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Abstract—Simultaneous Localization and Mapping (SLAM)
research has reached a level of maturity enabling systems to
build autonomously an accurate sparse map of the environment
while localizing themselves in that map. At the same time, the
use of deep learning has recently brought great improvements
in Monocular Depth Prediction (MDP). Some applications such
as autonomous drone navigation and obstacle avoidance require
dense structure information and cannot only rely on sparse
SLAM representation. We propose to densify a state-of-the-
art SLAM algorithm using deep learning-based dense MDP at
keyframe rate. Towards this goal, we describe a scale recovery
from SLAM landmarks by minimizing a depth error metric
combined with a multi-view depth refinement using a volumetric
approach. We conclude with experiments that attest the added
value of our approach in terms of depth estimation.

Index Terms—dense SLAM, monocular depth prediction,
drone navigation

I. INTRODUCTION

Autonomous navigation of a robot in an unknown area
requires the perception and analysis of the surrounding envi-
ronment. A way to achieve this is by reconstructing a 3D map
which further serves at localizing the robot. In addition, real-
time pose estimation enables applications such as autonomous
drone navigation in GNSS-denied regions. This topic is mainly
formulated as a maximum-a-posteriori estimation problem
where the robot state is estimated from sensors’ measurements.
This subject is typically referred as Simultaneous Localization
and Mapping (SLAM).

In this work we are particularly interested in UAV applica-
tions such as exploration of buildings for damage assessment
[1]. Drone navigation does not need a high-resolution 3D
mesh but rather a coarse, dense, metric representation. A voxel
map like the one in Fig. 1 fits this need. For an embedded
application, we focus on passive sensors, especially monocular
inertial configurations. LiDAR and RGB-D sensors measure
depth at the cost of power consumption and yet still suffer from
sensor acquisition limitations. Stereo cameras also provide
depth by stereo matching, but they require perfect calibration
at all times and more volume because their range is limited
by the baseline. The monocular camera is the most affordable
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Fig. 1. Voxel map reconstructed using Voxblox on EuRoC [2] V1_01 scene
from stereo matching.

solution as it requires less power and size. However, pixel
depth recovery is much more difficult. The addition of an IMU
sensor makes it possible to retrieve the metric information
which considerably improves accuracy.

Nowadays, modern Visual SLAM systems are mature
enough to provide accurate localization in a privileged context.
Conventional state-of-the-art methods such as Basalt [3] and
ORB-SLAM 3 [4] focus on maintaining an accurate sparse
map ensuring a good localization and minimizing computation
time. Building and maintaining a dense map requires consider-
ably more calculation, but some methods investigate solutions
to densify SLAM. Indicatively, Kimera [5] uses a dedicated
thread to estimate dense depth from stereo images, then builds
a voxel map with raycasting, and finally derives a 3D mesh
by marching cubes. Nevertheless, this cannot be applied to
monocular cameras which are subject to scale ambiguity.

On the other hand, Deep Neural Networks (DNN) have
brought significant improvements in Monocular Depth Predic-
tion (MDP), and most recent approaches tend to use them to
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Fig. 2. Scheme of our proposed pipeline. (a) Loosely coupled: recover the scale of the predicted dense depth from the sparse depth estimated by SLAM. (b)
Tightly coupled: predict absolute dense depth from a monocular image and the estimated sparse depth, requiring an adjustment of the Packnet-Sfm network.
A voxel map is built with Voxblox by multi-view fusion and grouped raycasting. For both approaches, we further propose to account for the uncertainty of

our final depth map (red arrows).

densify SLAM. CodeSLAM [6] introduced the use of Varia-
tional AutoEncoders (VAE) to infer depth, learning a compact
depth representation from an RGB image and a SLAM-based
sparse map. DeepFactors [7] and CodeMapping [8] implement
the CodeSLAM VAE in a full SLAM system and further add
depth uncertainty prediction and multi-view refinement via a
factor graph. The latter also leverages available reprojection
error to account for sparse depth uncertainty.

