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Modèle stochastique pour la détection d’essaims de
véhicules aériens militaires

Stanislas de Charentenay1, Alexandre Reiffers-Masson 1 and Gilles Coppin1

1IMT Atlantique, LAB-STICC laboratory Brest, France. email: firstname.lastname@imt-atlantique.fr

Cet article introduit un nouveau modèle de détection d’un essaim de véhicules aériens militaires autonomes par un radar
sur des trajectoires prédéfinies. Ce modèle prend en compte l’impact des interactions entre membres de l’essaim sur la
détection. Sur un scénario classique de pénétration, on montre qu’un modèle simplifié permet de calculer facilement
une borne supérieure sur les performances du modèle avec défaillances.

Mots-clefs : UCAV Swarm, Performance Evaluation, Stochastic Model

1 Introduction
In the context of Unmanned Combat Aerial Vehicle (UCAV) swarm under radar-guided surface-to-air mis-
sile threats, it is frequent to look for optimal trajectories that minimize the probability to be detected before
reaching a target. In such path-planning problems, a good detection model is needed as a first step to evalu-
ate the trajectories. Although several models exist in the literature, few of them acknowledge the impact of
internal swarm interactions on detection.

Literature on UCAV path planning can be divided into two categories. The first category is focused
on stealth penetration problems for a single UCAV while the second addresses the problem in the case of
UCAV swarms. The authors in the following works [KMZ06, ZWDH20, ZJWZ22] use complex detection
models for a single UCAV that combine several characteristics of the radar, aircraft or enemy missiles. Al-
though these models are more realistic, the coupling makes it difficult to adapt them to a swarm penetration
problem. When part of a swarm, the probability for an UCAV to be detected is also affected by the presence
of other swarm members, which is one of the advantages of swarm-based strategies. An example of such
interaction is shown in papers [BGR17, BGR19] that minimize threat exposure of swarms with a stealth
policy based on the effects of internal communication on radar detection. This shows the importance of
internal swarm interactions in stealth problems but is not generalized to other types of interactions.

In this paper, we formulate a general model involving internal interactions between swarm members to
calculate the probability for each UCAV of a swarm to be detected by a single fixed radar along predefined
trajectories. Our model is based on the assumption that the detection rate of a swarm member is only
depending on its distance to the radar and an internal swarm interaction term. We give an example of such
a term representing effect of radar signal confusion for closely-spaced UCAVs. We extend the model by
incorporating the failure of detected UCAVs. In a classic scenario of cooperative stealth penetration, we
also prove that the first simple model provides a simple upper bound on swarm penetration success for this
second model. Using numerical simulations, we study the impact of several model parameters in stealth
penetration scenarios for straight trajectories of different swarm densities.

2 Model

2.1 Problem formulation

For every i ∈ {1, · · · ,n} and t ∈ R+, we denote by xi(t) ∈ R3 the position of UCAV i at instant t. The fixed
position of the radar is denoted by xR ∈ R3. For i ∈ {1, · · · ,n}, let us define the random variable Ti ∈ R+,
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the detection time of UCAV i by the radar. For every i ∈ {1, · · · ,n} and t ∈ R+, we also define the random
variable Di(t) ∈ {0,1} which indicates whether or not UCAV i is detected by the radar at time t. More
precisely, Di(t) = 0 when UCAV i is detected and Di(t) = 1 when it is not, i.e, Di(t) = I{Ti > t}. We now
model the probability to be undetected at time t, denoted by Pi(t) := P(Ti > t). We introduce λi(t) as the
hazard rate at time t, so that for h > 0, we have the expected state transitions:

E[Di(t +h) | Di(t)] = Di(t)
(
1−λi(t)h

)
+o(h). (1)

The previous equation implies that :

Pi(t +h) = EDi(t)
[
E[Di(t +h) | Di(t)]

]
. (2)

By using the fact that λi(t) is deterministic and h converges to 0, we obtain the following linear differential
equation for the evolution of Pi(t):

Ṗi(t) =−λi(t)Pi(t), Pi(0) = 0. (3)

We make the assumption that our hazard rate is only dependent on the position of the swarm members at
each instant t. More precisely, by defining vector d(t) = [di(t)]1≤i≤n where di(t) = ||xR − xi(t)||2 is the
distance of UCAV i to the radar, we can say λi(t) depends on di(t) and an interaction term zi(t). We define
function λ : R+×R+ →R+ so that: λi(t) := λ

(
di(t),zi(t)

)
. The interaction function zi is the accumulation

of binary interactions of all swarm members. As such we define zi(t) = ∑
n
j=1 ai j(t), with A(t) = [[ai j(t)]]i, j

a positive and symmetrical adjacency matrix whose diagonal is null. In this paper, we study models with
function λ of the form:

λi(t) = λ
(
di(t),zi(t)

)
=

α

ε +di(t)
β1
(
1+ zi(t)

)β2
, (4)

with α > 0 a positive factor and β1,β2 > 0 positive exponents to be tuned depending on the application.
The term ε > 0 is a very small constant to assure λi is bounded on R+. This specific form of λi is coming
from the assumption that the power of the radar signal reflecting on UCAV i is proportionate to 1

di(t)
4 . In

the extreme case where the interaction is high and the term zi tends to +∞, the rate of detection decreases.
However, when zi tends to 0, the rate of detection depends solely on the distance to the radar. In the
following, we give an example of zi representing the effect of radar signal confusion for closely-spaced
UCAVs.

