∗

1 , . . . ,M
∗
10}. The models associated with each of these DMs are

generated as follows:
• all evaluations in P are randomly drawn from a uniform distribution
between 0 and 1 and then sorted in increasing order column-wise;

• the vector of weights w is constructed using the approach from [8];
• the lexicographic order o is randomly generated.
The training set is constructed by randomly selecting pairs of alternatives

from the set of A alternatives and generating the relation between them using
a given DM model. We denote Di

train the training set using the ith ground
truth model M∗

i .
Also, we introduce a new matrix A′ ∈ [0, 1]A

′×C of A′ = 300 unseen
alternatives, i.e., distinct from those in A. Similarly to Di

train, we note Di
test

Springer Nature 2021 LATEX template

12 A metaheuristic for inferring an SRMP model

the set of all possible comparisons of distinct alternatives in A′, compared
using the associated ground truth DM M∗

i .

4.2 Grid search

For each pair of a mutation and a crossover operators, we perform a grid search
– i.e., exhaustive combination – of the following values for the corresponding
operators:

• Population size (S in Algorithm 1): {100, 150, 200, 250, 300};
• Ratio of best solutions transmitted to next iteration (B in Algorithm 1):
{0.1, 0.2, 0.3, 0.4, 0.5};

• Ratio of new random solutions per iteration (R in Algorithm 1):
{0.1, 0.2, 0.3, 0.4, 0.5};

• Number of reference profiles to learn (P in Algorithm 1): 3.
• λrpp (if applicable): {0.1, 0.2, 0.3, 0.4, 0.5};
• λrwp (if applicable): {0.1, 0.2, 0.3, 0.4, 0.5};
• λsp (if applicable): {0.2, 0.4, 0.6, 0.8, 1};
• λep (if applicable): {0.2, 0.4, 0.6, 0.8, 1}.
Note that P in Algorithm 1 is chosen to match the actual number of ref-

erence profiles of the ground truth DM to learn. In practical cases, we want
to model real-life DMs, and no such true P exists. Therefore, a choice of P is
needed. This point is discussed in more details in Section 5.

These experiments are repeated for each pair of a crossover and a mutation
operator, in isolation from all other operators. Each configuration is evaluated
on all the ground truth DMs to provide average results. Therefore, for each pair
of a mutation and a crossover operator, we have run 5∗5∗5∗5∗10 = 6250 exper-
iments (except when the mutation operator is partially reverse order for
which we have run 5∗5∗5∗10 = 1250 experiments, since there is no associated
λ). All together, we have performed 16∗6250+4∗1250 = 105000 experiments,
corresponding to 10500 different configurations. Let Ω = {ω1, . . . , ω10500} be
the set of all these configurations.

For each configuration ω ∈ Ω, we therefore obtain 10 estimated DMs
{M̂ω

1 , . . . , M̂
ω
10} of the ground truth DMs {M∗

1 , . . . ,M
∗
10}. We measure the

following quantities:
• The train accuracy of M̂ω

i , given using Equation 5 by:

train accuracy(M̂ω
i) = fitness(M̂ω

i ,Di
train) .

From this, we derive the average train accuracy of ω:

average train accuracy(ω) =
1

10

10∑
i=1

train accuracy(M̂ω
i) ; (6)

Springer Nature 2021 LATEX template

A metaheuristic for inferring an SRMP model 13

• The test accuracy of M̂ω
i , given using Equation 5 by:

test accuracy(M̂ω
i) = fitness(M̂ω

i ,Di
test) .