These MDP solutions are mainly based on supervised
learning requiring a huge amount of image data with registered
depth ground truth which is a tedious task. As a result, self-
supervised methods gained interest allowing to train a network
without ground truth. Indeed, based on multi-view geometry,
training only needs stereo images [9] to reconstruct the left
image from the inferred depth and the right image, after which
the photometric loss is calculated for the reconstruction error.
Some works [10]-[12] extend this approach to monocular
sequences where relative pose between frames is known or
jointly estimated. On the same idea, Packnet-Sfm [13] imple-
ments packing and unpacking blocks through 3D convolutions,
claiming that it preserves dense geometric and appearance
details as much as possible.

Thus, we choose to study the capacity of MDP to help
densify SLAM. In this paper, we present our on-going work
to provide drones with the capability to derive a dense and
metric 3D map using SLAM. Section II describes our approach
for SLAM map densification. Then, we report and analyze
our initial results in Section III and finally, we discuss our
perspectives for subsequent work in Section IV.

II. OUR APPROACH

We propose to densify SLAM sparse maps for UAV nav-
igation in two stages. The global pipeline is illustrated in
Fig. 2 (a). The first step consists in predicting a dense depth
map using Packnet-Sfm and to scale it using ORB-SLAM
3 triangulated points (landmarks), as described in section
II-A. At a second step, we aim to refine the scaled dense
depth through multi-view refinement via volumetric fusion, as
outlined in section II-B. The ORB-SLAM 3 tracking thread
can run at a frame rate of 20 fps on an embedded system to
provide localization. Local mapping also runs at the targeted
keyframe rate (2-4 fps) if we limit the drone navigation to

a reasonable speed, a realistic assumption when exploring
a building. Therefore, we can add Packnet-Sfm to the local
mapping thread and expect it to have a minimum impact on
speed. We try to minimize the complexity of the fusion since
we do not want to significantly drop the keyframe rate.

A. Scale recovery

For a keyframe I, we define 2, C I}, as the subset of pixels
for which ORB-SLAM 3 estimated the depth such that for
p € Qy the estimated depth is D;f € R’.. Likewise, Packnet-
Sfm infers a dense depth map such that each pixel p € Ij has
a predicted depth D’;. Assuming that the predicted depth map
is consistent, we obtain:

Joy, € R,Yp € Ik, ZF = oy Df (1)

where Z;f is the ground truth and «y, the scale factor for this
keyframe. When evaluating depth prediction, many authors use
the ratio of the median predicted depth on the median of the
ground truth, which will refer to as the GT-scale:

_ med({Z},p € I.})
med({f)]’;,p € I:})

2

Such a choice can be statistically insignificant for a small set
of points, especially if the set is heterogeneous. Instead, we
minimize the square relative error defined in [15]. This metric
compensates for large errors in deep points by dividing them
by the ground truth:

R
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with N being the number of points in 2. By developing the
sum we easily get a positive polynomial of a degree 2 which
is easy to minimize:
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We later refer to the obtained scale as the SR-scale. While
solving this equation is simple we stress that this still resides
on a strong assumption related to the consistency of the
predicted depth map.
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B. Multi-view depth refinement

In order to build a 3D map and improve the depth estima-
tion, we need to perform a multi-view refinement. For this
purpose, DeepFactors [7] and CodeMapping [8] use dense
bundle adjustment (BA) and factor graph optimization. In [16],
Rosinol et al. propose volumetric mapping to fuse depth maps
which are weighed by a probabilistic uncertainty. In Kimera
[5], bundled raycasting adapted from Voxblox [17] is used
from multiple views with the estimated pose to build and
maintain a voxel map. Indeed, thanks to stereo camera, a
dense depth map can be estimated by stereo matching for each
keyframe. Then, all points that belong to the same voxel are
raycasted together which significantly speeds up the process.
Thus, multi-view fusion is done at voxel level, and a mesh is
eventually extracted by marching cubes.