As radars have limited resolution, we know that closely-spaced targets can induce errors due to the
merging of their radar signal. To model this phenomenon in our function zi, we take adjacency matrix A(t)
such that ai j(t) = R||xi(t)−x j(t)||−2

2 , for all i, j ∈ {1, . . . ,n}2. We name coefficient R ≥ 0 the hiding radius,
which depends on the radar resolution and represents how close UCAVs have to be to confuse the radar.
This leads to the extended formula:

λi(t) =
α

ε +di(t)
β1
(
1+∑ j

R
||xi(t)−x j(t)||22

)β2
. (5)

This formula is pertinent in extreme cases as when the distance between UCAV i and its neighbors is
small, the interaction term is high and the detection rate decreases. However when UCAV i is isolated, then
zi(t) is small and to a model with no interactions among UCAVs. When R= 0, we obtain λi(t) =

α

ε +di(t)
β1

which can be linked to the instantaneous probability model defined in [ZWDH20].

2.2 Extending the model with UCAV failure

We now extend our model to a more realistic one where the UCAVs are attacked, when detected. Here,
we suppose that UCAVs are instantly disabled when detected. This implies that detected UCAVs will
not have any effect on the radar so they should not be involved in the detection rate of others. In this
scenario, we denote by D̃i(t) (resp. T̃i) the detection state (resp. detection time) of UCAV i at time t. Both
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variables are random. We also define a new interaction function z̃i that considers the detection state by
removing interactions with the detected UCAVs. At instant t, for all i and for s a possible value of D̃(t) with
s := [si]1≤i≤n si ∈ {0,1}n, we define:

z̃i
(
t,s

)
=

n

∑
j=1

s jai j(t). (6)

We can now introduce λ̃i(t,s) = λ
(
di(t), z̃i(t,s)

)
as the detection rate conditional to the detection state. For

i ∈ {1, . . . ,n}, let τi > 0 a realisation of Ti. Then for τ = [τi]i, we call δ : R+ → {0,1}n the detection state
evolution corresponding to event {

⋂
i{Ti = τi}} with δτ(t) = ∑i I(t < τi)ei. We have for UCAV i, at instant

t and for h > 0:

E[D̃i(t +h) | D̃i(t)∩{D̃i(u) = δτ(u)}u∈[0,t[] = D̃i(t)
(
1− λ̃i(t,δt)h

)
+o(h).

We introduce P̃i(t,τ) := P
(
D̃i(t) = 1 | {D̃(u) = δτ(u)}τ∈[0,t[

)
the probability to stay undetected at instant

t in our new scenario, conditional to detection state evolution d. In the same way as for (2), we get the
transition equation P̃i(t +h,τ) = P̃i(t,τ)

(
1− λ̃i

(
t,δτ(t)

)
h
)
, leading to the differential equation:

∂ P̃i

∂ t
(t,τ) =−λ̃i

(
t,δτ(t)

)
P̃i(t), P̃i(0,τ) = 1 (7)

which has solution

P̃i(t,τ) = exp
(
−
∫ t

0
λ̃i(u,δτ(u))du

)
. (8)

2.3 Calculating the performance in a penetration problem

We want to study the use of our extended detection model in a basic penetration scenario. Here, a swarm of
UCAVs aims to reach a target zone represented by a disk of center xT and radius r while avoiding detection
from a single radar. We suppose that the trajectory of each UCAV ends at the final instant tmax in the
target zone with the condition on xi for i ∈ {1, . . . ,n}, ||xi(tmax)− xT ||2 ≤ r. This ensures existence of
t∗i = min{t ∈ R | ||xi(t)− xT ||2 ≤ r} the instant that UCAV i reaches the target. We want to evaluate the
performance of given trajectories with a metric we call success probability U , the probability that at least
one UCAV reached the target zone before detection. We define the metric as follow:

U = 1−P
(⋂

i

{T̃i < t∗i }
)
.

For the model with failures, this success probability will be computationally difficult to calculate when
the size of the swarm increases. Instead, we show in appendix [SdCC23] that we can derive an upper bound
on U from the simpler model without UCAV failure.