Similarly, we derive the average test accuracy of ω:

average test accuracy(ω) =
1

10

10∑
i=1

test accuracy(M̂ω
i) . (7)

4.3 Hyperparameters tuning

Given the outputs of the experiments described above, we select adequate
values for the hyperparameters, and pertinent pairs of crossover and mutation
operators to use. To do so, we proceed as follows:
1. Sort configurations in Ω by decreasing average train accuracy;
2. Initialize another set Ω∗ with the first configuration from Ω. Elements

in Ω∗ are considered to be significantly better than the remaining
configurations from Ω;

3. For any remaining configuration ω ∈ Ω:
3.1 Compare ω to all configurations ω∗ ∈ Ω∗ using a paired samples t-

test (with a standard significance level of 0.05) on the associated sets
{Mω

1 , . . . ,M
ω
10} and {Mω∗

1 , . . . ,Mω∗

10 };
3.2 Add ω to Ω∗ if it is not worse (according to the test) than any

configuration in Ω∗;
3.3 Stop if Ω∗ does not change for a given number of iterations (20 in

this case), otherwise continue.
In our experiment, after this procedure, we were left with |Ω∗| = 18 con-

figurations that cannot be considered significantly better than each other. For
these solutions, we obtain an average train accuracy of 0.991 and an aver-
age test accuracy of 0.975. Regarding execution time, we observe an average
of 32.44 seconds per experiment on a machine with Intel Xeon Gold CPU @
2.7GHz× 56, with 256GB RAM, with the provided Python 3.6 implementation
of Algorithm 1.

Among solutions in Ω∗, we count the number of occurrences of each attri-
butions of a value to a parameter in the grid search. Results are presented in
Table 1.

Table 1 reveals some clear conclusions on the hyperparameters:
• S: The higher the better. We retain a value of S = 300 for subsequent
experiments. Higher values may be used, but this has a consequence on
execution time, and train accuracy is already close to 1 in all simulations;

• B: Again, high values are preferred. We retain a value of B = 0.4;
• R: It appears that low values of R lead to better performance, hence we
keep R = 0.1. This may imply that the reproduction process does create
good enough solutions out of the initial population without the need to
introduce a lot of diversity across the process;

Springer Nature 2021 LATEX template

14 A metaheuristic for inferring an SRMP model

Hyperparameter Value Occurrences

Crossover
operator

swap profiles 0
swap orders 0
swap weights 0

mix criteria and weights 18

Mutation
operator

random profile perturbation 0
random weights perturbation 0

shrink profiles 1
expand profiles 0

partially reverse order 17

S

100 0
150 2
200 1
250 6
300 9

B

0.1 1
0.2 3
0.3 4
0.4 6
0.5 4

R

0.1 10
0.2 5
0.3 3
0.4 0
0.5 0

Table 1: Number of occurrences of each hyperparameter value among the
best configurations in Ω∗. Crossover and mutation operator rows indicate the
use of that operator in isolation from the others. The various λ· have been
grouped, as only one can appear at a time in a configuration. Best choices for
each hyperparameter, as well as relevant choices for the operators – according
to the observed counts – are highlighted in yellow.

• Crossover and mutation operators: The main conclusion of this pro-
cess is that some operators clearly outperform the others. Indeed,
mix criteria and weights and partially reverse order appear in
almost all retained configurations. Consequently, there is no information
on the λ· parameters.

We remind that all these experiments were performed with pairs of opera-
tors taken in isolation from the others. Reported accuracies on Ω∗ above show
that single-operator settings are sufficient to solve problems already considered
complicated in previous literature with high accuracy, in very reasonable time.

Springer Nature 2021 LATEX template

A metaheuristic for inferring an SRMP model 15

5 Numerical analysis

We study in this section the performance of our approach for inferring an
SRMP model. We begin by describing the experimental protocol followed by
results pertaining to 1. the ability to reproduce comparisons of the ground
truth model when P is supposed known; 2. the same ability when no assump-
tion is made on P ; 3. the computation time; 4. the ability to handle noisy
data.

Similarly to preliminary experiments in Section 4, we consider here ground
truth SRMP models containing C ∈ {7, 11, 15} criteria and P ∈ {1, 2, 3, 4}
reference profiles, respecting the constraints introduced in Section 2. We con-
sider a set A of A = 500 random alternatives, and we sample |Dtrain| ∈
{100, 300, 500, 1000, 2000} comparisons. The second set of alternatives A′ con-
sists of A′ = 5000 new random alternatives, and we build Dtest as the set of
all comparisons between distinct alternatives in A′. Finally, since we also want
to study the impact on performance of the number of profiles in the inferred
solutions compared to the ground truth ones, we denote P̂ ∈ {1, 2, 3, 4} the
argument given to Algorithm 1, which assumes the real P to be unknown.