We base our work on this last solution as we can obtain
a dense depth map from previous steps. Basically, Voxblox
constructs a voxel map where each voxel stores a weight and
a distance to the nearest surface. A Truncated Signed Distance
Function (TSDF) is defined and gives a distance to the surface
boundary. Each voxel crossed by a ray and located up to
a truncation distance sees its weight and distance updated.
The weight function is fixed at 1 in front of the surface and
decreases quadratically with the distance beyond the surface.

III. EXPERIMENTS

We present here our initial results and observations by
restricting our experiments in the scene V1_01 from EuRoC
[2], since evaluation datasets that contain both trajectory and
3D structure ground truth are not easily accessible. We run
ORB-SLAM 3 on this scene and export each keyframe with
corresponding sparse map and timestamp. Dense depth maps
are predicted from extracted frames using Packnet-Sfm, which
was trained on the KITTI dataset [19]. Then, we obtain the
ground truth for each keyframe by projecting the LiDAR point
cloud into the image plane using ground truth camera pose
and intrinsic parameters. Finally, we evaluate depth predictions
using metrics defined in [15] as reported in Table I. Results
from DeepFactors [7], Ma et al. [18] and CodeMapping [8]
are also reported for reference.

) < 1.25, red otherwise.

Upon application of the recovered scale to the inferred dense
depth as defined in (4), we observe a significant improvement
as shown in Table I, divided in three groups. We first report
ORB-SLAM 3 sparse depth evaluation for reference. It is
evaluated on much less points than dense depth maps, thus the
measure is more impacted by errors. Nonetheless, it confirms
the relatively good accuracy of the depth estimation since
91 = 89.9%, referring to the percentage of estimated points
that are within a 25% error range around the ground truth
depth. The second group shows related results reporting only
absolute difference and root mean square error. By leveraging
reprojection error and multi-view depth refinement, CodeMap-
ping attains excellent results at the cost of heavier compu-
tations. In the last group, we reveal Packnet-Sfm evaluation
without scaling, with ground truth (GT) scaling, and with our
proposition. Some qualitative results are shown in Fig. 3. We
note that Packnet-Sfm fails to accurately infer some structures’
depth, especially because the scale does not appear consistent
on the image. However, it manages to segment many objects in
the scene. We also note that the network fails to predict some
planar surfaces or predicts them as if they were in an outdoor
scene, with larger depth in the upper part of the image.

Finally, we tried using Voxblox from the dense depth maps
obtained after scaling. These depth maps contain some errors
which have large values that corrupt the voxel map during
raycasting and which cannot be corrected by multi-view since
they fall out of the truncation distance. We believe that
improving the predicted dense depth map and filtering out
these errors would solve this problem.

IV. PERSPECTIVES

Our first observation is about the dense depth map pre-
diction quality. The model used here was trained on KITTI
[19] which only includes outdoor scenes with mainly vehi-
cles, street roads and trees. The network may have difficulty
estimating square structures, objects close to the camera or
the upper parts of the image because in outdoor images these
parts correspond to the sky. We expect that a fine-tuning of
the network on indoor scenes would greatly benefit the quali-
tative results. The HILTT dataset [20] provides interesting and



TABLE I

EVALUATION OF DEPTH PREDICTION ON EUROC [2] V1_01 SCENE. UNITS IN METERS. LIGHT:

WITHOUT MULTI-VIEW OR REPROJECTION ERROR.

abs_diff  abs_rel sq_rel rmse rmse_log 01 02 03
ORB-SLAM 3 [4] (sparse) 0.283 0.147 0.315 0.612 0.218 0.899 0946 0.973
DeepFactors [7] 0.842 1.050
Ma et al. [18] 0.495 0.598
CodeMapping [8] light' 0.280 0.435
CodeMapping [8] 0.192 0.381
Packnet-Sfm 6.209 2.637 21.756  7.171 1.244 0.014 0.047 0.123
Packnet-Sfm (GT-scale) 0.814 0.326 0.535 1.155 0.392 0.478  0.760  0.899
Packnet-Sfm (ORB-SLAM 3 SR-scale) 0.886 0.363 0.748 1.262 0.404 0.475 0.751  0.889
challenging indoor sequences with LiDAR data and grayscale as follows:
images. However, colour images are more informative so we N
. . « . e*pi
will not use it for training. Instead, we can' use the. TUM = — such that Z =1 (6)
[21] dataset and also collect our own data with a calibrated Zj: Le P =

monocular camera since no ground truth is required.