Theorem 1 The following inequality is true:

U ≤ 1−∏
i

(
1−Pi(t∗i )

)
3 Numerical studies
To illustrate the previous section, we use simulations to grasp how parameters α and R of the detection
rate have an influence on the success probability U of trajectories of a swarm of 6 UCAVs. Here the radar
is placed at the center of the target zone. We set other parameters with ε = 0.01, β1 = 2 and β2 = 1. To
simplify the simulations, we focus on 2D trajectories x : [0, tmax] → R2 during a finite time tmax. More
precisely, trajectories generated for the simulation are uniform rectilinear motions that reach target xT at
time tmax. The only random parameter of the generation is the constant speed vi ∈ R2 of each UCAV. As
generated trajectory of UCAV i, xi : [0, tmax] → R2, has condition xi(tmax) = xT , we get for instant t the
position xi(t) = vi(tmax − t) + xT . To generate vi, we have equation vi = Ci

[
cos(θi) sin(θi)

]
, assuming

that Ci ∼ U([Cmin,Cmax]) and θi ∼ U([0,θmax]). θmax can be used to control the angular proximity of the
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Figure 1: Example of trajectories
in different batches
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Figure 2: Impact of α on success
probability
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Figure 3: Impact of R on success
probability

generated trajectories and induce a swarm formation. Our experiments are made with Cmin = 2, Cmax = 3 and
θmax := {2π, π

4 ,
π

10}, as illustrated in figure 1. Trajectories in first batch (with θmax = 2π) have completely
random speed angles and no swarm formation.

Impact of α: The first experiment, illustrated in figure 2, studies the impact of detection rate coefficient
α , capturing the efficiency of the radar, on the success probability of a swarm. Here we set the hiding
radius R to 0 in order to neglect UCAV interactions, leading to similar results in all batches. As expected,
the results show that a higher α coefficient leads to a lower success probability.

Impact of R: The hiding radius parameter R represents how much the proximity of UCAVs confuses the
radar and prevents detection. In figure 3 illustrating the influence of this parameter on success probability,
we see a decrease in success probability as R increases. The impact is much bigger for the closely-spaced
swarms, as trajectories generated with θmax =

π

10 have a 202% higher mean success probability to succeed
for R = 0.2 compared to the trajectories with a flocking angle of θmax = 2π . The experiment shows the
importance of swarm formation when such interactions are taken into account.

4 Conclusion
In this paper, we introduce two detection models for UCAV swarms that take internal swarm interactions
into account. The model with failures, and therefore more realistic, is highly coupled and computationally
costly to evaluate its performance. Therefore, we show that a simpler model can provide an upper bound
on the performance of the model with failure. Such bound is easier to evaluate. Future work will focus
on finding other more accurate approximations and use them to find optimal trajectories to solve the path
planning problem.

References
[BGR17] Nı́colas Pereira Borges, Cinara Guellner Ghedini, and Carlos HC Ribeiro. A local communication model for improving

stealth in collaborative uav networks. Anais do Computer on the Beach, pages 249–258, 2017.
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5 Appendix
Proof of Theorem 1: We want to study the use of our extended detection model on a basic penetration scenario. Here, a swarm
of UCAVs aims to reach a target zone represented by a disk of center xT and radius r while avoiding detection from a single radar.
We suppose that the trajectories of each UCAV ends at final instant tmax in the target zone with condition on xi for i ∈ {1, . . . ,n}:
||xi(tmax)− xT ||2 ≤ r. This ensures existence of t∗i = min{t ∈ R | ||xi(t)− xT ||2 ≤ r} the instant that UCAV i reaches the target. We
want to evaluate the performance of given trajectories with a metric we call success probability U , the probability that at least one
UCAV reached the target zone before detection. As such,

U = 1−P
(⋂

i

{T̃i < t∗i }
)
.

From the previous definition, we get

U = 1−∏
i
P
(
T̃i < t∗i |

i−1⋂
j=1

{T̃j < t∗j }
)

(9)

From equation (6) we have inequality z̃i(u,δτ (u)) ≤ zi(u) for any u ≥ 0 and τ ∈ Rn
+. This implies that λ̃i(u,δτ (u)) ≥ λi(u). We

can conclude from the previous observations and from (8) that for any t ≥ 0,

P̃i(t,τ)≤ Pi(t). (10)

Let i ∈ {1, . . . ,n}, t > 0. For clarity purposes, we define event Ci :=
⋂i−1

j=1{T̃j < t∗j }. As P
(
T̃i ≥ t∗i |Ci

)
= E

(
D̃i(ti∗) |Ci

)
is defined

we can apply the total expectation theorem to the random variable {D̃(u)}u∈[0,t∗i [:

P
(
T̃i ≥ t∗i |Ci

)
= E{D̃(u)}

τ∈[0,t∗i [

[
E[D̃i(t∗i ) | {D̃(u)}τ∈[0,t∗i [] |Ci

]
(11)

As E[D̃i(t∗i ) | {D̃(u)}τ∈[0,t∗i [] = P̃i(t,τ) we have using inequality (10) that P
(
T̃i ≥ t∗i | Ci

)
≤ Pi(t∗i ). Looking back on equation (9) we

find upper bound on U :

U ≤ 1−∏
i

(
1−Pi(t∗i )

)
(12)


	Introduction
	Model
	Problem formulation
	Extending the model with UCAV failure
	Calculating the performance in a penetration problem

	Numerical studies
	Conclusion
	Appendix