5.1 Reproduction of the behavior of a ground truth model

We begin by looking at the ability of our approach to model accurately ground
truth SRMP models from a training set. Figure 4 reports the average train
and test accuracies when inferring 20 SRMP models with a given number of
criteria and profiles.

We observe that in all cases, our approach is able to reach very high values
of train accuracy regardless the number of comparisons that were provided. A
slight decrease in performance is observed as the amount of input information
increases. At the same time, as the number of training comparisons increases,
so does the test accuracy, showing a close proximity of the inferred models to
the original ones. As the size of the problem (C, number of criteria) increases,
the performance slightly degrades. However, the effect of increasing the number
of profiles for a given problem size is minimal.

We consider in Figure 5 the average execution time of our algorithm for 20
problem instance sizes and when the SRMP model that needs to be inferred
contains between 1 and 4 profiles.

The results show that the execution time increases linearly with the num-
ber of provided binary comparisons. A similar but less pronounced trend can
also be observed when considering problem instances with more criteria. The
impact on the execution time for increasing the number of profiles of the SRMP
model is present to an even lesser extent.

5.2 Case when P is not known

We continue by looking at the ability of our approach to construct a model
that restores the perspective of the DM when the ground truth number of
profiles P is unknown. Figure 6 illustrates the average train accuracy when

Springer Nature 2021 LATEX template

16 A metaheuristic for inferring an SRMP model

1
0
0

3
0
0

5
0
0

1
k

2
k

0
.7

0
.8

0
.9

1
|Dtrain|

A
cc
u
ra
cy

C = 7, P = 1

1
0
0

3
0
0

5
0
0

1
k

2
k

|Dtrain|

C = 11, P = 1

1
0
0

3
0
0

5
0
0

1
k

2
k

0
.7

0
.8

0
.9

1
|Dtrain|

C = 15, P = 1

0
.7

0
.8

0
.9

1

A
cc
u
ra
cy

C = 7, P = 2 C = 11, P = 2

0
.7

0
.8

0
.9

1

C = 15, P = 2

0
.7

0
.8

0
.9

1

A
cc
u
ra
cy

C = 7, P = 3 C = 11, P = 3 0
.7

0
.8

0
.9

1

C = 15, P = 3

1
0
0

3
0
0

5
0
0

1
k

2
k

0
.8

0
.9

1

|Dtrain|

A
cc
u
ra
cy

C = 7, P = 4

1
0
0

3
0
0

5
0
0

1
k

2
k

|Dtrain|

C = 11, P = 4

1
0
0

3
0
0

5
0
0

1
k

2
k

0
.8

0
.9

1

|Dtrain|

C = 15, P = 4

train test

Fig. 4: Average train and test accuracy as a function of the number of training
comparisons (|Dtrain|) for all combinations of the number of criteria (C) and
the number of profiles (P = P̂). Bars represent the limits of the 95% confidence
intervals.

Springer Nature 2021 LATEX template

A metaheuristic for inferring an SRMP model 17

1
0
0

3
0
0

5
0
0

1
k

2
k

0
5
0
0

1
,0
0
0

1
,5
0
0

2
,0
0
0

|Dtrain|

T
im

e
(s
)

C = 7

1
0
0

3
0
0

5
0
0

1
k

2
k

|Dtrain|

C = 11

1
0
0

3
0
0

5
0
0

1
k

2
k

0
5
0
0

1
,0
0
0

1
,5
0
0

2
,0
0
0

|Dtrain|

C = 15

P = 1 P = 2 P = 3 P = 4

Fig. 5: Average execution time as a function of the number of training com-
parisons (|Dtrain|) for all combinations of the number of criteria (C) and the
number of profiles (P = P̂). Bars represent the limits of the 95% confidence
intervals.

inferring SRMP models with a given number of criteria and a fixed number of
profiles. Each point corresponds to the results on 80 problem instances with
an equal repartition of the values of P described above.