To tackle the problem of scale consistency, a possible
solution consists in computing a scale map that would re-
cover scale locally. A way to achieve this with minimum
computation would be to segment the depth map and retrieve
scale independently in each cluster as described in II-A.
However, our approach is loosely coupled and relies on an ad-
hoc formulation. Considering a tightly coupled method would
greatly benefit the results. Indeed, we could adapt Packnet-
Sfm network to also process ORB-SLAM 3 landmarks as
input (Fig. 2 (b)). The sparse map, containing the metric
information, would allow to directly infer a metric dense
depth map. A depth error term can be appended to the loss,
comparing the sparse set of points in the input and the
prediction. Setting a dedicated learning rate would allow to
increase the contribution of this term after few epochs, when
the network is good enough at predicting relative dense depth.
This way, we aim to leverage DNN capacity to model how to
diffuse the sparse estimated depth over the image.

On the other hand, regarding Voxblox multi-view fusion,
weights propagated along rays have to be adapted to deal with
low confidence rays. ORB-SLAM 3 sparse depth points have
a good confidence since they are estimated by BA based on
epipolar geometry. The idea is therefore to compute an uncer-
tainty map on the scaled dense depth, where the confidence
is greater the closer it is to a sparse depth. We measure the
tracked points confidence by their reprojection error and define
an ad-hoc way to diffuse it to neighbouring pixels. Thus, we
propose to use a Gaussian Mixture where each triangulated
point of coordinates g; € 2 defines a Gaussian of mean
i = ¢; and covariance ¥; = diag(R, R). Here, we define
R € R} as a fixed radius to diffuse the weights around each
landmark. The Gaussian Mixture is defined by the equation:

N
Vo € Iy, p(alm, 1, 2) = Y mp(a, mi, %) (9)
i=1

where 7; is the mixing coefficient. We leverage reprojection
error p; calculated by ORB-SLAM 3 and the softmax function

Thus we can now deduce the confidence map c as a function
of the Gaussian Mixture density f:

N
T 1 Ts—1
Va € Iy, f(z) = T e (Emp) B (B ) 7
k() ;mm% (7)
Va € Iy, c(z) = max(cmin, f(2)) (8)

Cmin 18 @ positive scalar used to keep a minimum confidence
because we do not want to get rid of predicted points that
are too far from any landmark. We plan to leverage this
uncertainty to replace the constant weight fixed at 1 in front
of the surface. Thus, the contribution of uncertain predictions
are minimized or even discarded. In addition, we did not
account for local and global mapping update of ORB-SLAM
3 covisibility graph. Indeed, the updates correct the position of
landmarks, especially at the beginning or during loop closure.
Leveraging these updates should allow to limit or discard a
previous ray, particularly when a landmark had a significant
change.

Finally, we discussed uncertainty calculation on our loosely
coupled approach, but it could also be extended to the tightly
coupled proposition as illustrated on Fig. 2 (b). Indeed, we
could also append ORB-SLAM 3 reprojection error informa-
tion to guide the network in predicting an uncertainty map.

V. CONCLUSION

In this paper, we presented our ongoing work on the joint
use of ORB-SLAM 3 sparse depth and Packnet-Sfm predicted
dense depth to produce a 3D dense metric map. As a first
step, we proposed a simple scaling recovery solution with
promising results which can serve as a basis for multi-view
volumetric depth fusion based on grouped raycasting and
confidence map calculation. We presented future works and
perspectives, including Packnet-Sfm customization to propose
a tightly coupled approach. Finally, the measurement of 3D
metrics as presented in [5], [22] would allow a relevant
analysis of the accuracy and completeness of the 3D mapping.
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