When C = 7 we observe that inferring an SRMP model with a single pro-
file leads to the lowest overall train accuracy as it does not appear to be able
to reproduce all of the comparisons produced by underlying models with more
profiles. Nevertheless, the train accuracy remains very high, above 0.95. The
highest average performance is found when inferring models with two profiles,
while, surprisingly, models with more than two profiles perform worse on aver-
age despite their potential of modeling more difficult binary comparisons. For
more than 7 criteria, the train accuracies remain very high, but the difference
between the various models is less apparent.

Figure 7 illustrates the corresponding test accuracy for the previously pre-
sented results. For C = 7 we observe the same trend where SRMP models with
a single profile perform the worst when approximating the perspective of the
DM, while models with two profiles perform the best. The difference in perfor-
mance is somewhat less pronounced for larger numbers of criteria, but reaching

Springer Nature 2021 LATEX template

18 A metaheuristic for inferring an SRMP model

1
0
0

3
0
0

5
0
0

1
k

2
k

0
.9
2

0
.9
4

0
.9
6

0
.9
8

1

|Dtrain|

T
ra
in

a
cc
u
ra
cy

C = 7

1
0
0

3
0
0

5
0
0

1
k

2
k

|Dtrain|

C = 11

1
0
0

3
0
0

5
0
0

1
k

2
k

0
.9
2

0
.9
4

0
.9
6

0
.9
8

1

|Dtrain|

C = 15

P̂ = 1 P̂ = 2 P̂ = 3 P̂ = 4

Fig. 6: Average train accuracy as a function of the number of training com-
parisons (|Dtrain|) for any number of criteria (C) when inferring SRMP models
with different numbers of profiles (P̂). Bars represent the limits of the 95%
confidence intervals.

in all cases very high test accuracy when large sets of binary comparisons are
provided.

Looking at the average execution times (Fig 8), we do not observe any
significant difference with relation to the results from the previous subsection.
The execution times remain linear with relation to the number of provided
binary comparisons and increase slightly when more profiles are considered.

5.3 Handling noisy data

Finally, we look at the effect that errors in the learning comparisons may
have on the performance of the genetic algorithm as well as the quality of
the inferred model. The errors are introduced by randomly selecting a given
number of pairwise comparisons in Dtrain and then randomly changing the
result of the comparison ⊙ as follows: if ⊙ is ≻ then ⊙ becomes either ≺ or ∼,
if ⊙ is ≺ then ⊙ becomes either ≻ or ∼ and if ⊙ is ∼ then ⊙ becomes either
≻ or ≺. In the last case, we use equal probabilities for the two relations, while
in the first two cases, the probability of selecting ∼ is equal to the proportion
of indifference relations in the entire training set. This is motivated by the

Springer Nature 2021 LATEX template

A metaheuristic for inferring an SRMP model 19

1
0
0

3
0
0

5
0
0

1
k

2
k

0
.7
5

0
.8

0
.8
5

0
.9

0
.9
5

1

|Dtrain|

T
es
t
ac
cu
ra
cy

C = 7

1
0
0

3
0
0

5
0
0

1
k

2
k

|Dtrain|

C = 11

1
0
0

3
0
0

5
0
0

1
k

2
k

0
.7
5

0
.8

0
.8
5

0
.9

0
.9
5

1

|Dtrain|

C = 15

P̂ = 1 P̂ = 2 P̂ = 3 P̂ = 4

Fig. 7: Average test accuracy as a function of the number of training compar-
isons (|Dtrain|) for any number of criteria (C) when inferring SRMP models
with different numbers of profiles (P̂). Bars represent the limits of the 95%
confidence intervals.

fact that much fewer pairs of alternatives contain an indifference relation as
opposed to a preference relation, and thus we seek to keep this distribution in
the training set even when errors are introduced.

We illustrate below only the results when the inferred model matches the
number of profiles of the original model, however the same conclusions can be
drawn for the other situations.

Figure 9 illustrates the training accuracy over training sets of different sizes,
for problem instances containing different numbers of criteria and for SRMP
with fewer or more profiles. The lines indicate the training accuracy when
different percentages of training comparisons are changed to indicate a different
assertion from the one obtained thanks to the original SRMP model. This
could either be a preference in the opposite direction or an indifference. Since
indifferences between two alternatives have a significantly lower probability
of appearing when compared to choices – especially when these alternatives
are generated randomly – we make sure to keep the original proportions of
indifferences and preferences when inserting errors in the training data.

Springer Nature 2021 LATEX template

20 A metaheuristic for inferring an SRMP model

1
0
0

3
0
0

5
0
0

1
k

2
k

0
5
0
0

1
,0
0
0

1
,5
0
0

2
,0
0
0

|Dtrain|

T
im

e
(s
)

C = 7

1
0
0

3
0
0

5
0
0

1
k

2
k

|Dtrain|

C = 11

1
0
0

3
0
0

5
0
0

1
k

2
k

0
5
0
0

1
,0
0
0

1
,5
0
0

2
,0
0
0

|Dtrain|

C = 15

P̂ = 1 P̂ = 2 P̂ = 3 P̂ = 4

Fig. 8: Average execution time as a function of the number of training com-
parisons (|Dtrain|) for any number of criteria (C) when inferring SRMP models
with different numbers of profiles (P̂). Bars represent the limits of the 95%
confidence intervals.

We find that, as more and more errors are added to the training data, the
training accuracy is significantly impacted. This impact seems to be propor-
tional the the amount of errors, reaching 70% accuracy when up to 30% of the
training data is erroneous. For problem instances with more criteria, the effect
is less prominent when fewer binary comparisons are considered, however, as
the training data increases, so does the penalty on the training accuracy.

Figure 10 illustrates the test accuracy for the same scenarios as above.
Despite the rather significant effect on training accuracy, the test accuracy
does not seem to suffer the same penalty. This is especially visible for problem
instances with fewer criteria. As the number of comparisons in the training
data increases, so does the test accuracy. It seems that the genetic algorithm
is able to satisfy more of the comparisons that are coherent with the original
model and a significant proportion of erroneous comparisons are not fulfilled.
Nevertheless, as the number of criteria and the number of reference profiles
increase, the penalty incurred by errors in the training data becomes more
noticeable.

We do not illustrate the execution time for the previous tests as no differ-
ence was observed when introducing errors in the learning data. The algorithm

Springer Nature 2021 LATEX template

A metaheuristic for inferring an SRMP model 21

1
0
0

3
0
0

5
0
0

1
k

2
k

0
.7

0
.8

0
.9

1
|Dtrain|

T
ra
in

ac
cu
ra
cy

C = 7, P = 1

1
0
0

3
0
0

5
0
0

1
k

2
k

|Dtrain|

C = 11, P = 1

1
0
0

3
0
0

5
0
0

1
k

2
k

0
.7

0
.8

0
.9

1
|Dtrain|

C = 15, P = 1

0
.7

0
.8

0
.9

1

T
ra
in

a
cc
u
ra
cy

C = 7, P = 2 C = 11, P = 2

0
.7

0
.8

0
.9

1

C = 15, P = 2

0
.7

0
.8

0
.9

1

T
ra
in

a
cc
u
ra
cy

C = 7, P = 3 C = 11, P = 3

0
.7

0
.8

0
.9

1

C = 15, P = 3

1
0
0

3
0
0

5
0
0

1
k

2
k

0
.7

0
.8

0
.9

1

|Dtrain|

T
ra
in

a
cc
u
ra
cy

C = 7, P = 4

1
0
0

3
0
0

5
0
0

1
k

2
k

|Dtrain|

C = 11, P = 4

1
0
0

3
0
0

5
0
0

1
k

2
k

0
.7

0
.8

0
.9

1

|Dtrain|

C = 15, P = 4

0% error 10% error 20% error 30% error

Fig. 9: Average train accuracy as a function of the number of training com-
parisons (|Dtrain|) with relation to the error rate among these comparisons,
for all combinations of the number of criteria (C) and the number of profiles
in the original and inferred model (P = P̂). Bars represent the limits of the
95% confidence intervals.

Springer Nature 2021 LATEX template

22 A metaheuristic for inferring an SRMP model

1
0
0

3
0
0

5
0
0

1
k

2
k

0
.6

0
.8

1
|Dtrain|

T
es
t
a
cc
u
ra
cy

C = 7, P = 1

1
0
0

3
0
0

5
0
0

1
k

2
k

|Dtrain|

C = 11, P = 1

1
0
0

3
0
0

5
0
0

1
k

2
k

0
.6

0
.8

1
|Dtrain|

C = 15, P = 1

0
.6

0
.7

0
.8

0
.9

T
es
t
ac
cu
ra
cy

C = 7, P = 2 C = 11, P = 2

0
.6

0
.7

0
.8

0
.9

C = 15, P = 2

0
.6

0
.7

0
.8

0
.9

1

T
es
t
ac
cu
ra
cy

C = 7, P = 3 C = 11, P = 3

0
.6

0
.7

0
.8

0
.9

1

C = 15, P = 3

1
0
0

3
0
0

5
0
0

1
k

2
k

0
.6

0
.8

1

|Dtrain|

T
es
t
ac
cu
ra
cy

C = 7, P = 4

1
0
0

3
0
0

5
0
0

1
k

2
k

|Dtrain|

C = 11, P = 4

1
0
0

3
0
0

5
0
0

1
k

2
k

0
.6

0
.8

1

|Dtrain|

C = 15, P = 4

0% error 10% error 20% error 30% error

Fig. 10: Average test accuracy as a function of the number of training com-
parisons (|Dtrain|) with relation to the error rate in these comparisons for all
combinations of the number of criteria (C) and the number of profiles in the
original and inferred model (P = P̂). Bars represent the limits of the 95% con-
fidence intervals.

Springer Nature 2021 LATEX template

A metaheuristic for inferring an SRMP model 23

converges in the same amount of time, on average, which is mainly dictated
by the number of binary comparisons and the number of criteria.

6 Discussion and conclusion

This article proposes a novel metaheuristic approach for inferring a simple
ranking model based on multiple reference profiles. The proposed algorithm
is able to handle larger amounts of input information and is more effective in
terms of computation times than previous proposals based on mixed-integer
linear programming or constraint programming. The extensive experiments
conducted in this study demonstrate a generalization power of the learned
models similar to the ones reported in previous works, but in significantly
lower computation times, even in presence of noisy training comparisons. This
allows the proposed approach to be used in real-life problems involving many
criteria.

Table 2 illustrates the largest problem instances handled by previous works,
in terms of number of criteria (C), number of reference profiles (P), number of
input binary comparisons (|Dtrain|). In some cases, two problem configurations
are associated to a single reference. The results reported by these works, in
terms of training and testing accuracy as well as computation time, are given
in middle three lines of the table. We have also tested the approach we propose
on all problem configurations, averaging the results over 10 random DMs and
constructing the training set using a set of 50 randomly generated alternatives.
These results are given in the final three lines of the table.

State of the art reference [17] [17] [3] [3] [16]
C = 5 7 5 6 10
P = 2 2 3 2 3

|Dtrain| = 100 100 1000 600 500

State of

the art

results

Training acc. 1 1 1 1 0.97
Testing acc. 0.89 0.86 0.98 0.97 n/a

Time 6m16s 33m50s 8m45s 18m20s 3m2s

Proposed

approach

results

Training acc. 0.988 0.987 0.982 0.977 0.975
Testing acc. 0.865 0.832 0.937 0.913 0.875

Time 16.852s 17.86s 4m39s 2m37 2m27s

Table 2: Comparison of the largest problem instances handled by previously
published works with ours, averaged for 10 random DMs and choices of A of
two different orders, using the settings described in Section 4.

When the time budget is not a limitation and problems are small,
approaches based on exact methods obviously provide better training accuracy
than our metaheuristic approach. However, training accuracy of our algorithm
remains very high in all considered settings, and the required time is generally
a lot smaller. This allows us to tackle larger problems than previous works.

Springer Nature 2021 LATEX template

24 A metaheuristic for inferring an SRMP model

This is especially true given that our implementation is done in Python with-
out any optimization, while [17] and [16] make use of the Cplex solver. [3]
makes use of solvers CryptoMiniSAT and Maxino. A C/C++ implementation
of our approach would therefore lead to higher gains for those interested in
this aspect.

Complementing Table 2, we have observed that our approach can solve
problems with C = 15, P = 4, A = 50 and |Dtrain| = 2000 with high accuracy
in about 19m. Therefore, for more or less the same executing time budget, our
approach is able to handle problem instances three times larger in terms of the
number of criteria and 20 times larger in terms of the number of input binary
comparisons as opposed to a mixed-integer linear programming approach.

Still, a certain amount of questions and perspectives arise from our work.
The performance of the proposed approach could probably be further improved
by incorporating various problem-specific features, such as heuristics, local
search, or hybridization with other optimization techniques. An adaptation for
inferring the number of reference profiles without requiring this information
as an input parameter could also be done. Last but not least, a multi-operator
setting with multiple crossover and mutation operators could also be explored
to improve the performance of the algorithm. They could either be called
randomly, or depending on some past performances through a reinforcement
approach.

Also, the proposed genetic algorithm handles a population of solutions,
in which currently only one solution (the best in terms of training accuracy)
is output. It could be worth looking in further details at the other “good”
solutions of the population, to determine if some of their characteristics could
be used to improve the best element of the population.

Finally, a limitation of all approaches in the literature – including ours – is
the absence of focus on generalization. Indeed, one may be interested not par-
ticularly in the ability of the inferred model to reproduce existing decisions,
but more to mimic the behavior a DM would have in new unseen situations.
Drawing inspiration from the machine learning field, we believe that introduc-
ing a validation set, extracted from the training comparisons, to serve as a
proxy for future testing data, would be worth exploring to maximize the gener-
alization ability of inferred SRMP models. Experiments in this work still hint
that maximizing training accuracy implies an increase in testing accuracy, and
it seems that there is no overfitting problem here (as we are learning a model
and not a classification/regression function). Still, taking generalization abil-
ity into account during model inference may help convergence. This is in our
opinion a great direction for future work.

Conflict of Interest: The authors declare that they have no conflict of
interest.

Data availability: The datasets generated during and/or analyzed during
the current study are available in the GitHub repository, https://github.com/
BastienPasdeloup/learn srmp.

https://github.com/BastienPasdeloup/learn_srmp
https://github.com/BastienPasdeloup/learn_srmp

Springer Nature 2021 LATEX template

REFERENCES 25

References

[1] J. Almeida Dias, J. Figueira, and B. Roy. ELECTRE TRI-C: A mul-
tiple criteria sorting method based on characteristic reference actions.
European Journal of Operational Research, 204(3):565–580, 2010.

[2] C.A. Bana e Costa and J-C. Vansnick. MACBETH—An interactive
path towards the construction of cardinal value functions. International
transactions in operational Research, 1(4):489–500, 1994.

[3] K. Belahcene, V. Mousseau, W. Ouerdane, M. Pirlot, and O. Sobrie.
Ranking with multiple reference points: Efficient SAT-based learning
procedures. Computers & Operations Research, 150:106054, 11 2022.

[4] K. Belahcene, V. Mousseau, W. Ouerdane, M. Pirlot, and O. Sobrie. Mul-
tiple criteria sorting models and methods-Part I: survey of the literature.
4OR: A Quarterly Journal of Operations Research, January 2023.

[5] K. Belahcene, V. Mousseau, W. Ouerdane, M. Pirlot, and O. Sobrie. Mul-
tiple criteria sorting models and methods. Part II: theoretical results and
general issues. 4OR: A Quarterly Journal of Operations Research, January
2023.

[6] D. Bouyssou and T. Marchant. Multiattribute preference models with
reference points. European Journal of Operational Research, 229(2):470–
481, 2013.

[7] D. Bouyssou, T. Marchant, M. Pirlot, A. Tsoukiàs, and P. Vincke. Eval-
uation and decision models with multiple criteria: Stepping stones for the
analyst. International Series in Operations Research and Management
Science, Volume 86. Boston, 1st edition, 2006.

[8] J. Butler, J. Jia, and J. Dyer. Simulation techniques for the sensi-
tivity analysis of multi-criteria decision models. European Journal of
Operational Research, 103(3):531–546, 1997.

[9] J. H. Holland. Adaptation in Natural and Artificial Systems. University
of Michigan Press, Ann Arbor, MI, 1975. second edition, 1992.

[10] C-L. Hwang, Y-J. Lai, and T-Y. Liu. A new approach for multiple objec-
tive decision making. Computers & Operations Research, 20(8):889–899,
1993.

[11] E. Jacquet-Lagrèze and Y. Siskos. Preference disaggregation: 20 years
of MCDA experience. European Journal of Operational Research,
130(2):233–245, 2001.

[12] A. Khannoussi, N. Benabbou, A.-L. Olteanu, and P. Meyer. Incremen-
tal elicitation of the criteria weights of srmp using a regret-based query
selection strategy. In DA2PL 2020: From Multiple Criteria Decision Aid
to Preference Learning, 2020.

[13] A. Khannoussi, A.-L. Olteanu, C. Dezan, J.-P. Diguet, C. Labreuche,
J. Petit-Frere, and P. Meyer. Incremental learning of simple ranking
method using reference profiles models. In DA2PL 2018: From Multiple
Criteria Decision Aid to Preference Learning, 2018.

[14] A. Khannoussi, A-L. Olteanu, C. Labreuche, and P. Meyer. Simple
ranking method using reference profiles: incremental elicitation of the

Springer Nature 2021 LATEX template

26 REFERENCES

preference parameters. 4OR: A Quarterly Journal of Operations Research,
20(3):499–530, 2022.

[15] A. Leroy, V. Mousseau, and M. Pirlot. Learning the parameters of
a multiple criteria sorting method. In R. Brafman, F. Roberts, and
A. Tsoukiàs, editors, Algorithmic Decision Theory, volume 6992, pages
219–233. Springer, 2011.

[16] J. Liu, W. Ouerdane, and V. Mousseau. A metaheuristic approach for
preference learning in multicriteria ranking based on reference points. in
Proceeding of the 2nd wokshop “From Multiple Criteria Decision Aid to
Preference Learning (DA2PL)”, 2014.

[17] A-L. Olteanu, K. Belahcène, V. Mousseau, W. Ouerdane, A. Rolland, and
J. Zheng. Preference elicitation for a ranking method based on multiple
reference profiles. 4OR: A Quarterly Journal of Operations Research,
20(1):63–84, 2022.

[18] A. Rolland. Reference-based preferences aggregation procedures in multi-
criteria decision making. European Journal of Operational Research,
225(3):479–486, 2013.

[19] B. Roy. The outranking approach and the foundations of ELECTRE
methods. Theory and Decision, 31:49–73, 1991.

[20] B. Roy. Multicriteria Methodology for Decision Aiding. Kluwer Academic,
Dordrecht, 1996.

[21] A. Tversky and D. Kahneman. Loss aversion in riskless choice:
A reference-dependent model. The Quarterly Journal of Economics,
106(4):1039–1061, 11 1991.

[22] D. von Winterfeldt and W. Edwards. Decision Analysis and Behavioral
Research. Cambridge University Press, 1986.

	Introduction
	SRMP: a Ranking model based on Multiple Profiles
	Parameters of the SRMP model
	Comparing alternatives, given an SRMP model

	The preference inference algorithm
	Solution
	Fitness
	Initialization
	Main loop
	Proposed crossover operators
	Proposed mutation operators
	Stopping criterion

	Preliminary experiments
	Considered settings
	Grid search
	Hyperparameters tuning

	Numerical analysis
	Reproduction of the behavior of a ground truth model
	Case when P is not known
	Handling noisy data

	Discussion and conclusion

